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Space-Time Block Code Designs Based on Quadratic
Field Extension for Two-Transmitter Antennas
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Abstract—Space-time block code designs based on algebraic
field extension for full rate, large diversity product, and nonva-
nishing minimum determinant of codewords have received great
attention. There are many different types of codes available for
two-transmitter antennas, such as cyclotomic space-time block
codes, the golden space-time block code, and rotation-based
space-time block codes. In this paper, a more general space-time
block code design scheme, which is called quadratic space-time
block coding, is proposed for the two-transmitter antennas using
quadratic field extension. The optimal design of the quadratic
space-time block codes in terms of a diversity product criterion is
also presented. It is shown that the optimal quadratic space-time
block codes designed in this paper do not belong to the existing
space-time block code family such as the cyclotomic, golden, and
rotation-based space-time block codes. The simulation results
demonstrate that the average codeword error rate of the optimal
quadratic space-time block code attains about 0.5 dB signal to
noise ratio gain over those of the optimal cyclotomic and golden
space-time block codes.

Index Terms—Algebraic number theory, diversity product, full-
rate, lattices, multilayer space-time block codes, quadratic field ex-
tensions.

I. INTRODUCTION

L INEAR space-time block code designs based on algebraic
field extensions have recently attracted great attention, see

for example [1]–[12], due to the possibility of systematic con-
structions of full diversity and high data rate codes. In [6], a full
diversity space-time block code for two transmitters was pro-
posed, where the symbol rate reaches two per channel use. By
employing algebraic number theory and the threaded/multilayer
code structure [14], more general full diversity, high symbol
rate space-time block code designs were proposed in [4], [6],
[7], [10], and [11]. Within the same time frame, another type
of full diversity, high rate space-time block code was developed
in [9] based on cyclic field extension and division algebras. In
the early studies of this topic, the structures of code designs
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with high (full) rate and full diversity received more attention
than the high diversity product. In most of the codes provided
in these studies, the minimal determinant of nonzero codewords,
which is the minimal determinant of the difference between any
two distinct codewords, vanishes as the symbol constellation
size increases. Therefore, other space-time block codes with full
symbol rate and high diversity product have been recently devel-
oped [17]–[20]. These codes not only have high diversity prod-
ucts, but also have nonvanishing determinant property, i.e., the
minimum determinant does not decrease with the symbol con-
stellation size increasing. In this paper, a new systematic space-
time block code design, which is called a quadratic space-time
block code design, with full diversity, full rate, and nonvan-
ishing determinant for the two-transmitter antennas is proposed.
The optimal codewords of the quadratic space-time block code
are also obtained. The quadratic space-time block code design
scheme is a generalization of those in [17]–[20]. It is shown that
the optimal codewords with the improved diversity product are
not included in the class of codes proposed in [17]–[20].

This paper is organized as follows. In Section II, the
space-time block code design scheme based on quadratic field
extension is proposed. In Section III, the optimal single-layer
quadratic space-time block codes are presented. The optimal
full-rate quadratic space-time block codes are discussed in
Section IV. Simulation results are provided in Section V.

The following notations are used throughout this paper: cap-
ital English letters, such as and , represent space-time code-
word or matrix. denotes natural numbers; denotes a ring of
integers; denotes a field of rational numbers; denotes a field
of complex numbers; ; and denote general
fields; denotes a field generated by and field . Nota-
tion denotes a space-time block code gener-
ated with quadratic field extension , where is one
of the roots of some minimal quadratic polynomial over and

with being an integer of field .

II. QUADRATIC SPACE-TIME BLOCK CODE DESIGNS

First, we give a scheme for the systematic design of a space-
time block code using quadratic field extensions. Let be a
field. is an irreducible polynomial over with
algebraic integers and . Polynomial has two
roots:

(1)
Let be the field generated by and . Then, the
dimension of over is 2, i.e., is a
basis of over is called a quadratic extension of . Let
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be the two embeddings of to such that they
are fixed on , i.e., , for any and

. Now, we are ready to define a quadratic
space-time block code.

Definition 1: A quadratic space-time block code
based on an irreducible quadratic polynomial

over field is a set of matrices having the
form of

(2)

where

(3)

with being integers of and ,
being the two roots of polynomial given in

(1). Particularly, when , it is called a single-layer code,
otherwise, it is called a two-layer or full-rate code.

From the definition of quadratic space-time block codes,
it can be cast as a generalization of the 2 2 cyclotomic
space-time block codes [10], [12], [18], [20], the golden
space-time block code [19], and the rotation-based space-time
block code [17]. In order to design a space-time block
code with a large diversity product and nonvanishing de-
terminant, we focus on a quadratic space-time block code
design that either or ,
and in (3) belong to either

or . Usually, is called a Gaussian in-
teger ring, whereas is called an Eisenstein integer
ring. Correspondingly, the quadratic space-time block code
with is called a Gaussian quadratic space-time block
code, which is denoted by , whereas the
quadratic space-time block code with is
called an Eisenstein quadratic space-time block code, denoted
by . Definition 1
shows that a single-layer quadratic space-time block code is a
lattice code over or , with the generating matrix of
the complex lattice being

(4)

whereas a two-layer quadratic space-time block code is a lattice
code over either or , with the gener-
ating matrix of the complex lattice given by

(5)

Therefore, the absolute value of the generating matrix
is

for the layer quadratic space-time block code. The
following lemma [20] gives a diversity product criterion to com-
pare two quadratic space-time block codes.

Lemma 1: Let and
be two ( , or

) layer quadratic space-time block codes
over and , respectively. Then,

is better than if

and

where

and and
we make a convention that .

The following two consequences can be obtained immedi-
ately from Lemma 1.

1) If is a quadratic space-time block
code, then for is
also a quadratic space-time block code with the same
diversity product as that of .

2) If is a quadratic space-time block
code, then for is
also a quadratic space-time block code with the same
diversity product as that of .

Therefore, in this paper, we only consider one of the afore-
mentioned code structures for the design of optimal quadratic
space-time block codes.

Lemma 2: For any ( or ) layer quadratic
space-time block code with or

, the following two statements are true.
1) if .
2) if and .

Proof: By Definition 1, we know that for any quadratic
space-time block code , there is an irre-
ducible polynomial over with roots and

. Therefore, is a 2-D field extension of , i.e.,
is a basis of over

. There are two embeddings and of to
such that and are fixed in , i.e.,
, for , and .

Let us first consider the case when . Notice
that the codeword matrix in the single-layer quadratic
space-time block code has the form of

, where

with . Therefore, we have

(6)

where and
is the relative algebraic norm of in

the field over field . From [1], [12], and
[26], we know that for or and

if , i.e., .
This completes the proof of Statement 1 in Lemma 2.

Now, let us consider the case when . In
this case, the codeword of
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has the form of , where

with .

Then, we obtain .
Since ,

with and
, we have

(7)

Since is not an algebraic norm of over
if either or , we arrive at the fact that

, i.e.,

(8)

Combining (8) and (7), then for either or
, and , we attain , i.e.,

. This completes the proof of
Statement 2, and, thus, of Lemma 2.

Notice: If is a quadratic space-time block
code based on an irreducible polynomial
over field , then we have another space-time block
code in which the codeword has the

form of , where

, with are in-

tegers of . When or , fol-
lowing the discussion similar to the proof for the quadratic
space-time block code , we can prove that

. In addition, when is not a relative
algebraic norm of over , we have .
If we let ,
then we obtain . Therefore,

. Since the generating matrix of
the two-layer code is

(9)

we attain
and as a re-

sult,

. From Lemma

1 and [20], we know that the code
is not superior to the quadratic space-time block code

. Therefore, in this paper, we focus on the
quadratic space-time block code design .

Theorem 1: Let or and be an
algebraic integer of . If we let be a quadratic
space-time block code based on an irreducible polynomial

over , then for any algebraic integer of , quadratic
space-time block code has the same
diversity product as that of .

Proof: Let and be the two roots of minimal polyno-
mial of field . Then, and are the
two roots of polynomial . Since

with
and being integers of , and

and , the polynomial
is a minimal polynomial of . Therefore, is a
base of field over . Since
and , we have .
Therefore, is an algebraic norm of over if and
only if it is an algebraic norm of over . From
Lemma 2 and [18], we know that

if is not an alge-
braic norm of over and that

if is an
algebraic norm of over . In addition, the generating
matrices of and
are and , respectively, with

and . Therefore, we

have . Using Lemma 1, we know that the
quadratic space-time block code
has the same diversity product as that of . This
completes the proof of Theorem 1.

III. OPTIMAL SINGLE-LAYER QUADRATIC

SPACE-TIME BLOCK CODES

In this section, we consider the design of the optimal
single-layer space-time block codes over Gaussian and Eisen-
stein rings.

Theorem 2: is the optimal
single-layer Gaussian quadratic space-time block code with
minimal determinant 1.

Proof: We first note that and
are the two roots of quadratic polynomial over

. Since is irreducible
over . Therefore, is a 2-D field extension over

, is the minimal polynomial of , and
is a basis of over . Let and are

the two embeddings of that is fixed on and
. The codeword of the single-layer

quadratic space-time block code

has the form of , where

with . Then,

. From Lemma

2, is a single-layer quadratic
space-time block code with minimal determinant 1.

In the following, we prove that
is the optimal single-layer

Gaussian quadratic space-time block code. We know
from Lemma 2 that the minimal determinant of
any single-layer Gaussian quadratic space-time code
is 1. Combining this with Lemma 1, we only need to
prove that for any quadratic space-time block code
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based on quadratic polynomial
.

To this end, by Theorem 1 we can always assume that
and without loss of generality. Since and

are two roots of the irreducible quadratic polynomial
over with and , we

have .
Notice that constraints and can be
simplified into . Therefore, we
consider the following two cases.

Case 1. . In this case, if , then we
have . If ,
then is reducible in , which
is impossible.
Case 2. . This case is equivalent to .
In addition, since , we obtain .
Suppose that . Then,

for , which is equivalent to the fact that or
and or and . This leads us

to consider the following three subsituations.
1) . Then, is reducible in

, which is impossible.
2) and . Then, and

. Therefore,

and

. This means that
is reducible in , which is im-

possible either.
3) and . In this case, we have

and as a result,

and , i.e.,
is reducible in .

This contradicts with the stated assumption.
Summarizing all the aforementioned discussions yields

. Therefore, is
the optimal single-layer Gaussian quadratic space-time block
code with minimal determinant 1. This completes the proof of
Theorem 2.

It is important to note that the code
proposed in [12] is a

cyclotomic space-time block code.

Theorem 3: is the
optimal single-layer Eisenstein quadratic space-time block
code with minimal determinant 1.

Proof: Since , polynomial

is an irreducible polynomial over . Therefore,

is a single-layer

quadratic space-time block code over . We know from
Lemma 2 that the minimal determinant of any single-layer
quadratic space-time code over is 1. In addition,
Lemmas 1 and 2, and Theorem 1 together imply that to prove

the optimality of ,

we only need to prove that for any quadratic minimal
polynomial with , its
two roots and satisfy

. Suppose that
this is not true. In other words, . In
the following, we prove that polynomial is
reducible in . Since and , we have

. As a re-
sult, .
Therefore, we consider the following five case.

1) . In this case, when
. Therefore, implies that .

When , we have , which is reducible
in .

2) . Then, implies
that either or . If , then

is reducible in . If , then we obtain

, and thus, is
also reducible in .

3) or . Following the
same discussion as Case 2, we can prove that

is reducible in in this case.
4) . In this situation, . If

, then , and . Therefore,

, i.e., polynomial
is reducible in .

5) or . Similar
to the discussion of Case 4, we can arrive at the fact that
polynomial is also reducible
in .

From the above discussions we reach the conclusion that if
, then polynomial is reducible in .

This completes the proof of Theorem 3.

We can observe from Theorem 3 that since
and , the optimal

code is not a cy-
clotomic space-time block code. Therefore, the optimal
single-layer quadratic space-time time code does not belong
to the cycloctomic code family. In addition, by Lemma 1,

we know that has better
performance than in terms of the
diversity product criterion. Therefore, we have the following
theorem.

Theorem 4: Among all the single-layer Gaussian
and Eisenstein quadratic space-time block codes,

is the optimal
single-layer quadratic space-time block code with minimal
determinant 1.

IV. OPTIMAL FULL-RATE QUADRATIC

SPACE-TIME BLOCK CODES

The primary purpose of this section is to design the optimal
full-rate and nonvanishing quadratic space-time block codes
with large diversity products for two-transmitter antennas.
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Theorem 5: is the op-
timal full-rate Gaussian quadratic space-time block code with
minimal determinant 1.

To prove Theorem 5, we first establish the following Propo-
sition.

Proposition 1: The complex number is not a relative
algebraic norm of any element in over .

Proof: Suppose that there exist
and with

such that

(10)

Since , we know that is
a basis of over . Hence, any element in
can be expressed by with .
From the definition of the relative algebraic norm, we have

, where and are the
embedding of to with for any

and . Therefore, it
can be verified by calculation that

(11)

Similarly, for any with and
, we have

(12)

Since is an ideal of ring , there is an integer
such that

(13)

for , where , and
. Combining (10)--(12)

with (13) yields

(14)

where . Since the term
on the right-hand side of (14) belongs to , the term on the
left-hand side of (14) also belongs to , i.e.,

(15)

After examining (15) with
, we find that (15) holds only when .

In this case, (14) becomes

(16)

i.e.,

where . Following the
discussion much similar to the proof for and in (15),
we can attain . Continue this procedure until

and . Finally, we obtain
. This completes the proof of Proposition 1.

Proof of Theorem 5: First, we know from Proposition
1 and Lemma 2 that is a
full-rate quadratic space-time block code with determinant
1. In the following, we prove the optimality of the code

among all the full-rate
Gaussian quadratic space-time block codes. To this end, we
only need to prove that for any two-layer Gaussian quadratic
space-time code with and

, we have , where

(17)

To proceed, let us consider a quadratic polynomial
with . By Theorem 1, we can always assume that

, i.e., without loss of generality.
Suppose that there exists a two-layer quadratic space-time block
code with minimal determinant 1 based on such that

(18)

where is defined in (17) and are the two roots of poly-
nomial . Since , inequality (18)
is equivalent to

(19)

From the proof of Theorem 2, we can observe that when
, the polynomial is reducible in . As

a consequence, it cannot be used to generate a quadratic space-
time block code. Therefore, we only need to consider the case
when . In this case, since , and

, we have , and thus, inequality (19)
implies

(20)

This leads us to consider the following two situations.
1) and . From and ,

we can derive that . In addition,
with and implies that

and thus
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Therefore, either the field

or
. However, in this case,

it can be directly verified that is an
algebraic norm of over , which means
that the minimal determinant of is 0.

2) and . In this case, and
because of . Hence, we have
. If , then is reducible in .

If , then the roots of are . However, it
can be directly verified that in this case,
is an algebraic norm of over .

The aforementioned discussion leads to a common conclusion
that inequality (18) cannot hold. This completes the proof of
Theorem 5.

Theorem 6: is

the optimal full-rate Eisenstein quadratic space-time block code
with minimal determinant 1, where and .

Before proving Theorem 6, we first develop the following
Proposition.

Proposition 2: The complex number is not a norm of any

element of over , where with
and .

Proof: We first prove that if there exist and
with for such that

(21)

then we must have . From the definition of the relative
norm, we have

(22)

and

(23)

Now, substituting (22) and (23) into (21) yields

(24)

On the other hand, notice that is an ideal of ring .
Therefore, there exists an integer such that the elements
and in can be represented by

(25)

with . Plug-
ging (25) into (24) results in

(26)

where and
. The term on the right-hand side of

(26) belongs to , so does the term on the left-hand
side of (26), i.e.,

(27)

After checking (27) for each , we find that (27) is
true only when . In this case, (26) is reduced to

(28)

i.e.,

(29)

where and
. Similarly, by testing (29) with

each , we realize that (29) is true only
when . Continue this process until .
This completes the proof of Proposition 2.

Proof of Theorem 6: Similar to the proof of Theorem 5, it
suffices to prove that for any quadratic polynomial
with , and any , such that

(30)

we have that is not a full-rate space-time

code with minimal determinant 1, where ,

are roots of , and

(31)

Since , we have
. In

addition, (30) implies that

(32)
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However, from the proof of Theorem 3, it is evident that when
, the polynomial

becomes reducible in field . Hence, we need to only
consider the case

(33)

Now, let us discuss each individual case.
1) . Since

,
the condition implies that

(34)

If , then we have , since . In
this case, we attain

. Therefore, inequality (30) implies that . It
can be directly verified that

is an algebraic norm of over
with and belonging to the set given in (34).

2) . In fact, it is impossible to have and
in with such that .

The above discussion completes the proof of Theorem 6.

Theorem 7: Among all the two-layer Gaussian
and Eisenstein quadratic space-time block codes,

is the optimal

full-rate quadratic space-time block code with minimal
determinant 1 in terms of the diversity product criterion, where

, .
Proof: To prove this theorem, by Lemma 1,

we only need to compare the diversity product of
the optimal two-layer Gaussian quadratic space-time
block code de-
signed by Theorem 5 with that of the optimal
two-layer Eisenstein quadratic space-time block code

designed by Theorem 6. Since the minimal determinants of
both codes are 1, by Lemma 1 we only need to compare
the determinants of their generating matrices. On one
hand, the determinant of the generating matrix of the code

is given by

where . On the other hand, the
determinant of the generating matrix of the code

is given by

where . Therefore, we have

and thus, the code

with , is the optimal among all
the two-layer Gaussian and Eisenstein full-rate quadratic
space-time block codes. This completes the proof of Theorem
7.

The following two comments on Theorems 5 and 6 are in
order.

1) Since and , the code

given in The-

orem 6 is not a cyclotomic code. However, it was proven
in [20] that the code
in Theorem 5 is the optimal cyclotomic space-time
block code. In addition, Theorem 7 shows us that the
cyclotomic space-time block code does not enable the
optimality of the quadratic space-time block codes.
In addition, in the optimal cyclotomic space-time
code , since

, the average power in different layers
is different. However, in the optimal quadratic space-time

block code ,

since , the average power in different layers
is the same, thus resulting in a low peak-to-average power
ratio.

2) The golden code proposed in [19] is another space-time
block code for two-transmitter antennas with full rate,
high diversity product, nonvanishing minimal determi-
nant, and the same average power at different layers. In
addition, the minimal determinant of the golden code
is and the determinant of the
generating matrix of the golden code is

(35)

Therefore, in terms of the diversity product criterion, the
optimal full-rate quadratic space-time block code is better
than the golden code.

V. SIMULATION RESULTS

In this section, we perform computer simulations and
examine the error performance of the optimal quadratic
space-time block code proposed in this paper and the golden
code [19] for a 2-by-2 MIMO system with flat Rayleigh
fading. The codewords used are the Golden space-time code
proposed in [19] and the optimal quadratic space-time code

with ,

proposed in this paper. The transmission bit rate of the
codes in this simulation is 3 bits per Hz, per channel use, i.e.,

codewords are used. These codewords are chosen based
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Fig. 1. Error performance comparison of the optimal quadratic space-time
block code and the golden code.

on the diversity product criterion proposed in [20] or Lemma 1.
The simulation result shows that the codeword error rate of the
optimal quadratic space-time block code is superior to that of
the golden code with about 0.5 dB gain. The reason is that the
diversity product of optimal quadratic space-time block code is
larger than that of the golden code, which is explained by (35).

VI. CONCLUSION

1In this paper, we have considered the systemic design of
nonvanishing determinant space-time block codes for the two-
transmitter antennas. A novel coding scheme has been proposed
based on quadratic field extensions. Using the diversity product
as a design criterion, we have attained the optimal space-time
block code and shown that the diversity product of the optimal
quadratic space-time block code is larger than the best-known
full-rate space-time block codes such as the golden and optimal
cyclotomic space-time block codes for the two-transmitter an-
tennas. In addition, like the golden space-time block code, the
optimal full-rate (two layers) quadratic space-time block code
has the property that the average powers at different layers are
the same, therefore, resulting in a low peak-to-average power
ratio. However, we must point out that a major difference be-
tween the proposed optimal quadratic space-time block code
and the golden code is that the golden code is unitary and, thus,
information lossless.
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