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Abstract

We present high definition imaging for targets behind walls and enclosed structures based on con-

strained minimization RF multi-sensor processing. Minimum variance distortionless response (MVDR)

beamforning is used on both sensor-frequency raw data radarreturns and spatial spectrum data, which is

obtained by the Fourier transform of the delay and sum beamformer image. We compare both methods

for near-field and far-field scenes. The paper considers bothcases of known and unknown wall parameters

and uses manifold constraints to allow target localizationin high-definition imaging in the presence of

wall errors. Also, through analyses and simulations, we show how to effectively use the spatial spectrum

to improve covariance matrix estimation, and subsequentlyenhance image quality in the sense of lower

sidelobes.

Index Terms

High resolution radar imaging, MVDR, Through-the-wall radar, Capon Method, Delay-and-sum

beamforming

I. INTRODUCTION

Radio frequency (RF) sensing is the technology of choice in through-the-wall applications

as it provides vision into otherwise obscured areas [1]–[7]. Radio frequencies can penetrate

through nonmetallic walls and, more importantly, unlike other technologies, RF solutions can

be provided at long stand-off distances from the external walls. Through-the-wall radar imaging
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(TWRI) can be realized by transmitting and receiving wideband signals at multiple locations

[8]. The target location can be estimated by using wideband delay-and-sum (DS) beamforming,

where a set of delays are applied to align all signal returns corresponding to a hypothesized

target location. These returns are then summed and processed by a matched filter to produce an

image intensity value at each location. DS beamforming withknowledge of wall characteristics

has been extensively examined for TWRI applications [1], [9], [10].

In order to deliver high quality imaging for targets behind walls and in enclosed structures,

very large signal bandwidth and array aperture must be used,respectively, to provide high res-

olutions in down-range and cross-range. Operation logistics and covertness, frequency spectrum

management, and system constraints may not permit these requirements to be satisfied. High-

definition adaptive schemes can, however, be applied to overcome the limitations of Fourier-

based imaging. These schemes not only provide high imaging resolution, but also offer good

interference suppression capabilities [11]. Both properties stem from adopting data-dependent

radar imaging methods, which are faced with the challenge ofestimating the covariance matrix

from only a single snapshot. In this regard, multiple virtual snapshots need to be formed from

a single data observation by interpolation of the raw data ona rectangular grid [12] or through

sub-band processing [13], [14]. An alternative to the data interpolation approach for covariance

matrix estimation is to use the 2D spectrum of the image that is generated by a low-resolution

image formation algorithm, such as DS beamforming [11], [15].

In this paper, we use minimum variance distortionless response (MVDR) beamforming with a

frequency step implementation of a wideband pulse to provide high definition imaging of indoor

targets. By high-definition, a high quality image in the sense of lower sidelobes and interference

suppression is implied. We apply MVDR beamforming to both the raw frequency-sensor data

approach and the beamspace approach. The former is known to result in biased target locations

when the scene of interest is located in the near field of the array. Since near field operations

are likely to be encountered in urban sensing, estimating the covariance matrix from the spatial

spectrum associated with DS beamforming is considered moresuitable for TWRI applications.

We show, however, that when using beamspace processing, oneshould only consider the region

in the spatial spectrum which corresponds to the target, otherwise virtual snapshots obtained by

subarray and subband vectors will not properly correspond to the array manifolds, leading to

target image dispersion. Note that the magnitude of the target spatial spectrum follows a ‘sinc’
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function behavior, rendering non-constant magnitudes of the elements in the virtual snapshots.

It is shown that these fluctuations tend to smooth out due to the averaging process during the

covariance matrix estimation. In essence, the target bandwidth in the spatial frequency domain is

determined by the target extent in the DS image, which in turndepends on three factors, namely,

the radar system resolution, image pixel size, and the location of the beam relative to the antenna

array. All of these parameters should be known in advance. Once the target is imaged by the

DS beamformer, the corresponding spectrum region can be readily determined.

In the case where the wall characteristics are unknown, the target image from MVDR beam-

forming can both shift in position and blur in intensity. Autofocusing techniques have been

proposed in the context of DS beamforming to overcome the wall impairing effects [16], [17],

wherein the effect of wall ambiguities on the target spread and intensity profile is examined,

aiming to focus the image. As a secondary effect, the autofocusing techniques also correct

for shifts in the locations of the imaged targets. An alternate technique that provides correct

locations of stationary targets without the knowledge of wall parameters was proposed in [18].

This technique is also based on DS beamforming, but utilizesthe displacement, rather than

blurriness, of the imaged targets. It requires the use of a double-viewing operation, where

the imaging system is deployed at two different locations. This approach corrects for wall

ambiguities by constructing a trajectory of the imaged target locations, using different assumed

wall characteristics. Different positions of the imaging system generate different trajectories that

intersect at the true target location.

In this paper, we consider high definition imaging with knownand unknown walls. For the

latter, we analyze the bias in imaged target location due to wall errors beyond that which is

discussed in reference [18]. These analyses are then used toconstruct additional constraints on

the MVDR beamformer so as to provide unbiased target locations when imaging with different

system views.

The paper is organized as follows. In Section II, through-the-wall radar (TWR) is briefly

discussed. In Section III, high-definition radar imaging inthe presence of known walls is

presented. Section IV and V explain both the raw data approach and the beamspace approach

using exact wall parameters, followed by Section VI which shows the processing results of

both simulated data and real data measurements. In Section VII, the effect of wall parameter

errors on TWRI is analyzed, and a high definition target localization approach in the presence



4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. Y, MONTH 200X

of unknown walls using two array positions and constrained MVDR beamforming is proposed.

In Section VIII, a proof of concept for unknown wall parameters is provided using simulated

data. Section IX contains concluding remarks.

II. THROUGH-THE-WALL RADAR

A. Signal Model

We consider wideband radar imaging based on monostatic datacollection schemes. A single

antenna transmits and receives a wideband signal, with desired range resolution, at one location,

then moves to the next location to repeat the transmit/receive process until it exhausts all loca-

tions, defining the synthesized array aperture. The wideband signal is generated using a stepped-

frequency approach in which the transmitter sweeps throughthe allocated signal bandwidth via

a series of narrowband signals of uniformly spaced center frequencies. LetNf be the number of

narrowband signals andNa be the number of antenna locations for data collection. For ascene

consisting ofP point targets, the received signal at thel-th antenna location corresponding to

the narrowband transmit waveform of frequencyfk is given by [15],

z(k, l) =

P−1
∑

p=0

σp exp{−j2πfkτl,p} (1)

wherek = 0, . . . , Nf − 1, l = 0, . . . , Na − 1, σp is the complex reflection coefficient of thep-th

target,τl,p is the two-way traveling time from thel-th antenna location to thep-th target, and

fk = f0 + k∆f, ∆f =
fNf−1 − f0

Nf − 1
(2)

wheref0 is the lowest frequency in the desired frequency band and∆f is the frequency step

size. In the absence of a wall, the traveling time of the signal is determined by the line-of-sight

distance between the antenna and the target. In this case,τl,p is given by,

τl,p =
2

c

√

(xp − xl)2 + (yp − yl)2, (3)

wherec is the speed of light in free-space,(xp, yp) is the location of thep-th target and(xl, yl)

is the l-th antenna location.

For through-the-wall radar, the signal undergoes attenuation, dispersion, refraction, and a

change in speed as it propagates through the wall. As a result, the path emanating from the

antenna and reaching the target is no longer line-of-sight.Assuming a homogenous wall of
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thicknessd and dielectric constantǫ, the two-way propagation timeτl,p from the l-th antenna to

the p-th target, ignoring the multiple reflections within the wall, is given by [19] (See Fig. 1),

——————————- ——————————–

Insert Figure 1 here

———————————- ———————————

τl,p =
2g1

c
+

2g2

√
ǫ

c
+

2g3

c
, (4)

where

g1 =
h1

cos φ
, g2 =

d

cos θ
, g3 =

h2

cos φ
,
√

ǫ sin θ = sin φ, (5)

with

(a − h1 tan φ)2 + (h2 + d)2 = g2
2 + g2

3 − 2g2g3 cos(π + θ − φ). (6)

The variablesh1, h2, anda are defined in Fig. 1, and are functions of the antenna and target

locations. The variablesθ and φ represent the angles of incidence and refraction, respectively.

Note that the above equation is most applicable to the case ofhomogeneous wall in which the

signal propagates at a constant speed. It is further noted that in the signal model of eq. (1), the

wall reflections, resulting from a mismatch in the material properties at the air-wall-air interface,

are assumed to have been mitigated using effective wall return removal techniques such as those

recently proposed in [17], [20], [21].

B. Delay-and-Sum Beamforming

An image of the scene can be obtained by using wideband delay-and-sum beamforming, where

a set of delays are applied to align all signal returns corresponding to a presumed target location

[1]. The complex image valueB(x, y) at pixel (x, y) is obtained by weighting and summing the

delayed signals,

B(x, y) =
1

NfNa

∑

k

∑

l

w(k, l)z(k, l) exp{j2πfkτl,(x,y)} (7)

Here,w(k, l) is the weighting function andτl,(x,y) is the two-way propagation time of the signal

from the l-th antenna to the beamforming point(x, y).
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III. H IGH-DEFINITION THROUGH-THE-WALL RADAR IMAGING

High-definition, here, implies high-quality imagery in thesense of low sidelobes and in-

terference suppression with resolution dictated by the size of the synthesized array aperture.

In applying these methods for imaging through walls, the data covariance matrix must first

be estimated [22], [23]. Estimation of the covariance matrix is performed in many applications

through time-averaging where data snapshots are collectedover an observation period. In most of

the radar applications, however, only a single snapshot is possible, and as such, data preprocessing

to reduce the estimation variance becomes necessary. In [13] and [14], multiple snapshots

are obtained by sub-array and sub-band processing of the data. The data is first partitioned

into multiple overlapping subsets. Delay-and-sum beamformed images, obtained by independent

processing of these different data subsets, are then used toestimate the covariance matrix. The

shortcoming of this approach is that only a limited number oflow-resolution images are used. The

virtual snapshots, which allow covariance matrix estimation through averaging, can be formed

with the 2D spatial spectrum of the sceneg(s, u) [12], [15]. It is noted that the spatial spectrum

must first be preprocessed to remove the effect of the weighting w(k, l) applied in DS image

formation. However, this is not a straightforward process due to the finite number of antenna

locations and frequencies. Therefore, in the following analysis and ensuing sections, we assume

that w(k, l) = 1 for all k and l). For a single point target located at(x0, y0),

g(s, u) = σ0 exp{−j2π(sx0 + uy0)}, (8)

whereσ0 is the reflection coefficients of the target. It is noted that the information constraining

target locations is contained in the phase of the 2D spatial spectrum. In practice, only part of

the spatial spectrum will be available. Define aK × L matrix,

Gk,l =















g(k, l) · · · g(k, l + L − 1)

g(k + 1, l) · · · g(k + 1, l + L − 1)
...

. . .
...

g(k + K − 1, l) · · · g(k + K − 1, l + L − 1)















, (9)

whereg(k, l) := g(sk, ul) for sk = s0 + k∆s, ul = u0 + l∆u. s0 and u0 represent the lowest

available frequencies, and∆s and∆u are the frequency steps. The virtual snapshots are defined

by

gk,l = vec{Gk,l}. (10)
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In the above equation,vec{} is the vectorizing operator which stacks all the matrix columns

into one vector. It is convenient to define an array manifold vectora(x, y),

a(x, y) = α(x) ⊗ β(y), (11)

where⊗ denotes Kronecker product and

α(x) = [ej2πs0x ej2πs1x . . . ej2πsK−1x]H , (12)

β(y) = [ej2πu0y ej2πu1y . . . ej2πuL−1y]H , (13)

Then, the relationship betweengk,l anda(x, y), for x = x0 andy = y0, is

gk,l = σ0 exp{−j2π(k∆sx0 + l∆uy0)}a(x0, y0). (14)

Accordingly, the covariance matrix can be estimated as,

R̂ =
∑

k

∑

l

gk,lg
H
k,l, (15)

where the superscriptH denotes conjugate transpose. When there isP point targets, the structure

of the covariance matrix is

R̂ =











aH(x0, y0)
...

aH(xP−1, yP−1)

























γ0 0 · · · 0

0 γ1

...
. . . 0

0 · · · 0 γP−1















[

a(x0, y0) · · · a(xP−1, yP−1)
]

+ Σ

(16)

whereΣ is the covariance matrix of noise and,

γp = σp

∑

k

∑

l

exp {−j2π(k∆sxp + l∆uyp)} (17)

for p = 0, . . . , P − 1. Note thata(x, y) are independent ofa(x′, y′) whenx 6= x′ or y 6= y′.

Once the covariance matrix is estimated, data-dependent imaging approaches can be applied to

obtain a high-definition image of the scene. MVDR beamforming can provide both RCS estimates

and high-definition imaging [23]. The image pixel value corresponding to Capon estimator, which

is singly constrained MVDR, is

I(x, y) = min
w

wHR̂w subject towHa(x, y) = 1, (18)

There are mainly two approaches, discussed below, to estimate the spatial spectrum necessary

to apply (18), one is a raw data-based approach and the other is a beamspace-based approach.
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IV. RAW DATA -BASED APPROACH

———————————————————— ——————————————————

—–

Insert Figure 2 here

————————————————— ———————————————-

When the far-field approximation is valid [12], the receivedsignalz(k, l) in (1) can be con-

sidered as a sample of the spatial spectrum, assuming that the antenna beamwidth is sufficiently

wide to cover the entire scene of interest. Then,z(k, l) can be approximated by,

z(k, l) ≈
P−1
∑

p=0

σp exp{−j
4πfk

c
(rl + xp cos φl − yp sin φl)} (19)

whererl is the length of the signal path between thel-th antenna and the center of the scene

in the presence of the wall,(xp, yp) is the location of thep-th target, andφl is the angle of

refraction corresponding to the signal path from thel-th antenna to the center of the scene (See

Fig. 2). Note that the target location(xp, yp) is in the image domain with the center of the

scene at(0, 0). For small values ofφl, which is typically the case in the far-field,cos φl ≈ 1 and

sin φl ≈ φl. Under these assumptions and after compensating for the target-independent phase

term, equation (19) can be written as,

z(k, l) = g(s, u)|s=2fk/c,u=2fkφl/c, (20)

where

g(s, u) =
P−1
∑

p=0

σp exp{−j2πsxp + j2πuyp}. (21)

The rangerl and the angleφl vary from one antenna location to the other and should be computed

for eachl using air-wall-air propagation path. Equation (20) represents a non-uniformly sampled

version of the two-dimensional spatial spectrum of the scene. With 2D interpolation, uniformly

sampled representation can be obtained, permitting a single snapshot estimation of the covariance

matrix, as discussed in the previous section. In this case, the covariance matrix estimatêR is

given by,

R̂ =
∑

k

∑

l

gk,lg
H
k,l (22)
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wheregk,l is a virtual snapshot,gk,l = vec{Ẑk,l}, and Ẑk,l is a K × L matrix whose elements

are the two-dimensional spatial spectrum ,

Ẑk,l =















ẑ(k, l) · · · ẑ(k, l + L − 1)

ẑ(k + 1, l) · · · ẑ(k + 1, l + L − 1)
...

. . .
...

ẑ(k + K − 1, l) · · · ẑ(k + K − 1, l + L − 1)















. (23)

In the above equation,̂z(k, l) is an interpolated version ofz(k, l) with uniformly sampled spatial

frequencies. Any interpolation method, such as linear, polynomial, or spline, can be used. For

the simulations in Section VI, we have used the linear interpolation method for simplicity. The

frequency steps∆s and ∆u are the same as the interpolation intervals. As shown in [15], the

spatial frequenciess andu are bounded by,

f0 ≤ s ≤ fNf−1 cos φNa−1, s sin φ0 ≤ u ≤ s sin φNa−1. (24)

——————————————————— ———————————————————-

Insert Figure 3 Here

———————————————————- ———————————————————

-

The above boundaries do not conform to a rectangle. Figure 3 shows the largest rectangle

that fits the area defined by the above boundaries. The number of discrete samples in that

spectrum depends on the interpolation interval, which can be arbitrary chosen. However, in

order to minimize the interpolation errors, there must be atleast one data sample between

interpolation points. Once the number of samples in the spatial spectrum is decided, the sub-

matrix size (K ×L) can be determined. LargeKL yields high-resolution, but, at the same time,

limits the number of snapshots. If the number of virtual snapshots is less than the dimension

of the virtual snapshots, diagonal loading is necessary to render the covariance matrix estimate

nonsingular [11]. Throughout the simulations in this paper, we used 60% of the spectrum samples

for K andL.

V. BEAMSPACE-BASED APPROACH WITHKNOWN WALL

A. Obtaining the two-dimensional spatial spectrum

Beamspace (BS) processing uses the 2D spatial spectrum of the delay-and-sum beamformed

image of the scene [11], [15]. This method was originally proposed by Benitz in [11], and
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analyzed in detail in [15]. The scene of interest withP point targets can be represented by the

following equation,

f(x, y) =
P−1
∑

p=0

σpδ(x − xp, y − yp) (25)

whereδ(·) is the Dirac-delta function. The discrete version off(x, y) on anM ×N rectangular

grid can be obtained by DS beamforming. That is,

f [m, n] = f(xm, yn) ≈ B(m, n), (26)

where(xm, yn) for m = 0, . . . , M − 1 andn = 0, . . . , N − 1 are uniformly spaced beamforming

points that span the scene of interest andB(m, n) is given by eq. (7), reproduced below for

convenience,

B(m, n) =
1

NfNa

∑

k

∑

l

w(k, l)z(k, l) exp{j2πfkτl,(xm,yn)}. (27)

Note that eq. (27) is valid for near-field as well as far-field processing. The approximation in

eq. (26) is valid for moderate array size and bandwidth. For the approximation to become an

exact equality, the array length as well as the signal bandwidth should be infinite.

The two-dimensional spatial spectrum of the sceneF [kx, ky] can be obtained by applying the

two-dimensional discrete Fourier transform,

F [kx, ky] =
M−1
∑

m=0

N−1
∑

n=0

f [m, n] exp{−j
2πmkx

M
− j

2πnky

N
}, (28)

wherekx = 0, . . . , M − 1 and ky = 0, . . . , N − 1. In this respect, the target location can be

obtained by parameter estimations based onF [kx, ky]. The covariance matrix estimatêR can

be provided using virtual snapshots in a similar way as in theraw data-based approach. In this

case, the new steering vectora(m, n) is given by,

a(m, n) = α(m) ⊗ β(n), (29)

where

α(m) = [1 ej2πm/M . . . ej2π(K−1)m/M ]H ,

β(n) = [1 ej2πn/N . . . ej2π(L−1)n/N ]H .

Note that no interpolation is necessary for beamspace approach, which is advantageous since

interpolation produces data errors. The number of samples in the spatial spectrum is the same as
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the number of beams. The number of beams is determined by the pixel size of the image. If this

space is smaller than the radar resolution, a point target will be represented by multiple pixels. In

this case, the corresponding spatial spectrum will tend to be localized. On the other hand, if the

space is larger than the resolution, the mainlobes of DS beamformer will not effectively overlap,

and targets located between beams will likely be missed. It should also be mentioned that since

the beamforming points do not necessarily match the target locations, there might be target

displacements or reduction in intensity in the high-definition image caused by a combination of

large (strong) and small (weak) targets in the scene. In thispaper, we use DS image with pixels

smaller than the system resolution and consider, for covariance matrix estimation, the area where

most of the energy of target is localized, as discussed below.

B. Location of the target in the spatial spectrum

Let δx and δy be the space between beams along down-range and cross-range, respectively.

Suppose that,

δx = µxρx, δy = µyρy, (30)

where ρx and ρy are the respective cross-range resolution and down-range resolution. The

constantsµx and µy denote how much the signal is oversampled in the image domain. The

equivalent time intervalδT between two beams and the corresponding sampling frequencyfs

are,

δT =
2δx

C
, fs =

1

δT
=

C

2δx
. (31)

For the frequency bandwidthfB, the down-range resolution isρx = C/2fB, and the sampling

frequency is,

fs =
C

2µx(C/2fB)
=

fB

µx
. (32)

Note that if µx ≤ 1, the space between beams is smaller than the system resolution, and the

spectrum will be supported by only2πµx, the location of which is determined by both the

sampling frequency and the signal bandwidth.

To explain the support region for cross-range, we consider apoint target located at the boresight

of the array. Suppose that the pixel size along cross-range is less than the system resolution
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(µy < 1), so the point target is represented by2E + 1 pixels. Then, the corresponding 2D

discrete spatial spectrum is

F [kx, ky] = exp{−j2πkxm0/M} exp{−j2πkyn0/N}sin 2πky(E+0.5)
N

sin πky

N

, (33)

for kx = 0, . . . , M − 1, ky = 0, . . . , N − 1, and (m0, n0) is the the point target location. The

magnitude of the spectrum is determined by the sine term. Theeffective width of the spectrum

is determined by half of the distance between two zeros of thenumerator,

K =
M

2(E + 0.5)
= Mµy. (34)

In the above equation, we have used

(2E + 1)δy = (2E + 1)µyry = ry. (35)

—————————————————————- ——————————————————

———-

Insert Figure 4 & 5 Here

—————————————————————- —————————————————

————–

Figure 4 shows the location of the spectrum in the normalized2D spatial frequency domain.

Note that the above equation is for the case when the target isextended parallel to the array.

When the target is off boresight, however, the point target in the DS image will be extended

perpendicular to the radial line from the center of the array. In this case, the spectrum will be

rotated corresponding to the ‘squint’ angleθ (See Fig. 5(a)). When the signal is rotated, its

spectrum is also rotated in the same way, per the following equations:

f(x, y) → f(x cos θ + y sin θ,−x sin θ + y cos θ) (36)

F (fx, fy) → F (kx cos θ + ky sin θ,−kx sin θ + ky cos θ). (37)

Although the target is rotated around the center of the array, not the center of the axis, the above

equation is still valid up to a phase. Figure 5(b) shows the spatial spectrum when the target is

located at off-boresight angle,θ. In Fig. 5(b), most of the power is located in the shaded region,

which corresponds to the mainlobe of the target spatial spectrum.
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————————————————————– ——————————————————

——– Insert Figure 6 here ———————————————————- ————————

——————————–

We note that the magnitude of the target spatial spectrum is not constant due to the presence

of the ’sine’ term in eq. (33), resulting in variations in themagnitude of the elements in

the virtual snapshots. This magnitude profile causes a mismatch with the assumed constant-

amplitude steering vector in eq. (29). However, these magnitude fluctuations tend to smooth out

to approximately a constant due to the averaging process during the estimation of the covariance

matrix, as shown in Fig. 6, rendering the constant-amplitude steering vector model applicable.

Figure 6 depicts the magnitude of the elements of several virtual snapshots (dotted curves) for

the case of a single point target withµy = 1/16 and µx = 1/4. The solid curve in Fig. 6

represents the magnitude of the elements of the steering vector after the averaging process in

covariance matrix estimation. The magnitudes are normalized so that the mean magnitude is

equal to unity. The standard deviation of the virtual-snapshot magnitudes varies from 0.16 to

0.65, whereas that of the steering vector is 0.09.

C. Effective covariance matrix estimation

———————————————————– ———————————————————

–

Insert Figure 7 here

———————————————————- ———————————————————

—

As discussed in the previous section, the effective spatialspectrum of the target is confined

to a limited region of the Fourier transform of the DS image. Therefore, only the part where the

target exists in the spatial frequency domain should be usedfor covariance matrix estimation.

One simple way to tile the spatial spectrum corresponding totarget positions in the image is

to divide the scene of interest into two parts like mosaic: the positiveθ part and the negative

θ part. Figure 7 shows the divided scene and the correspondingparts in the spatial spectrum.

Two tiles are overlapped in the center to avoid missing targets located at the boundary. The

amount of overlap can be determined byµy. The shaded are represents the region where most

of the target spectrum is localized. Outside this region, the spectrum is highly attenuated and
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should be avoided in estimating the covariance matrix, as demonstrated later by a simulation

example. As a result, two covariance matrices will be considered. Each covariance matrix contains

information about the targets in the corresponding image region, and as such will be used in

MVDR beamforming for that region. In this way, the covariance matrix for positiveθ-region

will provide the image for one side and the one for negativeθ-region will provide the image for

the other side.

Note that the cross-range resolution depends on the radial distance between the beamforming

point and the center of the array. In order to include all target information in a tile, the size

of the sub-matrix should be determined according to the cross-range resolution of the farthest

target and the maximum off-boresight angleθmax in the tile.

VI. SIMULATION RESULTS OFKNOWN WALL DATA

In order to compare the above two approaches, we used two synthesized data sets, one for

near-field and one for far-field. In both cases, the scene of interest is 4m× 4m. In the near-field

case, the distance from the wall to the center of the scene is 6m. The length of the linear array

is 1.2m with 61 elements and the bandwidth of the signal is 1GHz (2GHz - 3GHz). In the

far-field case, the distance to the center of the scene is 25m,and a 5m long array consisting

of 63 elements is used with the same frequency band as the near-field scene. The down-range

resolution for both scenes is 0.15m. The cross-range resolution at the center frequency and at

the center of the scene is 0.6m for both cases. A 15 inch thick wall with 7.0 dielectric constant,

typical of concrete, is located at 0m in down range. Assumingknown wall parameters, the wall

effects are compensated for before applying the high-definition imaging algorithms. The pixel

size of the DS image is0.0375 × 0.0375m which is one fourth of the down-range resolution

(µx = 1/4) and 1/16 of the cross-range resolution (µy = 1/16). The parameterK and L are

chosen as 13 and 6 respectively. The value ofL is the product ofµy and the total number of

columns (107/16 ≈ 6.7) in the DS image.

————————————————– —————————————————

Insert Figure 8,9,10,11 Here

——————————————– ——————————————–

In all the figures in this section as well as the following sections, all image values are in dB

units with the maximum level normalized to 0dB. Figure 8 shows the processing results using
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DS beamformer. The left figure is the far-field scene and the right figure is the near-field scene.

Two targets are shown at their locations which are marked by circles. Since the wall effects

are perfectly compensated for, the targets appear at the correct locations. Figure 9 shows the

same scenes obtained by the raw data-based Capon. As expected, Capon beamforming provides

high-definition imaging. In the near-field case, however, even with the wall effects are properly

accounted for, there are biases in the target locations in the raw data approach which is due to far-

field approximation. Figure 10 is the beamspace-based Caponimage which, compared to Fig. 9,

shows images of high resolution and without any biases, evenin the near field. Figure 11(a)

shows the beamspace-based Capon image when all the spatial spectrum is used for covariance

matrix estimation. It is clear that the quality of the image is worse than Fig. 10, which only

used the target spatial spectrum support region, depicted in Fig. 11(b). The straight lines denote

the area which is processed to image the left half of the scene(negativeθ), where the targets

are located.

———————————————– ————————————————

Insert Figure 12 Here

——————————————– ———————————————-

Figures 12(a) and 12(b) show the spatial leakage patterns for the DS and beamspace Capon

beamformers at the beamforming point is at(−0.8, 5.5)m which coincides with the location of

one of the two targets. The advantage of the Capon beamformerover the DS beamformer is evi-

dent. The DS beamformer has a high sidelobe at the second target, located at(−0.988, 6.512)m,

while the Capon beamformer places a null there, minimizing the interference from the second

target, thereby providing a more accurate estimate of the target Radar cross-section (RCS).

———————————————– ————————————————

Insert Figure 13 Here

——————————————– ———————————————-

Real experiment data set is also tested. A wideband synthetic aperture through-the-wall radar

system was set up in the Radar Imaging Lab at Villanova University. A stepped-frequency CW

signal, consisting of 501 frequency steps of size 5 MHz, covering the 1-3 GHz band was chosen

for imaging. An Agilent network analyzer, model ENA 5071B, was used for signal synthesis and

data collection. A horn antenna, model ETS-Lindgren 3164-04, with an operational bandwidth

from 0.7 to 6 GHz, was used as the transceiver and mounted on a Field Probe Scanner to
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synthesize a 67-element monostatic line array with an inter-element spacing of 0.018m (0.735in).

A 3.0m x 2.4m x 0.05m (10ft x 8ft x 2in) plywood wall segment, with a dielectric constant of

2.5, was constructed. The wall was positioned 1.0m (40in) downrange from the antenna feed. The

scene has one vertical dihedral at a height of about 1.44m (56.75in). Each face of the dihedral

is 0.39m (15.5in) by 0.28m (11in). The height of the array wasfixed at the same height as the

dihedral. Empty scene measurements were also made with onlythe wall present in the test area.

These measurements were coherently subtracted from the target scene and the resulting data sets

were used for generating the images. Figure 13 shows the DS image and the beamspace Capon

image. Capon beamforming of real data provides a better image than DS beamforming in the

sense of reducing the sidelobes, even though the experimental data set is corrupted by noise,

multipath and/or reflections, and the dihedral is not a pointtarget unlike the previous synthesized

data set.

VII. B EAMSPACE MVDR W ITH UNKNOWN WALL

A. Effect of Wall Parameter Errors

———————————————– ————————————————

Insert Figure 14 Here

——————————————– ———————————————-

Through-the-wall radar imaging with assumed wall parameters, which are different from their

true values, will result in image degradation. Figure 14 shows the DS images of the simulated

two-target scene of Section VI under 10% and 20% error in the wall parameters. Although two

targets are clearly seen, their locations are biased and theamount of bias is proportional to the

errors. Since the beamspace approach is based on the DS image, the beamspace MVDR will

also result in the biased target locations. Image degradation is also witnessed for the method

based on interpolated raw data as it causes errors inrl in (19). As such, the received signals

will not be properly aligned at the center of the scene and anyhigh-definition methods based

on the corresponding covariance matrix estimate will suffer.

———————————————– ————————————————

Insert Figure 15 Here

——————————————– ———————————————-
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Let ∆d and∆ǫ be the errors in the wall thickness and dielectric constant,respectively. Due

to the wall parameter errors, the target in the DS image will be located at pointq instead of

its true locationp, as shown in Fig. 15 [18]. Let∆x and∆y be the biases in the down-range

and cross-range, respectively. In [18], closed form expressions for∆x and ∆y are derived for

bistatic operation with the transmitter and the receiver symmetrically distributed about the target

location. For monostatic operation, the condition of symmetry is no longer valid. Further, in

[18] only an error in one wall parameter is considered. Below, we present the analysis for the

monostatic synthetic aperture case and describe∆x and∆y in terms of∆d, ∆ǫ, antenna location,

and target location.

Let gf = g1 + g3 and gw = g2 be, respectively, the path in the free space and inside the

wall, when using the true wall parameters, as depicted in Fig. 1. The two-way propagation time

associated with pointp is

τ = 2(gf/c + gw

√
ǫ/c) = 2

(

h1 + h2

c cos φ
+

d
√

ǫ

c cos θ

)

(38)

Denoteĝf and ĝw as the corresponding paths when using the estimated wall parameters (d +

∆d, ǫ + ∆ǫ). In this case, the round trip time for the pointq is,

τ̂ = 2(ĝf/c + ĝw

√
ǫ + ∆ǫ/c)

= 2

(

h1 + h2 − ∆x − ∆d

c cos φ̂
+

(d + ∆d)
√

ǫ + ∆ǫ

c cos θ̂

)

. (39)

In the above two equations, we have used the following equalities (See Figure 15).

ĝf cos φ̂ = h1 + h2 − ∆x − ∆d, gf cos φ = h1 + h2 (40)

ĝw cos θ̂ = d + ∆d, gw cos θ = d (41)

In order for the imaged target to appear at pointq, we requireτ = τ̂ , and obtain the condition

h1 + h2 − ∆x − ∆d

cos φ̂
+

√
ǫ + ∆ǫ(d + ∆d)

cos θ̂
=

h1 + h2

cos φ
+

√
ǫd

cos θ
(42)

Similarly,

ĝf sin φ̂ + ĝw sin θ̂ = gf sin φ + gw sin θ − ∆y (43)

Substituting eqs. (40) - (41) into eq. (43),

(h1 + h2 − ∆x − ∆d)
sin φ̂

cos φ̂
+ (d + ∆d)

sin θ̂

cos θ̂

= (h1 + h2)
sin φ

cos φ
+

d sin θ

cos θ
− ∆y (44)
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If we assumeb ≫ a (See Fig. 15), we can approximateθ̂ ≈ θ and φ̂ ≈ φ. From eq. (42),

∆x

cos φ
= − ∆d

cos φ
+

√
ǫ + ∆ǫ(d + ∆d)

cos θ
− d

√
ǫ

cos θ
(45)

Accordingly,

∆x = dǫ
tan θ

tan φ

{

√

1 +
∆ǫ

ǫ

(

1 +
∆d

d

)

− 1

}

− ∆d (46)

From equation (44),

(∆x + ∆d) tanφ − ∆d tan θ = ∆y (47)

Therefore,

∆y = d tan θ

[

ǫ

{

√

1 +
∆ǫ

ǫ

(

1 +
∆d

d

)

− 1

}

− ∆d

d

]

. (48)

———————————————– ————————————————

Insert Figure 16 Here

——————————————– ———————————————-

We note that the expressions for∆x and∆y are a function of the antenna location. However,

when the array length is short relative to the target range, the center of the array can be used

to determine the expressions for∆x and ∆y. In this case, the two values can be considered

independent of antenna locations. Figure 16 shows the bias in the target location as the wall

thickness error∆d varies from−20% to 20% (d = 0.38m) and the dielectric constant error∆ǫ

also varies between−20% and20% (ǫ = 7.0). A 1.2 m long array located between−0.6m and

0.6m in cross-range and at -1m in down-range was used for imaging. The wall is located at0 m

in down-range. The crosses denote the target locations in the DS image obtained by numerical

simulation and the dots denote those calculated by eqs. (46)and (48). The circle represents the

true target location, which is(−0.5, 6)m. Although the analytically derived biases do not exactly

match the simulated biases, they show the same overall trend, captured by the orientation of

the biases. The line that passes through both the center of the array and the true target location

is also shown in Fig. 16. Extensive simulation results have shown that if we draw the smallest

ellipse that includes all the target biases, then the slope of the main axis of the minimum area
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ellipse is very close to the slope of the bias defined by∆y/∆x,

tanφb =
∆y

∆x

=
tan θ tan φ

[

ǫ
{

√

1 + ∆ǫ
ǫ

(

1 + ∆d
d

)

− 1
}

− ∆d
d

]

ǫ tan θ
{
√

1 + ∆ǫ
ǫ

(

1 + ∆d
d

)

− 1
}

− ∆d tanφ
.

———————————————– ————————————————

Insert Figure 17 Here

——————————————– ———————————————-

Denoteφc as the angle between the pointp and the center of the array. Then,

tan φc =
(h1 + h2) tanφ + d tan θ

h1 + h2 + d

= tanφ +
d

b
(tan θ − tan φ)

= β tan θ + (1 − β) tanφ (49)

whereβ = d/b is the ratio of the wall thickness to the down-range. If desired, the value of

tan φb can be numerically computed for each pixel of the scene and tabulated prior to system

operation. However, Fig. 17 shows the numerically computeddifference between the anglesφc

and φb, whend = 0.38m, ∆d = 0.038m, ǫ = 7.0, and∆ǫ = 0.7 for various values ofφc and

range. The figure shows that the difference in angle is proportional to φc as expected. Note that

the divergences of the plot from a line are due to the fact thatthe approximationŝθ ≈ θ and

φ̂ ≈ φ in deriving eqs. (46) and (48) are not valid for the chosen simulation parameters. When

the scene of interest is far from the array and its width is small, then it is possible to approximate

φb as φc sinceφc is small. The angleφc will be used as a direction of biases in the MVDR

beamformer described in the next section.

B. Multiple linear constrained MVDR using Two Arrays

In urban sensing applications, buildings may have up to fourapproachable walls, one on each

side. Collecting separate data sets from different ‘view angles’ or ’views’ has several advantages

[24]. For example, multiple data sets can be used coherentlyto obtain more information about

the targets for recognition or clutter suppression. It can also be used to detect targets which

are masked by other objects or clutter from one view. In this section, we use two such data



20 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. Y, MONTH 200X

sets to obtain the targets’ true locations in the presence ofwall parameter ambiguities in the

context of MVDR beamforming. According to the analysis in the previous section, the biases

due to wall parameter errors are dependent on the ‘view angle’ of the array which changes with

the array location. Accordingly, the imaged target will be displaced to different locations as the

position of the imaging system is changed. This property wasoriginally used in [18] to locate

the targets using DS beamforming and extensive data post-processing. Here, we utilize the same

property, but with a simpler approach in which the optimal weights of the MVDR beamforming

are computed only once, according to expected target displacement under wall errors. MVDR

beamforming, described below, is used to broaden the mainlobe of the beamformer in order to

retain radar returns from around the beamforming point. Theextended mainlobes will intersect at

the true target location when the MVDR images correspondingto the two different array positions

are simultaneously considered or fused (See Fig. 18). Clearly, this intersection becomes more

visible for distinct view angles and in the presence of smallnumber of targets.

———————————————– ————————————————

Insert Figure 18 Here

——————————————– ———————————————-

The MVDR beamformer is defined as

min
w

wHRw subject toBHw = c (50)

which is an optimization problem with multiple constraints[25]. The matrixB andc represent

the constraint set. For the Capon beamformer, described earlier in eq. (18),

B = a(m, n), (51)

c = 1, (52)

where(m, n), in the underlying problems, is themn-th pixel in the image. By choosingB and

c, one can obtain a variety of linear constraints to the beamformer. For the TWRI problem,

one should chooseB and c that deal best with wall parameter errors. The goal is to find a

compact region in thex-y (image) plane that includes all possible target displacement positions,

then define the constraint set (B, c) which ensures that the target intensity in that region is not

compromised under optimization.



YOON ET AL: MVDR BEAMFORMING FOR THROUGH-THE-WALL RADAR IMAGING 21

As shown in Section VII-A and also in [18], the bias in target location tends to be distributed

directionally along a straight line. Therefore, by extending the width of the mainlobe of the

MVDR beamformer along that line, it is possible to include the target displacements in the

mainlobe. One method to achieve this objective is to apply derivative constraint (DC), which is

a well-known technique for mainlobe flatness [25]. The derivative constraints are,

B = [a(m, n) ▽ a(m, n) · vm,n] , c =





1

0



 , (53)

wherevm,n is a unit vector whose direction is the same as that of the target bias at(m, n).

These constraints would cause the mainlobe of the MVDR beamformer to be broadened along

the direction of the bias and, as such, the MVDR Beamformer will not significantly reduce, or

cancel, the target radar cross-section under wall errors. If it is required to extend the mainlobe

further than that achievable by DC, second-order derivative constraints (SDC) can be added such

that,

B =
[

a(m, n) ▽ a(m, n) · vm,n ▽2 a(m, n) · vm,n

]

, c =











1

0

0











. (54)

One disadvantage of the derivative constrained methods (both DC and SDC) is that the extent

of the mainlobe is limited and it may not cover the bias in target location resulting from

large errors in wall parameters. One solution to extend the mainlobe along longer displacement

trajectories is to use multiple consecutive unit-gain constraint (MC) beamforming, i.e.,

B = [a(m0, n0) a(m1, n1) . . . a(mT , nT )] , c =















1

1
...

1















, (55)

where the points(m0, n0), . . . , (mT , nT ) are located along a line whose center is at(m, n) and

its slope is the same as that ofvm,n. The extent of the mainlobe of MC is somewhat controllable

by applying different number of constraints. However, at the same time, it is uncontrollable since

it is determined by several variables, such as the number of antennas, location of targets, noise,

and interference signals. Therefore, MC is most suitable tolocalize targets at their true locations

when the targets are sparsely distributed in the scene.
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It is interesting to consider the most recent proposed techniques for robust beamforming,

including those in [26] to ensure high intensity image at andaround the correct target positions.

In this case, the linear and derivative constraints of equations (50) will be replaced by quadratic

constraints with inequality which depend on an ellipsoid that describes errors. However, the

advantages of these methods, although evident in passive arrays, are not significant in the

underlying imaging applications. The reason is two-fold. First, the possible ripple behavior of

the active array response between the unit constraint values of (53) is tolerable for the problem

at hand. Unlike many robust beamforming techniques that areonly concerned with guaranteed

beamforming gain around the beamforming point in the desired direction, the underlying through-

the-wall radar imaging problem requires an extension of themainlobe without imposing the

stringent requirement of a flat behavior. A priority in this problem is to limit the value of the

beamforming gain outside the mainlobe extent. The proposeduse of the multiple unit gain

constraints satisfactorily achieves both these objectives. Second, the image pixels along and near

the bias trajectory do not necessarily translate into an ellipsoid in the array manifold space.

Unlike the errors in conventional robust beamforming techniques, the underlying problem deals

with errors (biases) which can be predicted in the image domain and we can not guarantee that

those biases in the image domain can be defined by tight ellipsoid in the array manifold space.

C. Number of computations

The computational complexity of the MC MVDR beamformer can be approximated as follows.

The solution to the constrained optimization problem of eq.(50) is given by [25],

w = R−1B(BHR−1B)−1c. (56)

which leads to

wHRw = cH(BHR−1B)−1c. (57)

In the above equation,R−1 andc are independent of the pixel being imaged and thus need to be

computed once. On the other hand,B varies from pixel to pixel and thus, the above equation will

be computed for each pixel. The dimensions of the matricesc, B, andR areT × 1, MN × T ,

and MN × MN , respectively, whereT is the number of constraints andMN is the length

of the steering vector. The computational complexity of (57) is primarily associated with the

computation of the inverse of theT ×T matrix BHR−1B. The number of computations for the
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inversion of the matrixBHR−1B is O(T 3) [27]. Therefore, the number of computations for the

MC MVDR beamformer can be approximated as

ηMC ≈ Nu · O(T 3) + O(M3N3) + O(N3
u), (58)

whereNu is the total number of pixels andO(M3N3) is the number of computations required

to invert R. The last term in eq.(58) represents the number of computations required for DS

beamforming wherein, for convenience, both the number of frequencies and the number of

antenna locations are assumed to be equal toNu.

In comparison, the total number of computations for the target localization method of [18],

which requires DS beamforming to be performed multiple times usingNp different sets of wall

parameter pairs, is applied, is given by

ηDS ≈ Np · O(N3
u). (59)

Typically, Nu is several orders of magnitude higher thanT andNp, which implies thatηMC is

much less thanηDS. Thus, the proposed method is computationally more efficient than the DS

beamforming based method of [18].

VIII. S IMULATIONS OF UNKNOWN WALL DATA

The proposed high-definition algorithm for imaging using two array positions is tested with

synthesized and real data. The synthetic data set consists of signals reflected from point targets.

Only one refraction path through the wall is considered, as depicted in Fig. 1. The images

corresponding to the two array positions are independentlyprocessed by constrained MVDR

beamforming and are combined using two simple pixel-by-pixel fusion methods, namely, mag-

nitude multiplication [10]. Results using the DS beamforming based method of [18] are also

presented for comparison. It is noted that although the images corresponding to the two array

locations are depicted using sensor-specific coordinate systems, these images are transformed

into a single coordinate system prior to fusion.

———————————————– ————————————————

Insert Figure 19 Here

——————————————– ———————————————-

Figure 19 shows the schematic of the scene being simulated. Both array #1 and array #2 are

1.2m long with 0.02m antenna spacing. The thickness of the wall is 0.38m and the dielectric
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constant is 7.0. A stepped-frequency signal from 2 to 3GHz with 5MHz step size is used. The

stand off distance of the arrays from the walls is 1m and the distance between the wall and the

center of the scene is 6m. Two point targets having the same reflection coefficient are located

at (-0.988,6.512)m and (-0.8, 5.5)m in the scene from array #1, respectively.

———————————————– ————————————————

Insert Figure 20 Here

——————————————– ———————————————-

For the synthesized data set, we consider the imaging performance under 10% error in both

wall parameters. Consequently, the assumed wall thicknesstakes the value 0.418m and the

assumed dielectric constant is 7.7. A delay-and-sum beamformer with rectangular window is

used to obtain DS images from array #1 and #2, shown in Figures20(a) and 20(b), respectively.

The number of pixels in the images is 11449 (107×107). For constrained MVDR beamforming,

the size of the sub-matrices for virtual snapshots is13× 6 and the dimension of the covariance

matrix is78×78. Multiple consecutive unit gain constraints have been tested. The 10% parameter

errors are too large for the derivative constrained method to handle. The direction of the line

between the beamforming point and the center of the array is used as that of biases in the

simulation.

———————————————– ————————————————

Insert Figure 21 Here

——————————————– ———————————————-

Figures 20(c) and 20(d) show respective images obtained using the constrained MVDR beam-

forming from array #1 and #2. It is noted that the imaged target locations are biased toward the

center of the array. However, the targets are stretched by the extended mainlobe, according to

the constraints. A total of seven linear constraints are used in this simulation. If more constraints

are used, the extended mainlobe will make the two targets indistinguishable, when imaged from

array #1. If the range of the wall parameter values is known, the number of constraints can be

determined and will depend on the largest bias in the wall parameters. Note that in this simulation,

we create a very challenging scenario to evaluate the proposed approach, where multiple targets

are aligned along the bias direction. Figure 21 is a contour plot showing the trajectories of the

imaged target locations from array #1 and array #2, generated using the DS beamforming based

method of [18]. Eight different pairs of wall parameters areused for trajectory generation.
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———————————————– ————————————————

Insert Figure 22 Here

——————————————– ———————————————-

When the image from array #1 is combined with the corresponding image from array #2,

the two targets become identifiable and are correctly located for the MC MVDR, as shown in

Fig. 22(b). Figure 22(a) is the combined DS image corresponding to the wall parameters obtained

by intersection of the trajectories in Fig. 21. Comparing Fig. 22(a)and Fig. 22(b), we observe

that although both methods correctly localize the targets,the DS beamforming based image

has higher sidelobe levels. Also, MC MVDR for the aforementioned simulation parameters is

computationally more efficient than the DS based method of [18].

———————————————– ————————————————

Insert Figure 23, 24, 25 Here

——————————————– ———————————————-

For the real data experiment, we collected data of the singledihedral scene of Section VI,

from two different angles, namely0 and90 degrees, emulating imaging from the front and the

side walls, respectively. The scene layout and system parameters are the same as described in

Section VI. The downrange to the target is approximately 2.7m from array #1 and 1.9m from

array #2. We used wall parameters with 20% error and the corresponding images using DS

beamforming are shown in Figs. 23(a) and 23(b). Since the wall thickness and the dielectric

constant are smaller than those for the synthesized data case, the bias in the target location is

not as severe. For array #2, we observe strong reflections from multiple points on the dihedral,

which can be attributed to the target orientation relative to array #2 (see Fig. 25(a)). Figures 23(c)

and 23(d) show respective images using the constrained MVDRbeamforming from array #1

and #2, whereas Figures 24(a) and 24(b) depict the imaged target location trajectories for DS

beamforming using eight different pairs of wall parameters.

The combined MC MVDR image, shown in Fig. 25(c), correctly detects the presence of a

single target and shows the imaged target at its true location. The image in Fig. 25(b) is the

combined DS image, using parameters obtained by trajectoryintersection for operation from

array #1 and array #2. We observe that although the MC MVDR image has a slightly wider

mainlobe than the DS image, the DS image has higher sidelobe levels.
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IX. CONCLUSION

The problem of high-definition through-the-wall imaging was considered. A new method,

which provides accurate target locations using MVDR beamformer under exact and inaccurate

wall parameter values, was proposed. Two approaches based on raw data and beamspace data

were presented and compared in performance under near field and far field situations. It was

concluded that using delay and sum beamformer image to produce the spatial spectrum, which

is then used for covariance matrix estimation, is more robust to far field approximation and

should be the preferred way to conduct indoor high definitionimaging. When using the spatial

spectrum, however, one must only consider the region which corresponds to the target, otherwise

virtual snapshots obtained by subarray and subband vectorswill not properly correspond to the

array manifolds, leading to target image dispersion.

We have also analyzed the bias in imaged target location due to wall errors beyond that

discussed in reference [18]. The bias results were then usedto define additional constraints on

MVDR beamformer which led to provide unbiased target location when imaging with different

view angles. Simulated and real data were used in the paper and demonstrated the superior

performance of the proposed technique compared to the commonly applied delay-and-sum

beamforming.

REFERENCES

[1] F. Ahmad, M. Amin, and S. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,”IEEE Trans.

Aerosp. Electron. Syst., vol. 41, no. 1, pp. 271–283, Jan. 2005.

[2] H. Yacoub and T. Sarkar, “Monostatic through-wall datection of a metallic sphere,” inAntennas and Propagation Society

International Symposium, July 2005.

[3] F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,”IEEE Geoscience and

Remote Sensing Lett., vol. 4, no. 4, Oct. 2007.

[4] E. Ertin and R. Moses, “Through-the-wall sar attributedscattering center feature estimation,” inProc. IEEE Int. Conf.

Acoustics, Speech, Signal Process., Apr. 2008.

[5] R. Narayanan, “Through wall radar imaging using uwb noise waveforms,” inProc. IEEE Int. Conf. Acoustics, Speech,

Signal Process., Apr. 2008.

[6] E. Lavely, Y. Zhang, E. H. III, Y. Lai, P. Weichman, and A. Chapman, “Theoretical and experimental study of through-wall

microwave tomography inverse problems,”Journal of the Franklin Institute, vol. 345, no. 6, pp. 592–617, Sept. 2008.

[7] M. Farwell, J. Ross, R. Luttrell, D. Cohen, W. Chin, and T.Dogaru, “Sense through the wall system development and

design considerations,”Journal of the Franklin Institute, vol. 345, no. 6, pp. 570–591, Sept. 2008.

[8] L. Frazier, “Radar surveillance through solid materials,” in Proceedings of SPIE, Command, Control, Communications,

and Intelligence Systems for Law Enforcement, vol. 2938, Nov. 1997, pp. 139–146.



YOON ET AL: MVDR BEAMFORMING FOR THROUGH-THE-WALL RADAR IMAGING 27

[9] F. Ahmad, G. Frazer, S. Kassam, and M. Amin, “Design and implementation of near-field, wideband synthetic aperture

beamformers,”IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 206–220, Jan. 2004.

[10] F. Ahmad, Y. Zhang, and M. Amin, “Three-dimensional wideband beamforming for imaging through a single wall,”IEEE

Geoscience and Remote Sensing Lett., vol. 5, no. 2, Apr. 2008.

[11] G. Benitz, “High-definition vector imaging,”Lincoln Lab Journal, vol. 10, no. 2, 1997.

[12] J. Odendaal, E. Barnard, and C. Pistorius, “Two-dimensional superresolution radar imaging using the MUSIC algorithm,”

IEEE Trans. Antennas Propagat., vol. 42, pp. 1386–1391, Oct. 1994.

[13] G. Benitz, “High-definition imaging apparatus and method,” U.S. Patent No. 6,608,585, Aug. 2003.

[14] F. Ahmad and M. Amin, “High-resolution imaging using Capon beamformers for urban sensing applications,” inProc.

IEEE Int. Conf. Acoustics, Speech, Signal Process., Apr. 2007.

[15] Y.-S. Yoon and M. Amin, “High-resolution through-the-wall radar imaging using beamspace MUSIC,”IEEE Trans.

Antennas Propagat., vol. 56, no. 6, pp. 1763–1774, June 2008.

[16] F. Ahmad, M. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall

characteristics,”IEEE Trans. Image Processing, vol. 16, no. 7, pp. 1785–1795, July 2007.

[17] M. Dehmollaian and K. Sarabandi, “Analytical, numerical, and experimental methods for through-the-wall radar imaging,”

in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., Apr. 2008, pp. 5181–5184.

[18] G. Wang and M. Amin, “Imaging through unknown walls using different standoff distances,”IEEE Trans. Signal Processing,

vol. 54, no. 10, pp. 4015–4025, Oct. 2006.

[19] F. Ahmad and M. Amin, “Noncoherent approach to through-the-wall radar localization,”IEEE Trans. Aerosp. Electron.

Syst., vol. 42, no. 4, pp. 1405–1419, Oct. 2006.

[20] M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,”IEEE Trans. Geosci.

Remote Sensing, vol. 46, no. 6, June 2008.

[21] Y.-S. Yoon and M. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,”IEEE Trans.

Geosci. Remote Sensing, 2009, under review.

[22] R. Schmidt, “Multiple emitter location and signal parameter estimation,”IEEE Trans. Antennas Propagat., vol. AP-34,

no. 3, pp. 276–280, Mar. 1986.

[23] J. Capon, “High-resolution frequency wavenumber spectrum analysis,”Proc. IEEE, vol. 57, no. 8, pp. 1408–1411, 1969.

[24] F. Ahmad and M. Amin, “Multi-location wideband synthetic aperture imaging for urban sensing applications,”Journal of

the Franklin Institute, vol. 345, no. 6, pp. 618–639, Sept. 2008.

[25] D. Johnson and D. Dudgeon,Array Signal Processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice Hall,

1993.

[26] J. Li and P. Stoica,Robust Adaptive Beamforming. Hoboken, NJ: John Wiley, 2006.

[27] G. Golub and C. V. Loan,Matrix Computations. Baltimore, MD: Johns Hopkins University Press, 1996.



28 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. Y, MONTH 200X

PLACE

PHOTO

HERE

Yeo-Sun Yoon - (S’02-M’05) received the B.S. degree from Yonsei University, Seoul, Korea, in 1995

and the M.S. degree from the University of Michigan, Ann Arbor, in 1998 and the Ph.D. degree from the

Georgia Institute of Technology, Atlanta, in 2004, all in electrical engineering.

From 1999 to 2004, he was a Graduate Research Assistant in theCenter for Signal and Image Processing

(CSIP) at the Georgia Institute of Technology. In the summer, from 2000 to 2002, he worked as a Research

Assistant at the Center for Theoretical Studies of PhysicalSystems (CTSPS), Atlanta, in a co-op program.

He has been a senior engineer at the Samsung Thales Company, Ltd., Yongin, Korea since 2004. From 2007 to 2009, he was a

Post-doctoral research fellow at the Center for Advanced Communications (CAC), Villanova University, Villanova, PA.

His research interests include array signal processing, high-resolution radar imaging, signal parameter estimation, and com-

pressive sensing for radar.

PLACE

PHOTO

HERE

Moeness G. Amin - (S’82-M’83-SM’91-F’01) received his Ph.D. degree in 1984from University of

Colorado, Boulder. He has been on the Faculty of Villanova University since 1985, where is now a

Professor in the Department of Electrical and Computer Engineering and the Director of the Center for

Advanced Communications.

Dr. Amin is the recipient of the 2009 Individual Technical Achievement Award from the European

Association of Signal Processing. He is a Fellow of the Institute of Electrical and Electronics Engineers

(IEEE); Fellow of the International Society of Optical Engineering; Recipient of the IEEE Third Millennium Medal; Distinguished

Lecturer of the IEEE Signal Processing Society for 2003 and 2004; Member of the Franklin Institute Committee on Science

and the Arts; Recipient of the 1997 Villanova University Outstanding Faculty Research Award; Recipient of the 1997 IEEE

Philadelphia Section Service Award.

Dr. Amin has over 400 publications in the areas of Wireless Communications, Time-Frequency Analysis, Smart Antennas,

Interference Cancellation in Broadband Communication Platforms, Direction Finding, GPS Technologies, Over the Horizon

Radar, and Radar Imaging. He was a Guest Editor of the Journalof Franklin Institute September-08 Special Issue on Advances

in Indoor Radar Imaging. He is a Guest Editor of the IEEE Transactions on Geoscience and Remote Sensing May-09 Special

issue on Remote Sensing of Building Interior. Dr. Amin is theCo-Guest editor of IET Signal Processing upcoming Special

Issue on Time-Frequency Approach to Radar Detection, Imaging, and Classification.

Dr. Amin was the Co-Chair of the Special Sessions of the 2008 IEEE International Conference on Acoustics, Speech, and Signal

Processing, Nevada. He was the Technical Chair of the 2nd IEEE International Symposium on Signal Processing and Information

Technology, Morocco, 2002; The General and Organization Chair of the IEEE Workshop on Statistical Signal and Array

Processing, Pennsylvania, 2000.; The General and Organization Chair of the IEEE International Symposium on Time-Frequency

and Time-Scale Analysis, Pennsylvania, 1994. He was an Associate Editor of the IEEE Transactions on Signal Processing

during 1996-1998. Dr. Amin was a member of the IEEE Signal Processing Society Technical Committee on Signal Processing

for Communications during 1998-2002 and was a Member of the IEEE Signal Processing Society Technical Committee on

Statistical Signal and Array Processing during 1995-1997



YOON ET AL: MVDR BEAMFORMING FOR THROUGH-THE-WALL RADAR IMAGING 29

PLACE

PHOTO

HERE

Fauzia Ahmad - (S’97-M’97-SM’06) received her MSEE degree in ElectricalEngineering in 1996, and

Ph.D. degree in Electrical Engineering in 1997, both from the University of Pennsylvania, Philadelphia,

PA.

From 1998 to 2000, she was an Assistant Professor in the College of Electrical and Mechanical

Engineering, National University of Sciences and Technology, Pakistan. During 2000-2001, she served as

an Assistant Professor at Fizaia College of Information Technology, Pakistan. Since 2002, she has been

with the Center for Advanced Communications, Villanova University, Villanova, PA, where she is now a Research Associate

Professor and the Director of the Radar Imaging Lab.

Dr. Ahmad has several journal and conference publications in the areas of radar imaging, array signal processing, sensor

networks, and image processing.



30 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. Y, MONTH 200X

θ

φ

φ

1h

2h

d

a

1g

2g

3g

Fig. 1: Signal path with a wall

x

),( pp yx

)0,0(
nφ

1
…

0

n

…
y

Na-1

Fig. 2: Signal propagation through the wall.

s

t

)sin,cos( 1010 −− aa NN ff φφ

)sin,cos( 0000 φφ ff

)sin,cos( 1111 −−−− afaf NNNN ff φφ

)sin,cos( 0101 φφ −− ff NN ff

Fig. 3: Bound of spatial frequency of the raw data approach.



YOON ET AL: MVDR BEAMFORMING FOR THROUGH-THE-WALL RADAR IMAGING 31

xµ

-0.5 0.5

-0.5

0.5

yµ

M

kx

N

k y

Fig. 4: Two-dimensional spatial spectrum of the DS image.

θ
array

(a) The scene of interest

θµ cosx

0

-0.5

0.5

θ
µ

cos

y

θ

N

k y

M

kx

1

(b) Spatial spectrum

Fig. 5: The scene of interest of the off-boresight target andcorresponding spatial spectrum.



32 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. Y, MONTH 200X

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

element number

no
rm

al
iz

ed
 m

ag
ni

tu
de

Fig. 6: Normalized magnitudes of the elements of the steering vector after averaging (solid line) and those of virtual

snapshots (dotted lines).

D
o

w
n

-r
a

n
g

e

D
o

w
n

-r
a

n
g

e

maxθ
maxθ

Fig. 7: Two tiles of the scene and their corresponding spatial spectrum. The left column is for negativeθ and the

right column is for positiveθ.



YOON ET AL: MVDR BEAMFORMING FOR THROUGH-THE-WALL RADAR IMAGING 33

Cross−range,meter

D
ow

n−
ra

ng
e,

m
et

er

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5

23

23.5

24

24.5

25

25.5

26

26.5

−30

−25

−20

−15

−10

−5

0

(a) Far-field

Cross−range,meter

D
ow

n−
ra

ng
e,

m
et

er

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5

4

4.5

5

5.5

6

6.5

7

7.5

−30

−25

−20

−15

−10

−5

0

(b) Near-field

Fig. 8: Delay-and-sum beamforming. (a) Far-field and (b) near-field.
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Fig. 9: Raw data-based Capon. (a) Far-field and (b) near-field.
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Fig. 10: Beamspace-based Capon. (a) Far-field and (b) near-field.
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Fig. 11: Beamspace-based Capon. (a) the beamspace Capon image using the entire spatial spectrum and (b) the

corresponding 2D spatial spectrum. The red boundary indicates the area used for the covariance matrix

estimation in Fig. 10.
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Fig. 12: Spatial leakage patterns for DS and beamspace Caponbeamformers when the beamforming point is at

(−0.8, 5.5).
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Fig. 13: Results of the experiment data. (a) Delay-and-sum,(b) Beamspace-based Capon, and (c) the corresponding
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Fig. 14: Images of the two-target scene with errors in the wall parameters. (a) with 10% error and (b) with 20%

error
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(c) MC MVDR from Array #1
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(d) MC MVDR from Array #2

Fig. 20: Images of the synthesized two-target scene with 10%errors in the wall parameters.
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Fig. 21: Trajectories of imaged target locations for DS images using multiple pairs of wall parameters.
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Fig. 22: Combined images. (a) combined DS images using wall parameters estimated from trajectory intersection.

(b) combined MVDR images when there is 10% errors in the wall parameters



40 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. Y, MONTH 200X

Cross−range, meter

D
ow

n−
ra

ng
e,

m
et

er

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

−30

−25

−20

−15

−10

−5

0

(a) DS from Array #1

Cross−range, meter

D
ow

n−
ra

ng
e,

m
et

er

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

−30

−25

−20

−15

−10

−5

0
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(c) MC MVDR from Array #1

Cross−range, meter

D
ow

n−
ra

ng
e,

m
et

er

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

−30

−25

−20

−15

−10

−5

0

(d) MC MVDR from Array #2

Fig. 23: Images of the real scene with 20% errors in the wall parameters.
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Fig. 24: Trajectories of imaged target locations for DS images using multiple pairs of wall parameters.
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(c) Combined MVDR image

Fig. 25: (a) Target orientation. (b) Combined image using DSbeamforming based method of [18]. (b) combined

image using MVDR when there is 20% errors in the wall parameters.


