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Compressive Sensing (CS) provides a new perspective for addressing radar applications requiring large amount of measurements
and long data acquisition time; both issues are inherent in through-the-wall radar imaging (TWRI). Most CS techniques applied
to TWRI consider stepped-frequency radar platforms. In this paper, the impulse radar two-dimensional (2D) TWRI problem is
cast within the framework of CS and solved by the sparse constraint optimization performed on time-domain samples. Instead of
the direct sampling of the time domain signal at the Nyquist rate, the Random Modulation Preintegration architecture is employed
for the CS projection measurement, which significantly reduces the amount of measurement data for TWRI. Numerical results for
point-like and spatially extended targets show that high-quality reliable TWRI based on the CS imaging approach can be achieved
with a number of data points with an order of magnitude less than that required by conventional beamforming using the entire

data volume.

1. Introduction

Through-the-wall radar imaging (TWRI) is a topic of
current interest due to the wide range of public safety and
defense applications. The TWRI technology is particularly
useful in behind-the-wall target detection, surveillance and
reconnaissance, law enforcement, and various earthquake
and avalanche rescue missions [1-9].

Through-the-wall radars image the targets behind the
wall by transmitting short pulses and processing the signal
returns from the wall and targets. Several effective through-
the-wall beamformers that take into account the wall
reflection, bending, and delay effects have been proposed for
imaging of targets behind walls. Most of these algorithms are
carried out in the frequency domain, such as the delay-and-
sum beamforming (DSBF) and the linear inverse scattering
algorithms [3-9]. Both algorithms have an upper limit on
the downrange and crossrange resolutions. The downrange
resolution is restricted to ¢/2B, where c is the speed of light
and B is the bandwidth of the signal, whereas the crossrange

resolution is restricted to the diffraction tomography limit,
which is related to the antenna array aperture size [10]. In
order to achieve high resolution in both downrange and
crossrange, an ultrawideband signal should be transmitted,
and a long antenna array aperture should be synthesized.
This results in a large amount of space-time/space-frequency
data, long data acquisition time, and large storage and
memory requirements. Reduction of the data volume is
important in TWRI applications, as it accelerates processing
and, subsequently, allows prompt actionable intelligence. It
also relaxes constraints on system aperture and bandwidth
and creates different design and deployment paradigms,
which are more flexible than those underlying conventional
SAR operations. It is also noted that data reduction and
fast acquisition ease the requirement of slow target motion
and/or stationarity, which could be necessary to avoid image
smearing and imaged target displacements [11].

Recently, a new framework, referred to as compressive
sensing (CS), for simultaneous sensing and compression has
received considerable attention and has been successfully



applied in many fields, that is, signal/image processing, radar
imaging, communication, geophysics and remote sensing
[12-23]. In CS, it has been shown that a signal/image, which
is sparse or has a sparse representation in some basis, can
be captured from a small number of random nonadapptive
linear projections onto the measurement basis. The original
signal can be reconstructed with incomplete measurement
data through convex optimization that uses the sparsity as
an important piece of a priori information [12-16]. The
capability of CS to reconstruct a sparse signal from far fewer
nonadapptive measurements provides a new perspective for
data reduction in radar imaging without compromising the
imaging quality. There have been several approaches that
apply CS for radar imaging [18-24]. In [18, 21-23], CS
is applied for synthetic aperture radar (SAR) imaging to
obtain high-resolution imaging with very few measurements.
Gurbuz et al. proposed a compressive sensing data acqui-
sition and imaging method for step frequency continuous
wave (SFCW) ground penetrating radar (GPR) [20], where
the sparsity property and limited number of buried objects
are successfully utilized for improved target detection and
resolution. In [22, 24], similar data acquisition and target
reconstruction strategies were applied for SFCW through-
the-wall radar imaging. The above-mentioned compressive
GPR and TWRI algorithms are discussed in the framework
of SFCW radar. As a viable alternative to SFCW radars,
the impulse radar is commonly used for subsurface and
through-the-wall imaging owing to its simple design and
range resolution enhancement. The hardware design for
impulse radar has been well-developed in the past few
decades and it is now widely used in many applications.
The signal measurement and processing for impulse radar
are performed in the time domain, which enables easy
employment of time-domain techniques. A data acquisition
system was proposed in [19] for pulse GPR based on CS by
exploiting the sparseness of point targets in the image space.

In this paper, we examine the application of CS to TWRI,
which was introduced in [22] and further developed in [24—
28]. Specifically, we consider impulse radar platforms and
deal with sampled radar returns in the time domain. In order
to improve the imaging quality while significantly reducing
the amount of data measurements and collection time, the
image reconstruction problem is cast within the framework
of CS and solved by the sparse constraint optimization. We
assume that the scene is spatially sparse and no transform
sparse representation is required [28]. By employing the
point target model, a linear relation between the radar
returns and the target space is obtained and represented in
vector-matrix form. For the compressive TWRI system, a
direct measurement of the received time-domain signal at the
Nyquist rate is not applied. Instead, linear projections of the
returned signals with random =*1 sequences, called random
modulation preintegration (RMPI) architecture [13], are
used to reduce the number of CS measurements below
the conventional Nyquist sampling rate, without noticeable
degradation of the image quality. With the informative CS
measurement data, the TWRI is solved as sparse constraint
optimization problem which well-exploits the sparsity of
the targets space and enables high-resolution, less-cluttered
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F1Gure 1: TWRI geometry.

images. We closely follow the development in [19], but apply
CS to TWRI, rather than GPR, using EM modeling examples
of point and spatially extended targets. The latter includes a
human. It is important to note that in this paper, we assume
that wall mitigation techniques have already been applied to
remove the strong wall backscattering, allowing the targets to
be electromagnetically visible to the imaging system. Recent
techniques combining CS and wall mitigation for stepped-
frequency radars were discussed in [29, 30].

The organization of the remainder of the paper is as
follows. In Section 2, we first describe the TWRI signal model
and then provide details of the compressive sensing data
acquisition, and the impulse radar CS imaging algorithm
for TWRI. We present simulation results and discussions in
Section 3. Finally, conclusions are drawn in Section 4.

2. Compressive Sensing for Impulse Radar
Through-the-Wall Imaging

2.1. Signal Model. Impulse through-the-wall radar scans a
region of interest by transmitting short pulses and processing
the reflected signals. Figure 1 depicts a simple TWRI scenario
using monostatic SAR. The transceiver interrogates the
targets behind the wall with a short pulse s(¢) at M locations.
The coordinates of the mth transceiver location are denoted
as Ty = (Xim»> Yim). The targets are located in an inaccessible
investigated region behind the wall. The permittivity and
thickness of the wall are denoted as ¢, and d, respectively.

For a single-point target located at r; = (x4, y4), by
employing the point target model, the received signal at the
mth receiver can be written as

/gm(t) :aqs(t_fm(q»’ (1)

where a; is the reflectivity of the point target and 7,,(q) is
the propagation delay from the mth transmitter to the gth
target. The point target model is based on first order Born
approximation, which ignores the multiple scattering effect.
Thus, the received signal is essentially a delayed and scaled
version of the transmitted pulse.
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Given the exact knowledge of the wall permittivity
and thickness, the propagation delay 7,,(q) from the mth
transceiver to the gth target can be calculated as [31]

lm air +lm air’ lm wal
nAq)=2( R q’“>. 2)

C v

As depicted in Figure 1, g i1 is the wave traveling distance
from the mth transmitter to the wall, [y is the wave
traveling distance beyond the wall to the target for the mth
transceiver, lygwal is the wave traveling distance inside the
wall, and ¢ and v are the wave propagation speeds in the air
and the wall, respectively.

The analytical expressions for the calculation of the
distances Ligairt> Img,airz> a0d Lyg,wat were derived in [3, 7, 31]
and are given by

Vg —d __d
0 5 mgq,wall = 5
€08 Og COS Prng

3)

Vtm
08 Opg’

lmq,airl = lmq,airZ =

where 0, is the angle of incidence and ¢, is the angle of
refraction for the mth transceiver, which can be computed
by solving the following equation [3, 7]:

(xq — (%tm + Yim tan qu))z + )’é
= lfnq,wall + liq,airZ (4)

- 2lrrtq,walllmq,airZ COS(” t Qmg — 6mq>~

The incident and refraction angles satisfy the Snell’s law

Pmg = sin”! ((sm@mq)) (5)

V&

Suppose Q point targets are located behind the wall. The
received signal at the mth receiver is then a superposition of
echoes of the transmitted pulse:

Q
Bn(t) = D ags(t — 7(q)). (6)
q=1

In the above formulation, we have assumed that the
returns from the wall itself have been removed or mitigated
and we only consider the effect of the wall on signal
transmission as it propagates to and from the target. Wall
return mitigation has been addressed in several recent
publications [6, 32-34]. In [6, 34], the wall thickness and
dielectric constant are estimated and used to model the wall
returns, which are then subtracted from the measurement
data. The approaches in [32, 33], on the other hand, do not
estimate the wall parameters, but they rather remove wall
reflections by relying on the similarity and the strength of
the wall returns measured from different antenna positions
parallel to the wall. Spatial filtering and subspace projection
methods can be applied for this purpose.

2.2. Compressive Impulse Through-the-Wall Radar Data
Acquisition. Conventional time-domain imaging uses the
standard backprojection method to reconstruct the target
scene [5, 19]. In order to achieve a high crossrange resolu-
tion, the radar needs to synthesize a long array aperture with
a fine spatial sampling rate. Meanwhile, in order to perform
matched filtering of the received data, the time-domain data
should be sampled at least at the Nyquist rate. This results in
a large amount of data from collection time perspective and
still cannot break the conventional resolution limits. On the
other hand, in CS, O(K log (N)) measurements are sufficient
for reconstructing exactly a K-sparse N-dimensional signal
via L, minimization, regardless of the positions of the K
nonzero elements, which can be either adjacent or separated.
This implies that not only reconstruction of the sparse
target can be achieved with a limited number of incoherent
measurements, but also we can resolve two closely spaced
targets that are otherwise unresolved by the point spread
function associated with conventional imaging.

Sparsity of the target space is an important a priori piece
of information, which has only been recently exploited in
step-frequency TWRI [22, 25-28]. In TWRI, the region of
interest is divided into a finite number of pixels in crossrange
and downrange. The sparsity in TWRI implies that the
number of target pixels is much smaller than the total
number of pixels in the image, which holds for most TWRI
applications.

For Q pixels constituting the target space, that is, the
region being imaged, the image pixel values can be related
to the received data in the matrix form using (6) as follows:

B, = ¥Yna. (7)
In (7), By = [Bn(t0)s Brn(t1)s- .. Pn(tn—1)] ", where tq is the
initial measurement time, tn,—; = fo + (Ny — 1)At, At is

the sampling time, which should be higher than the Nyquist
sampling rate, and N is the total number of time samples.
The gth column of the Ny X Q matrix ¥,, is given by [19]

s(t = 1m(q))

e R

t=to...,tN,—1- (8)
Further, « = [(X],(Xz,...,(xQ]T in (7) is a vector indicating
the property of the target space. That is, if there is a target
at the gth pixel, the value of the gth element of & should be
nonzero; otherwise, oy = 0.

For compressive impulse TWRI, instead of directly
measuring the N;-dimensional signal f8,, we measure its
projection on a basis @,

Zy = (Dmﬁm = (I)m‘l’m“) (9)

where ®,, is a J X N; measurement matrix and J <<
N;. In order to achieve the minimum coherence of the
measurement matrix with the matrix ¥,, some typical
random matrices are proven to be universal, such as the
Gaussian random matrix and the Rademacher matrix [12—
15]. The Gaussian random matrix is constructed by sam-
pling independent, identically distributed entries from the
Gaussian distribution N(0,1). The Rademacher matrix has
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FiGure 2: RMPI architecture for the hardware implementation of
compressive impulse through-the-wall radar.

random *1 entries with probability of 1/2, which satisfies the
symmetric Bernoulli distribution. Considering the hardware
complexity and cost, it is much simpler to generate a random
+1 sequence than the random Gaussian sequence. In this
paper, the RMPI architecture in [13] is adopted for the
implementation of the impulse TWRI radar CS projection
measurements (see Figure 2). In the RMPI architecture, the
random sequences can be efficiently generated using field
programmable gate array (FPGA). The generated sequences
are used in the optimization process. By employing the above
data acquisition strategy, the random measurement matrix
condenses the N;-dimensional signal f,, into a J(<< Ny)-
dimensional signal z,,,.

2.3. Compressive Impulse TWRI. As depicted in Figure 1, the
transceiver interrogates the targets behind the wall with a
short pulse along a scan line at M locations. For coherent
processing of the received data, we can superpose the matrix
equation in (9) for all M illumination locations to form a
large matrix:

z=O%¥«a = Qq, (10)
where
T 17 .
Z= [zl,zz,...,zM] ) O = diag [®}, D,,..., Dum],
T
v= vl ¥, ¥, e=ov
(11)

The target space can be reconstructed by solving the
following basis pursuit problem [13, 35]:

min|l«|l; subject to z = Oa. (12)
o
For radar imaging applications, the measurement data is

always contaminated with noise. For noisy measurements,
(10) can be written as

z=0«a+u, (13)
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where u = [ul,ul,..., u&]T and u,, is the measurement
noise at the mth antenna location. From [20, 24], robust
reconstruction of a sparse signal under noise corrupted data
can be achieved by solving the following convex optimization
problem, which is also referred to as Dantzig selector:

mainlltx\ll subject to H@T(z - @c\t)Hoo <4, (14)

where § represents a small tolerance error. All matrices and
vectors in this paper are real valued, thus (14) is a Linear
Programming (LP) problem and can be efficiently solved
using the interior point method [35]. In this paper, the
Dantzig selector solver in the sparse constraint optimization
package L,-magic [36] is employed for solving (14). In
the optimization procedure, the choice of the error § is
the key to rendering desirable results. An improper choice
of the error will probably lead to missing true targets,
introducing false targets, or even cause divergence with
increased iterations. We employ the cross-validation (CV)
strategy for an automatic selection of the error value in
the optimization process. In essence, the cross-validation
strategy divides the measurements data into estimation and
cross validation sets. The steps of the CV-based optimization
can be described as follows [20, 37]:

(1) Initialization. Set § = yIIG)EZEIIm, i=1,wherey< 1.

(2) Estimation. Solve (14) to estimate the target location a”
with the estimation data set zg, @.

(3) Cross-validation. If IIG)(T;V(ZCV —Ocyva)|, <8, setd =
0Ly (zcy — Ocya)]|,, else terminate the iteration.

(4) Iteration. Increase i by 1 and go to Step (2).
where the subscripts E and CV stand for the estimation and
cross validation data sets, respectively.

3. Results and Discussions

In order to demonstrate the effectiveness of the proposed
approach for ultrawideband impulse TWRI with compres-
sive sensing, several numerical examples are presented in this
section.

The first simulation is the reconstruction of three point
targets which are located at (—0.15m, 0.4m), (0, 0.6 m),
and (0.1 m, 0.5m) in the (x, ) plane. The transceiver array
illuminates the targets at a distance of 0.3 m from the wall,
along a line from —1m to 1 m with a step of 0.05m. The
dielectric constant and thickness of the wall are &, = 6
and d = 0.2m, respectively. The excitation signal is a
modulated Gaussian pulse which covers the frequency range
from 0.6 GHz to 3.2 GHz (as shown in Figure 3(a)). The time
step used in the simulation is A = 19.245 ps and the total
number of time steps is Ny = 600.

The conventional pulse radar collects the time-domain
response from the targets at each receiving location and the
measurement data is shown in Figure 3(b), which consists
of 41 x 600 space-time measurements. Instead of the direct
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FIGURE 3: Imaging results of three point targets: (a) Excitation pulse, (b) Conventional radar measurement, (c) TDBP result with full data,
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FIGURE 4: CS imaging results under different noise levels (a) SNR = 5 dB; (b) SNR = -5 dB.

measurement of the time-domain signal, CS makes 10 inner
product measurements at each antenna location. This was
carried out in the simulation by taking the product of the
time-domain raw data with rows of a random Rademacher
matrix of size 10 X 600. In the simulation, the size of
the image to be constructed is 0.4m X 0.4m, which is
divided into 40 x 40 pixels, resulting in 1600 unknowns
for the sparse constraint optimization. Figure 3(c) is the
time-domain backprojection (TDBP) imaging result using
the 41 X 600 space-time measurements of Figure 3(b). If
only 10 uniform samples are taken from Figure 3(b) at
each antenna location, the TDBP imaging result is blurred,
distorted, and has higher sidelobe levels, as evident from
Figure 3(d). Figure 3(f) depicts the imaging result by solving
the sparse constraint optimization problem of (14) with
10 projection measurements (shown in Figure 3(e)) at each
antenna location. From the CS reconstructed image, the
three targets are clearly identified at the true positions. That
is, using the same amount of data as in Figure 3(d), a much
higher resolution and cleaner image can be obtained through
sparse constraint optimization with the CS projection mea-
surements. The compressive radar imaging system condenses
the large amount of data into far fewer incoherent projection
measurements, which carry independent information of the
targets.

The simulation results in Figure 3 are performed for
the noiseless case. In order to demonstrate the performance
of the proposed approach for noisy data, we compute the
imaging results for the three point targets scene, contam-
inated by additive Gaussian random noise with signal to
noise ratio (SNR) from —15dB to 20 dB; only the results for
SNR = +5dB are shown in Figure 4. We observe that the CS
technique suffers under low signal-to-noise ratio conditions
and some false targets appear in the reconstructed image
as a result of the reconstruction residual, which basically
increases with the noise level. This phenomenon has been
previously reported in [20, 22, 24]. We characterize the
imaging quality under different noise levels by the mean

MSE

0 1 1 1 1 1 1
=15 -10 =5 0 5 10 15 20
SNR (dB)

FiGure 5: MSE under different noise levels.

squared error (MSE), which is plotted in Figure 5. The MSE
is defined as the norm of the error between the reconstructed
image and the ground truth image, normalized to the norm
of the ground truth image. From Figure 5, we find that the
MSE is reduced with increasing SNR.

It has been shown that the imaging resolution beyond
that of conventional pulse radar can be obtained by
using sparse constraint optimization [20, 25]. In order to
demonstrate superresolution in TWRI using the proposed
approach, the CS imaging result of three closely spaced point
targets is presented in Figure 6(a). The working conditions
are the same as the previous simulation example, except that
the three point targets are now located at —0.05m, 0.5m,
—0.05m, 0.45m, and 0, 0.5m. For comparison, the TDBP
imaging result using the full set of 41 x 600 space-time data
points is provided in Figure 6(b). From Figure 6, we observe
that, even with the full space-time data, we are unable to
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TABLE 1: Target spatial characteristics.

Target type Size Center position
Target 1 Square 0.2m x 0.2m (-0.5m, 1.1 m)
Target 2 Cylindrical Radius = 0.1 m (0,1.0m)
Target 3 Rectangular 0.3m x 0.2m (0.65m, 1.2m)

resolve the three targets using the conventional TDBP algo-
rithm. However, by using the CS projection measurement
and through sparse constraint optimization, the three point
targets are clearly resolved, and superresolution imaging is
achieved.

The effectiveness of the proposed TWRI approach for
spatially extended targets is shown by the following two
simulations examples. In the first example, three two-
dimensional (2D) perfectly electrically conducting (PEC)
objects (as shown in Figure 7(a)) are considered. The
spatial characteristics of the three targets are specified in
Table 1. The measurement data is generated using 2D Finite-
Difference Time-Domain (FDTD) code. The monostatic
radar measures the return signal at a distance of 0.3 m from
the wall over a synthetic aperture extending from —1m
to 1m with a step of 0.05m. The dielectric constant and
thickness of the wall are &, = 7.66 and d = 0.2m,
respectively. The time step is At = 11.79 ps, and the total
number of time steps is Ny = 2120. The investigation
region is 2m X 1.6m and divided into 49 x 40 pixels.
The space-time response signal from the aforementioned
targets is shown in Figure 7(b), which consists of 41 x 2120
time-domain raw data. Figure 7(c) is the TDBP imaging
result using the full measured data of Figure 7(b). For CS,
we only take 20 projection measurements at each of the
41 antenna locations, which results in a total of 820 CS
measurements, shown in Figure 7(d). Figure 7(e) is the CS
imaging result by solving the sparse constraint optimization
problem in (14). One-sixth of the 820 data points were used
for the cross validation, while the remaining were used for

the estimation. From Figure 7(e), we observe that, even with
only 20 measurements taken at each antenna location, the
three targets are clearly observed at their true locations. In
order to give a qualitative description of the imaging result,
the image SNR (ISNR) defined in [38] is introduced for the
characterization of the imaging quality. The ISNR is defined
as follows:

Q-Qu I |ml®
2 (>
QR Z?;lQR ) ’7] ‘

ISNR = 10log (15)

where Q is the total number of pixels in the normalized
image, with Qg pixels whose intensity is within —10 to
0dB, I‘uil2 is the image pixel intensity value above —10dB,
and |77;]* is the image pixel intensity of the remaining Q — Qg
pixels. For the CS imaging result of Figure 7(e), the ISNR
is 65.8 dB whereas the ISNR for the TDBP imaging result
of Figure 7(c) is 17.3 dB. Along with a significant reduction
in the amount of data, the proposed CS imaging approach
provides superior performance over TDBP in terms of the
ISNR.

To illustrate the performance of the CS scheme under
noisy measurements from a scene of spatially extended
targets, we provide in Figure 7(e) an image of the scene
in Figure 7(a) corresponding to an SNR of 0dB. Similar
to the CS results for imaging of point targets under
noisy conditions, the scene reconstruction in Figure 7(e)
successfully localized the three targets, but does suffer from
several false alarms.

Finally, the simulation results for a human behind a
homogeneous concrete wall are presented. The measurement
configuration is shown in Figure 8(a), along with the front
and side view of the human. The dimension of the high
fidelity (HiFi) male human model is 0.57m X 0.324m X
1.88m and is made up of 2.9mm cubical FDTD mesh
cells, consisting of 23 different tissue types. The radar
standoff distance from the wall and the synthetic aperture
array are the same as in the previous FDTD example.
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The REMCOM XFDTD numerical simulator was used for
generation of the measurement data. The dielectric constant
and thickness of the wall are &, = 6andd = 0.2m,
respectively. The time step is At = 11.55ps and the

Number of time steps
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we take 20 inner product measurements at each of the
41 antenna locations and the resulting 820 measurements
are shown in Figure 8(d). Figure 8(e) provides the imaging
result using the proposed CS imaging algorithm. Comparing
Figures 8(c) and 8(e), we see that the CS imaging result
accurately locates the human with reduced measurement
data and is sparser and less cluttered than the TDBP image.
The ISNR for the TDBP and CS imaging results are 22.5dB
and 41.1 dB, respectively. The sparse constraint optimization
seeks a solution to the optimization problem in (14) with
as few as possible nozero elements, thus producing more
desirable imaging results.

4. Conclusion

Conventional UWB impulse through-the-wall radar faces
considerable challenges, such as large amount of data
measurements, long data acquisition and processing times,
and huge data storage requirements. In TWR], it is desirable
to reduce the space-time measurements so as to relax
constraints on target motions and ease requirements on
imaging system setting and design. In this paper, the impulse
radar through-the-wall imaging problem was cast within the
framework of compressive sensing. Rather than sampling the
time-domain signal at or above the Nyquist rate, the RMPI
architecture was employed for the CS projection measure-
ment and led to significant data reduction. Sparsity of the
target space was exploited to solve the TWRI problem using
sparse constraint optimization. Numerical imaging results of
point-like and spatially extended targets clearly showed the
merits of applying CS in urban sensing applications.
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