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Abstract—In this paper, we examine sparse array quiescent
beamforming for multiple sources in interference-free envi-
ronment. To maximize the output signal-to-noise ratio (SNR),
the beamformer design comprises two intertwined stages, the
determination of beamforming weights and the reconfiguration
of array structure. The SNR maximization may produce high
sidelobe levels, making the receiver vulnerable to interferences.
We consider the problem of achieving maximum SNR beamform-
ing subject to specified quiescent pattern constraints and, as such,
combine both adaptive and deterministic approaches for sparse
array configurations. We employ two convex relaxation methods
and an iterative linear fractional programming algorithm to
solve the non-convex antenna selection problem for sparse array
beamformers. Simulation examples demonstrate that the array
configuration plays a vital role in determining the beamforming
performance in interference-free scenarios.

Index Terms—Quiescent beamforming, Quadratic fractional,
Frame approximation, Sequential convex programming

I. INTRODUCTION

Antenna arrays are capable of performing beamforming,
which makes them an effective tool for combating interference
while providing certain gains towards desired sources [1]–
[4]. The beamforming performance is not only dependent
on the array weights but also on the array configuration
[5]–[7]. For the same number of antennas, different array
structures yield different maximum signal to noise ratios
(SNRs) as well as different maximum signal to interference
plus noise ratios (SINRs) [8], [9]. The opposite is also true,
that is, for the same array configuration, beamformers can
assume different characteristics and performances. As such,
sparse array design should utilize both the array structure and
array weights towards achieving the optimum performance.
Beamforming can be broadly classified into deterministic and
adaptive [10]. The former focuses on synthesizing beampat-
terns with prescribed mainlobe width and reduced sidelobe
levels [11], [12]. Adaptive beamforming, on the other hand,
is influenced by the environment and incorporates, in addition
to noise characteristics, the source and interference signals or
data statistics which are present in the array field of view
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(FOV). Different from the determinitic array design, pattern
nulls of adaptive beamformers are formed in the direction of
existing interferences to eliminate, or significantly reduce, the
interference power at the output of the array [13].

In this paper, we consider the general case of opti-
mum beamformer design when dealing with multiple desired
sources. That is, the dimension of the desired signal subspace,
in an interference-free environment, is arbitrary and not nec-
essarily confined to a unit value. This case is encountered
with multiple communication emitters in the FOV, and also
occurs in radar tracking of multiple targets. If maximum SNR
is the array design objective, then the optimum array weight
vector for multiple source signals impinging on the receiver, is
the principal eigenvector of the source covariance matrix [10].
Clearly, the optimum beamformrer does not guarantee equal
sensitivities towards all sources, which may not be desired,
especially when the sources are identically weak and equally
important. Thus, it becomes necessary to examine the design
of optimum adaptive beamformer that maximizes the output
SNR while providing approximately equal responses towards
all sources. There are other types of beamformers proposed
in the literature to incorporate unused degrees of freedom
(DoF) into the beamformer quiescent response for a uniform
linear array or a given array structure [14], [15]. However,
no consideration has been given to the problem of optimum
sparse array configuration and antenna selections dealing with
multiple desired sources in interference-free environment, and
applying quiescent pattern constraints.

The problem of adaptive beamformer design, incorporating
both the array configuration and the array weights, without
sidelobe constraints was examined in our recent work [16].
Although superior to deterministic design, high sidelobe levels
may constitute a potential problem in adaptive beamformer,
specially, when directional interferers are suddenly switched
on. This mandates the selection of antenna positions ac-
cording to a set of desirable constraints on the beamformer
sidelobes [14]. As such, it is important to seek a sparse
array configuration that maximizes the output SNR with well-
controlled sidelobes, which constitutes the main novelty of
this paper. We consider two beamformers with controlled
sidelobe levels for maximizing the output SNR. The first is
fully adaptive and provides the maximum SNR (the MSNR
beamformer) without concerning with homogeneity of array
responses towards different sources. The second beamformer
is semi-adaptive and strives to reach desired response values
while utilizing the source spatial correlations adaptively to
minimize output SNR degradation. Two convex relaxation
approaches and an iterative linear fractional programming



(ILFP) algorithm are proposed to solve underlying sparse array
beamformer problems.

Although the deterministic beamformer design has been
extensively investigated in the literature [17]–[20], it focuses
on thinned arrays and synthesizes either focused or shaped
beampatterns. The former targets the single-source scenario,
whereas the latter responds to a spatially distributed source.
However, neither approach has addressed the case of multiple
discrete sources. Moreover, since the lower-bound constraints
on the mainlobe region are non-convex, the assumption of con-
jugate symmetric beamforming weights is typically imposed
on the shaped-beampattern synthesis [17]. This assumption
halves the available DoFs. One method for circumventing the
loss of DoFs is the utilization of semi-definite programming,
however the relaxation of rank-one constraint cannot guarantee
a unique and reliable solution [18]. The state-of-the-art array
thinning techniques employ sparsity-promoting functions, such
as l1-norm [21]–[23] and Bayesian inference [24], causing
the number of selected antennas to be uncontrollable and
completely determined by the applied algorithms. In this
paper, we reformulate the deterministic beamformer design
problem such that the number of antennas is predefined and
the symmetric assumption is eliminated. This constitutes the
second main contribution of this paper.

A brief description of the notations used in this paper is
provided as follows. The symbols N and C denote the sets
of integer and complex numbers respectively. The operation
diag(x) means a diagonal matrix with the vector x populating
along its diagonal. We use xi to denote the ith entry of the
vector x, while the bold xi is the vector indexed by i. The
index set with cardinality K is denoted by JK . x(J ) and
X(J ) remain the entries (columns) indexed by J while deletes
others. We simplify “subject to” with the abbreviation “s.t.”.

The rest of this paper is organized as follows: We formulate
the problem in section II. We introduce the adaptive beam-
former design without quiescent pattern constraints in section
III. The deterministic beamformer design is reformulated in
section IV. Formulation of sparse array MSNR and semi-
adaptive beamformer design with sidelobe constraints is eluci-
dated in section V. Simulation results, presented in section VI,
validate the effectiveness of proposed design methods. Finally,
concluding remarks are provided in section VII.

II. PROBLEM FORMULATION

Consider a linear array of N isotropic antennas with po-
sitions specified by multiple integer of unit inter-element
spacing xnd, xn ∈ N, n = 1, . . . , N . Note that the linear
array configuration is adopted for simplicity, and all proposed
algorithms in this paper are applicable to two dimensional
arrays. Suppose that p source signals are impinging on the
array from directions {θ1, . . . , θp} with spatial steering vectors
specified by,

uk = [ejk0x1d cos θk , · · · , ejk0xNd cos θk ]T , k = 1, . . . , p. (1)

The wavenumber is defined as k0 = 2π/λ with λ being the
wavelength and T denotes transpose operation. The received
signal at time instant t is given by,

x(t) = Us(t) + n(t), (2)

where U = [u1, . . . ,up] ∈ CN×p is the source array manifold
matrix. In the above equation, s(t) ∈ Cp denotes the source
vector at time instant t and n(t) ∈ CN the received noise
vector. The output of the N -antenna beamformer is given by,

y(t) = wHx(t), (3)

where w ∈ CN is the complex vector of beamformer weights
and H stands for Hermitian operation. With additive Gaussian
noise, i.e., n(t) ∼ CN (0, σ2

nI), where σ2
n denotes the noise

power level, and in the absence of interfering sources, the
optimal weight vector for maximizing the output SNR is given
by [10],

w = P{Rs} = P{UCsUH}. (4)

where P{·} denotes the principal eigenvector of the matrix, Rs
is defined as Rs = UCsUH with Cs = E{s(t)sH(t)} being
the source auto-correlation matrix. The output SNR is,

SNR =
wHRsw
wHRnw

=
λmax{Rs}

σ2
n

=
‖Rs‖2
σ2
n

. (5)

Clearly, array configuration affects the output SNR of the
MSNR beamformer through the term of ‖Rs‖2. Note that the
optimal weight vector in Eq. (4) is a linear combination of the
source steering vectors.

Intuitively, the MSNR beamformer favours the strong and
closely-spaced sources for maximizing the output SNR. There-
fore, one disadvantage of the MSNR beamformer is that it
cannot guarantee equal sensitivities towards all sources, which
may not be desirable in practice, specifically when all sources
should be equally served by the receiver. Although the deter-
ministic beamformer with predefined mainlobes and controlled
sidelobe level can provide exact and equal sensitivities, it does
not strive to maximize the output SNR. To illustrate, suppose
the array response towards the p desired sources is determined
by the vector r ∈ Cp, i.e.,

UHw = r and wHw = 1. (6)

Then, the output SNR of the deterministic beamformer can be
calculated as,

SNR =
wHRsw
wHRnw

=
rHCsr
σ2
n

, (7)

which is a fixed value, independent of the array configuration.
In order to define a role for SNR in deterministic sparse

array beamformer design, and strike a compromise between
preset beamformer characteristics and SNR performance, we
first relax the condition of exact array response and attempt
to only offer approximate equal gains towards all sources of
interest. This is achieved by first expressing the weight vector
as a function of sources steering vectors, i.e.,

w =

p∑
k=1

βkuk, (8)

with specified coefficients βk, k = 1, . . . , p. Accordingly, the
array response towards the ith source is given by,

ri = uHi w = Nβi +

p∑
k=1,k 6=i

βkρik, (9)



where ρik = uHi uk denotes the spatial correlation between
the ith and kth sources. Notably, the array response cannot be
exactly described by the coefficient vector β = [β1, . . . , βp]

T

due to the non-zero correlations, and as such, the case of equal
coefficients will not necessarily lead to equal gain, unless the
sources are spatially orthogonal. Using Eq. (8), the output SNR
of the beamformer becomes,

SNR =
wHRsw
wHRnw

=
βHUHUCsUHUβ
σ2
nβ

HUHUβ
, (10)

which is influenced by the array configuration through the
spatial correlations among sources in the matrix UHU =
[ρik, i, k = 1, . . . , p]. In essence, spatial correlations cause the
array response to deviate from the specified coefficient vector
β and, thus, leverage the array configuration to further improve
output SNR compared to deterministic beamformers.

III. SPARSE ARRAY MSNR BEAMFORMER DESIGN
WITHOUT SIDELOBE CONSTRAINTS

Given the number of antennas and a specific beamformer,
array configurations remain a source of flexibility and can
allocate DoFs, i.e. antenna positions, towards achieving the
optimum design of maximizing the output SNR of quiescent
beamformers. Suppose that there are N grid points out of
which K antennas can be placed. Denote an antenna selection
vector z = [zi, i = 1, . . . , N ] ∈ {0, 1}N with “zero” entry for
a discarded antenna and “one” entry for a selected antenna.
As steering vectors are directional, the steering vector of the
selected sparse array can be expressed as z�uk, k = 1, . . . , p,
with � denoting element-wise product. In addition, we de-
fine a selection matrix as Z = {0, 1}K×N for a simple
mathematical derivation in the sequel, with a “one” entry in
the ith row and the jth column, where i = 1, . . . ,K and
zj = 1, j ∈ {1, . . . , N}. Thus, the selection vector z and the
selection matrix Z are inner-connected and their relationship
can be expressed as ZZT = I and ZTZ = diag(z). The
implementation of antenna selection can also be expressed in
terms of the selection matrix Z as uk� z = Zuk, k = 1, . . . , p
and, accordingly, U(z) = [uk � z, k = 1, . . . , p] = ZU.
Ideally and from Eq. (5), the optimum sparse array MSNR
beamformer should be reconfigured through antenna selection
such that the spectral norm of reduced-dimensional source
covariance matrix ‖Rs(z)‖2 is maximized. That is,

max
z

{
‖Rs(z)‖2 = ‖U(z)CsUH(z)‖2

}
, (11)

s.t. z ∈ {0, 1}N , 1T z = K,

where 1 is a column vector of all ones.
The method of implementing eigenvalue decomposition for

each subset of K sensor locations is computationally pro-
hibitive, even with a small number of sensors. Towards solving
Eq. (11), we first relax the binary constraints z ∈ {0, 1}N to a
box constraint 0 ≤ z ≤ 1, as the spectral norm of a matrix is
convex and the global maximizer of a convex function locates
at the extreme points of the polyhedron 0 ≤ z ≤ 1, 1T z = K
[25]. This satisfies the boolean property of the selection
variable automatically and eliminates the binary constraints in
the problem formulation. Furthermore, maximizing a convex

function directly as per Eq. (11) is a non-convex optimization
problem, thus we resort to the following two methods for
convex relaxation.

A. Iterative Affine Approximation

Define the column vectors of UH as ūi, i = 1, . . . , N , and
ũi = C1/2

s ūi. According to the definition of matrix spectral
norm [26], the objective function in Eq. (11) is equivalent to,

f(z) = ‖
N∑
i=1

ziũiũHi ‖2, (12)

= max
‖b‖2=1

N∑
i=1

zibH ũiũHi b,

=

N∑
i=1

zib̃
H

ũiũHi b̃,

where b̃ is clearly the principal eigenvector of the matrix∑N
i=1 ziũiũ

H
i . Since the convex objective function can be

approximated iteratively by its affine global under-estimator,
f(z) in the (k + 1)th iteration can be approximated based on
the previous solution z(k) by,

f(z) ≈ f(z(k)) + g(z(k))T (z− z(k)), (13)

where g(z(k)) is the gradient of f(z) evaluated at the point
z(k). The ith entry of g(z(k)) is obtained from Eq. (12),

g(z
(k)
i ) =

∂f

∂zi
|z(k)= b̃

(k)H
ũiũHi b̃

(k)
. (14)

Here, b̃
(k)

denotes the principal eigenvector of the matrix∑N
i=1 z

(k)
i ũiũHi . Thus, the non-convex selection problem can

be relaxed iteratively as,

max
z

f(z(k)) + g(z(k))T (z− z(k)), (15)

s.t. 0 ≤ z ≤ 1, 1T z = K.

This transforms the non-convex MSNR beamformer design
in Eq. (11) into a linear programming (LP) problem as Eq.
(15), and, in turn, significantly alleviates the computational
complexity. The iterative approximations are referred to as
sequential convex progamming (SCP) [27]. Note that SCP is
a local heuristic and its performance depends on the initial
point z(0). It is, therefore, typical to initialize the algorithm
with several feasible points z(0) and the final choice is the one
with the maximum objective value over the different runs.

B. Frame Based Approximation

Frames are signal representation tools that are redundant,
which means that the number of frames is more than the
dimension of the denoted signal space, and thus no longer
linearly independent as bases. They are often used when there
is a need for more flexibility in choosing a representation
[28]. A family Ê = {êi}i∈I with the index set I in a
Hilbert space H is called a frame, if there exists two constants
0 < α ≤ β <∞, such that for all vectors h in H, we have

a‖h‖2 ≤
∑
i∈I
|〈êi,h〉|2 ≤ b‖h‖2, (16)



where 〈êi,h〉 = êHi h and a, b are named frame bounds. Tight
frames (TFs) are frames with equal frame bounds, that is, a =
b. Parseval TFs (PTFs) are TFs with frame bound a = b = 1.
Denote the frame operator as Φ = ÊÊ

H
, then the definition

of frame implies that,

aI ≤ Φ ≤ bI. (17)

Accordingly, the frame operator Φ = ÊÊ
H

= I for PTF. Note
that the Grammian G = Ê

H
Ê 6= I.

Naimark Theorem: ( [29], [30]) A set Ê = {êi}i∈I in a
Hilbert space H is a PTF for H if and only if there is a larger
Hilbert space K, H ⊂ K, and a set of orthonormal bases
{ei}i∈I for K so that the orthogonal projection P of K onto
H satisfies: Pei = êi, for all i ∈ I.

The Naimark Theorem implies every PTF can be obtained
by projecting a set of orthonormal bases from a larger space
to a lower space. This process is called seeding. Recalling
the definition of the selection matrix Z, the columns of Z are
obtained by projecting the N -dimensional identity matrix I to
the K-dimensional lower space, and they constitute a PTF.
Assume that the source auto-correlation matrix Cs is known a
priori or previously estimated. Then, the principal eigenvector
of the source covariance matrix associated with the array of
fully populated grid of N sensors can be provided through
eigenvalue decomposition of Rs, i.e.,

Rs = UCsUH = EΛEH , (18)

where Λ = diag(λ1, . . . , λp, 0, . . . , 0) with the p eigenvalues
along its diagonal in a descending order and ei, i = 1, . . . , N
are corresponding eigenvectors. According to the Naimark
Theorem, a PTF can be obtained by seeding from a set of
eigenbasis E by deleting a subset of rows of E. We denote the
result as,

Ê = [ê1, . . . , êN ] = [ET (J )]T , (19)

where J ⊂ {1, . . . , N} is the index set of remained columns
of the matrix ET . Clearly, ‖êi‖2 6= 1, i = 1, . . . , N , and thus
G = Ê

H
Ê 6= I. However, we still have Φ = ÊÊ

H
= I.

Therefore, the column vectors of Ê constitute a PTF and
the source covariance matrix after antenna selection can be
represented in terms of the PTF as,

R̂s = ZUCsUHZT = (ZE)Λ(ZE)H = ÊΛÊ
H
. (20)

Furthermore, the frame ê1 = Ze1 still possesses the largest
coefficient λ1. For this reason and based on the PFT argument,
we consider ê1/‖ê1‖2 to closely mimic the principal eigen-
vector of the selected sparse array. Accordingly, the optimum
weight vector for maximizing output SNR of the sparse array
can be approximated by w ≈ ê1/‖ê1‖2. Combining this
result with the definition of the spectral norm of the source
covariance matrix, we obtain the lower bound, i.e.,

‖U(z)CsUH(z)‖2 = max
‖b‖2=1

bHU(z)CsUH(z)b, (21)

≥ êH1 U(z)CsUH(z)ê1
‖ê1‖22

,

=
eH1 diag(z)UCsUHdiag(z)e1

eH1 diag(z)e1
.

Therefore, the sparse array MSNR beamformer design can be
formulated as,

max
z

eH1 diag(z)UCsUHdiag(z)e1
eH1 diag(z)e1

, (22)

s.t. z ∈ {0, 1}N , 1T z = K.

The objective function in Eq. (22) can be manipulated into a
quasi-convex quadratic fractional problem [27], solved by the
algorithm proposed in section V.

IV. DETERMINISTIC BEAMFORMER DESIGN

We still consider the p discrete desired sources. Denote the
sidelobe region as Ω, and sample Ω with a set of predefined
discrete angles {θs1, . . . , θsL}. Their respective steering vec-
tors of the fully populated array are denoted as ai, i = 1, . . . , L
and the corresponding steering matrix is A = [a1, . . . , aL]. The
controlled sidelobes can be formulated as |wHA| ≤ ε, where ε
denotes the desired sidelobe level. Clearly, the sample number
L should be sufficiently large for a better-shaped quiescent
pattern, which inevitably increases the number of constraints
and reducing the DoF to shape the pattern over other angular
regions. Based on the frame theory explained in section III-B,
we implement eigenvalue decomposition AAH = VΓVH and
utilize the set of dominant frames V(J ) = {vi, i ∈ J } to
represent sidelobe region. The sidelobe constraints can then
be expressed as VH(J )w = 0 [10]. The deterministic array
design with exactly K selected antennas is formulated as,

Find w, (23)
s.t. wHuiuHi w ≤ 1 + δ, i = 1, . . . , p,

wHuiuHi w ≥ 1− δ, i = 1, . . . , p,

VH(J )w = 0,

or wHaiaHi w ≤ ε, i = 1, . . . , L,

‖w‖0 = K.

where δ represents the acceptable mainlobe ripple. Different
from the adaptive beamformer design with a binary selection
variable z, the variable w in the deterministic design in Eq. (23)
is only required to be sparse with cardinality K. We split the
N ×1 weight variable into real and imaginary parts and stack
them as a 2N × 1 vector, i.e., w̃ = [R(w)T , I(w)T ]T . Then,
the problem of deterministic array design can be transformed
from the complex domain to the real domain, i.e.,

Find w̃, (24a)
s.t. w̃HŨiw̃ ≤ 1 + δ, i = 1, . . . , p, (24b)

w̃HŨiw̃ ≥ 1− δ, i = 1, . . . , p, (24c)

Ṽ
H

(J )w̃ = 0, (24d)
or w̃HÃiw̃ ≤ ε, i = 1, . . . , L (24e)
‖Pu(w̃� w̃) + Pl(w̃� w̃)‖0 = K. (24f)

where the matrices Ũi, Ãi and Ṽ(J ) are defined as,

Ũi =

[
R(uiuHi ) −I(uiuHi )
I(uiuHi ) R(uiuHi )

]
, i = 1, . . . , p (25)

Ãi =

[
R(aiaHi ) −I(aiaHi )
I(aiaHi ) R(aiaHi )

]
, i = 1, . . . , L (26)



and

Ṽ(J ) =

[
R(V(J )) −I(V(J ))
I(V(J )) R(V(J ))

]
, (27)

respectively. The selection matrices Pu = [IN×N , 0N×N ] and
Pl = [0N×N , IN×N ] in Eq. (24f). As the formulation Eq. (23)
is homogeneous in terms of w, we assume that the complex
weights are included in the unit Euclidean ball. We define a
slack variable t to relax the non-convex cardinality constraint
in Eq. (24f) and transform the l0 norm to the second-order
cone programming (SOCP) as shown in Eq. (28e).

max
w̃,t

tT (t− 1), (28a)

s.t. w̃HŨiw̃ ≤ 1 + δ, i = 1, . . . , p, (28b)
w̃HŨiw̃ ≥ 1− δ, i = 1, . . . , p, (28c)

Ṽ
H

(J )w̃ = 0, (28d)
or w̃HÃiw̃ ≤ ε, i = 1, . . . , L,

w̃2
i + w̃2

i+N ≤ ti, i = 1, . . . , N, (28e)
0 ≤ t ≤ 1, (28f)
1T t = K. (28g)

Note that both the objective function in Eq. (28a) and the
lower bound constraint imposed on the mainlobe in Eq. (28c)
are non-convex. Similar to Eq. (15), we utilize the SCP as
a local heuristic that leverages the ability to efficiently solve
convex optimization problems. The (k + 1)th iteration of the
deterministic design based on the kth solution w̃(k) and t(k)
can be written as,

max
w̃,t

(2t(k) − 1)T t− t(k)T t(k), (29)

s.t. 2w̃(k)HŨiw̃− w̃(k)HŨiw̃(k) ≤ 1 + δ, i = 1, . . . , p,

2w̃(k)HŨiw̃− w̃(k)HŨiw̃(k) ≥ 1− δ, i = 1, . . . , p,

Ṽ
H

(J )w̃ = 0,

or w̃HÃiw̃ ≤ ε, i = 1, . . . , L,

w̃2
i + w̃2

i+N ≤ ti, i = 1, . . . , N

0 ≤ t ≤ 1,

1T t = K.

Several runs with different feasible points should be carried
out and the best K-antenna sparse array with the weight w
is chosen as the final choice. A phase-only reconfigurable
array can be achieved by restricting the modulus of weight
coefficients to a constant and synthesizing the desired pattern
by changing the phase only [31].

V. MSNR AND SEMI-ADAPTIVE BEAMFORMER DESIGN
WITH CONTROLLED QUIESCENT PATTERN

Although superior in maximizing the output SNR, both the
MSNR and semi-adaptive beamformers ignore the shape of the
quiescent pattern, such as sidelobe levels. Below, we combine
the adaptive and deterministic approaches, in sections III and
IV respectively, to offer a generalized metric for sparse array
beamformer design. The associated optimization problem be-
comes more involved due to the additional sidelobe controlling
constraints. We take the form of the sidelobe constraints in Eq.
(24d) as an example in the following derivation.

A. Sparse Array MSNR Beamformer Design with Controlled
Quiescent Pattern

Since it is not straightforward to adapt the iterative affine
approximation to be compatible with the deterministic design,
we utilize the frame based approximation to design the MSNR
beamformer with controlled quiescent pattern. Thus, the for-
mulation is similar to Eq. (22) with an additional sidelobe
level constraint. That is,

max
z

eH1 diag(z)UCsUHdiag(z)e1
eH1 diag(z)e1

, (30)

s.t. eH1 diag(z)V(J ) = 0,
z ∈ {0, 1}N , 1T z = K.

Define the vector ē1 = e∗1 � e1, the matrices V̄ = [e∗1 �
v1, . . . , e∗1 � v|J |] and Ū = [e∗1 � u1, . . . , e∗1 � up] with ∗

denoting conjugate operation. The problem in Eq. (30) can be
rewritten in the form of quadratic fractional,

max
z

zHŪCsŪ
Hz

zH ē1
, (31)

s.t. zHV̄ = 0,

0 ≤ z ≤ 1, 1T z = K.

We relax the binary constraints z ∈ {0, 1}N to the box con-
straint 0 ≤ z ≤ 1, as the global maximizer of a quasi-convex
function locates at the extreme points of the polyhedron [25],
[32]. We propose an iterative linear fractional programming
(ILFP) algorithm to solve the quadratic fractional. The prob-
lem in the (k + 1)th iteration based on the kth solution z(k)
is written as,

max
z

2z(k)HŪCsŪ
Hz− z(k)HŪCsŪ

Hz(k)

zH ē1
, (32)

s.t. zHV̄ = 0,

0 ≤ z ≤ 1, 1T z = K.

The linear fractional programming in Eq. (32) can be further
transformed into a LP utilizing the Charnes-Cooper transfor-
mation [33] as follows,

max
y,α

2z(k)HŪCsŪ
Hy− z(k)HŪCsŪ

Hz(k)α, (33)

s.t. yHV̄ = 0,

1T y = Kα, 0 ≤ y ≤ α,
α > 0, ēH1 y = 1.

The optimum selection vector is finally obtained by z = y/α.
The highest computational complexity of the ILFP is of order
kn2m using an interior-point based method, with n, m and k
denoting the respective numbers of variables, constraints and
iterations [27]. Empirical results show that no more than ten
iterations, that is k ≤ 10, are required for the ILFP algorithm
to converge. Thus, the computational complexity of the ILFP
is comparable to that of the LP, which can be accelerated by
diverse solvers in the literature [34], [35].



B. Sparse Array Semi-Adaptive Beamformer Design Using
ILFP

Let β in Eq. (8) be β = diag(γ)η = [γ1e
jφ1 , . . . , γpe

jφp ]
with γ = [γ1, . . . , γp] denoting amplitude vector and η =
[ejφi , . . . , ejφp ] denoting phase vector. For approximately
equal response beamforming, γi = 1, i = 1, . . . , p. The desired
beamformer can be expressed as,

w = Udiag(γ)η =

p∑
i=1

γie
jφiui. (34)

Note that the coefficient amplitudes γi, i = 1, . . . , k are
user-specified to approximate a desired pattern response. The
coefficient phases, on the other hand, can be utilized as a
free parameter for enhancing the semi-adaptive beamformer’s
performance. The optimum coefficient phase can be obtained
by maximizing the output SNR in Eq. (10), i.e.,

η̂ = argmax
{
ηHdiag(γ)UHRsUdiag(γ)η

ηHdiag(γ)UHUdiag(γ)η

}
. (35)

Clearly, η̂ is the principal eigenvector of the following matrix,

η̂ = P{(UHU)−1(UHRsU)} = P{CsUHU}. (36)

Subsequently, element-wise normalization � is required,

η = η̂ � |η̂| = [η̂1/|η̂1|, . . . , η̂p/|η̂p|] . (37)

Note that the coefficient phase η is array-dependent. The
optimum semi-adaptive beamformer should be configured in
a way such that the output SNR in Eq. (10) is maximized, i.e.,

max
z,η

ηHÛ
H

diag(z)Rsdiag(z)Ûη

ηHÛ
H

diag(z)Ûη
, (38)

s.t. z ∈ {0, 1}N , 1T z = K,

where Û = Udiag(γ). The design of semi-adaptive beam-
former with controlled sidelobe level is formulated as,

max
z,η

ηHÛ
H

diag(z)Rsdiag(z)Ûη

ηHÛ
H

diag(z)Ûη
, (39)

s.t. VH(J )diag(z)Ûη = 0;

z ∈ {0, 1}N , 1T z = K.

Clearly, the sparse array design problem with respect to the
two variables, z and η, is highly non-convex. We adopt
an alternating optimization method, which iteratively shifts
between z and η, to solve Eq. (39). First, assuming the fixed
coefficient phase η and utilizing the following property of
Khatri-Rao product ◦,

Adiag(x)b = (bT ◦ A)x, (40)

we obtain

UHdiag(z)Ûη = [(Ûη)T ◦ UH ]z, (41)

ηHÛ
H

diag(z)Ûη = zT [(Ûη) ◦ (Ûη)∗]. (42)

and
VH(J )diag(z)Ûη = [(Ûη)T ◦ VH(J )]z. (43)

Define the vector τ = (Ûη)◦(Ûη)∗, the matrices U = (Ûη)T ◦
UH and V = (Ûη)T ◦ VH(J ). The problem in Eq. (39) can
be rewritten in the form of quadratic fractional,

max
z

zTUHCsUz
zT τ

(44)

s.t. Vz = 0,
0 ≤ z ≤ 1, 1T z = K.

Similar to the problem in Eq. (31), the ILFP algorithm can then
be utilized to obtain the optimal semi-adaptive beamformer
with controlled sidelobe level. Given the selected sparse array,
the optimum coefficient phase can be calculated from Eqs. (36)
and (37). The semi-adaptive beamformer design procedure is
summarized in Table I. Note that the construction of sparse
array beamformers comprises two intertwined steps, optimum
sparse array design through antenna selection as elucidated
above, and weight calculations either by Eq. (4) or Eq. (34)
depending on the implemented beamformers.

TABLE I
THE DESIGN PROCEDURE OF SEMI-ADAPTIVE BEAMFORMER

Step 1 Set iteration number k = 0; Generate set JK ⊂ {1, . . . , N},
Set η = 1, z(0) = 0 and z(0)(JK) = 1.

Step 2 Employ ILFP to solve the selection problem in Eq. (44).
Step 3 Compute η̂ = P{CsUHdiag(z(k))U} and normalize η = η̂ � |η̂|.
Step 4 If ‖z(k) − z(k−1)‖2 ≥ δ, set k = k + 1 and go to Step 2;

Otherwise, terminate.

VI. SIMULATIONS

In this section, simulation results are presented to validate
the proposed sparse array quiescent beamformer design.

A. Example 1

Consider K = 8 available antennas and N = 16 uniformly
spaced positions with an inter-element spacing of d = λ/2.
Assume that three uncorrelated source signals are impinging
on the array from directions θ1 = 65◦, θ2 = 75◦, θ3 = 125◦

with the respective SNR being 6dB, 3dB and 0dB. Assuming
that all the information of the sources is known to the receiver,
thus the MSNR beamformer weights can be calculated as
the principal eigenvector of the source correlation matrix
as stated by Eq. (4). We enumerate all the 12870 different
configurations based on the MSNR beamformer and the results
are plotted in Fig. 1 in an ascending order. Moreover, a semi-
adaptive beamformer w = Uβ with |γi| = 1, i = 1, . . . , 3
is implemented for each sparse array and the corresponding
output SNRs are also depicted in Fig. 1 for comparison. Note
that the array coefficient phases ηi, i = 1, . . . , 3 are calculated
according to Eq. (36) for each sparse array.

The following remarks are in order: (1) The optimum sparse
array implementing the MSNR beamformer can attain 16.5dB
output SNR, which is 1.45dB higher than the worst array
configuration. This underscores the importance of array con-
figurations in determining the output SNR in interference-free
and quiescent scenarios. (2) The semi-adaptive beamformer
performs worse than the MSNR beamformer in terms of



output SNR. The maximum output SNR of the semi-adaptive
beamformer is 16.04dB, which is the best sparse array that
can offer approximately equal gain towards each source. (3)
Array configurations also affect the performance of the semi-
adaptive beamformer significantly, where the SNR difference
between the best and worst sparse arrays is 3.31dB. (4) The
output SNR of semi-adaptive beamformers demonstrates an
increasing trend with regard to array configurations sorted
ascendingly according to that of the MSNR beamformer. The
optimum sparse arrays for the two beamformers are shown
in Fig. 2, with filled dots denoting selected positions for
locating antennas and cross for discarded. The beampatterns
of the MSNR and semi-adaptive beamformers based on the
respective optimum sparse arrays are plotted in Fig. 3. Clearly,
the MSNR beamformer ignores the far and weak source in
order to maximize the output SNR. This disadvantage is
overcome by the semi-adaptive beamformer with a 0.46dB
performance degradation. Note that both sparse arrays exhibit
high sidelobe levels especially in the angular region around
the three sources.
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Fig. 1. Output SNRs of the MSNR and semi-adaptive beamfomers for all
sparse arrays. The inner plot shows the output SNR difference.
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(a) optimum sparse array for MSNR beamformer
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(b) optimum sparse array for semi-adaptive beamformer

Fig. 2. Optimum sparse arrays for the MSNR and semi-adaptive beamformers.

B. Example 2

In this example, we verify the effectiveness of proposed
antenna selection methods. There are two methods for con-
structing sparse MSNR beamformer, namely iterative affine
approximation and frame based approximation solved by the
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Fig. 3. Beampatterns of the MSNR and semi-adaptive beamfomers based on
respective optimum sparse arrays. The green arrows indicate the unwanted
high sidelobes.

ILFP algorithm. The ILFP algorithm is also used to recon-
figure the semi-adaptive beamformer. We run 200 Monte-
Carlo trials and three random integers uniformly generated
within the range [0, 180] are used for the sources’ arriving
angles in each trial. Optimum 8-antenna sparse arrays are
selected based on the MSNR and semi-adaptive beamformers
utilizing the two relaxation methods and the ILFP algorithm in
each scenario. The output SNRs corresponding to the selected
sparse arrays are calculated and those of true optimum arrays
obtained through enumeration is used for the benchmark. The
error distances between the two are plotted in the form of
histogram in Fig. 4 (a), (b), (c). Furthermore, a summary of
the simulation results is depicted in Fig. 4 (d), where the
percentage of trials with the error distance smaller than a set
of predefined threshold values is calculated. We can observe
that the iterative affine approximation exhibits a slightly higher
accuracy than the fame based approximation for the MSNR
beamformer design, while 94.5% of the trials demonstrates
less than 0.6dB error using both methods. For the semi-
adaptive beamformer design, 90% of the trials achieve less
than 0.4dB error using the ILFP algorithm. Nevertheless,
the two relaxation methods and the ILFP algorithm perform
equally well apart from a negligible and acceptable deviation
from the true global optimum solutions. This again validates
the effectiveness of proposed convex relation and iterative
optimization methods.

C. Example 3

As already demonstrated in the Example 1, the beampatterns
of selected optimum sparse arrays (a) and (b) exhibit high
sidelobes for both beamformers since sidelobe constraints
were not considered in the design procedure. We then calcu-
late the optimum 8-antenna sparse MSNR and semi-adaptive
beamformers with controlled sidelobes utilizing Eq. (33) and
the method summarized in Table I. The sidelobes are required
not to exceed −10dB with respect to the main peak. Smaller
values of sidelobe levels reduce the output SNR and yield
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through the ILFP algorithm; (d) The summary of simulation results in (a),
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highly distorted beampattern at unconstrained angles. The two
selected optimum sparse arrays are shown in Fig. 5 (c) and (d).
Their respective beampatterns are depicted in Fig. 6. Clearly,
both arrays circumvent the high sidelobes in the angular region
around the three sources. The weight calculation methods for
both MSNR and semi-adaptive beamformers do not change,
the sidelobe level are well maintained only through the proper
choice of array reconfiguration. Once again, the array config-
uration is key to determine the beamforming performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(c) optimum sparse array for MSNR beamformer with sidelobe constraints

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(d) optimum sparse array for semi-adaptive beamformer with sidelobe constraints

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(e) optimum sparse array for deterministic beamformer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(f) optimum sparse array for reweighted l

1
-norm

Fig. 5. Optimum sparse arrays for the MSNR, semi-adaptive, deterministic
beamformers and reweighted l1-norm method with sidelobe constraints.

In order to compare the (semi-)adaptive beamformer design
with deterministic array synthesis, we implement the array
thinning according to Eq. (29). The thinned array is shown
in Fig. 5 (e) and the synthesized beampattern is plotted in
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Fig. 6. Beampatterns of the MSNR, semi-adaptive, deterministic beamfomers
and reweighted l1-norm method based on respective optimum sparse arrays
with sidelobe constraints.

pink dash-dot curve in Fig. 6, with the weights obtained
from Eq. (29). For a comprehensive comparison, we also
implement the deterministic sparse array synthesis based on
the well-known reweighted l1-norm method [17], [18], where
the largest K = 8 coefficients are remained with others
setting to zero. The corresponding sparse array is depicted
in Fig. 5 (f) and its beampattern is plotted in green dot
curve in Fig. 6. Clearly, all the three proposed beamformers
successfully suppress the unwanted sidelobes by choosing re-
spective suitable configurations. The deterministic beamformer
exhibits a best-shaped response pattern, whereas the MSNR
beamformer completely ignores the source arriving from 75◦

due to the additional sidelobe constraints. The semi-adaptive
beamformer demonstrates a satisfactory compromise between
the deterministic and the MSNR beamformers, although it fails
to distinguish the first two closely-spaced sources. The sparse
array configured through the reweighted l1-norm method ex-
hibits as high as −8.3dB sidelobes around the third source
and broadened mainlobes around the first two closely-spaced
sources.

D. Example 4

We examine the beamformer design in the case of correlated
sources. Consider a distributed source arriving within the
angular region [75◦, 105◦]. The source correlation is generated
randomly with its absolute value bounded between zero and
one. Suppose there are 12 antennas that can be placed in 20
uniformly-spaced positions. We implement antenna selection
for the MSNR, semi-adaptive and deterministic beamformers
with sidelobe constraints, and compare with the reweighted
l1-norm method. The four selected optimum sparse arrays
are plotted in Fig. 7 (g), (h), (k) and (l). Their respective
beampatterns are depicted in Fig. 8. We can observe the
notable trade-off between mainlobe shape, such as mainlobe
width and transition bandwidth, and sidelobe level. Again, the
deterministic beamformer exhibits the best-shaped quiescent



pattern, and slightly better than that of the sparse array
configured through the reweighted l1-norm. The semi-adaptive
beamformer demonstrates high sidelobe levels and the MSNR
beamformer presents a poor mainlobe shape.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(l) optimum sparse array for reweighted l

1
-norm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(h) optimu sparse array for semi-adaptive beamformer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(g) optimum sparse array for MSNR beamformer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(k) optimum sparse array for deterministic beamformer

Fig. 7. Optimum sparse arrays for the MSNR, semi-adaptive, deterministic
beamformers and reweighted l1-norm with sidelobe constraints.
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and reweighted l1-norm based on respective optimum sparse arrays with
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E. Example 5

For a further demonstration of the proposed sparse array
quiescent beamformer design, we select 51 antennas out
of 11 × 11 square array in terms of the MSNR beam-
former with controlled sidelobe level. There are four dis-
crete uncorrelated sources with 0dB SNR, arriving from
vx = [−0.2,−0.3, 0.8, 0.65] and vy = [0.4,−0.6, 0.6,−0.4]
in two-dimensional electronic angles, where vx = cos θ cosψ
and vy = cos θ sinψ with θ and ψ denoting elevation and
azimuth angles, respectively. The normalized beampattern of
the selected 51-antenna optimum sparse array is plotted in Fig.
9. The sparse array is shown on the left of Fig. 10 and the

contour of the beampattern is on the right. The output SNR of
the sparse array MSNR beamformer is 20.72dB with −14dB
peak sidelobe level (PSL) as indicated in the last row of the
Table II.

Fig. 9. Normalized beampattern of the MSNR beamfomer based on the
selected 51-antenna sparse array with sidelobe constraints.
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Finally, we compare the output SNR and PSL of the
eleven selected sparse arrays (a)-(n) in table II. No doubt
that the MSNR beamformer achieves the maximum output
SNR, however it ignores some weak sources and exhibits poor
quiescent pattern. The semi-adaptive beamformer overcomes
the first disadvantage of the MSNR beamformer with an
acceptable performance loss. The quiescent beampattern of
both beamformers can be regularized by adding sidelobe con-
straints. The deterministic beamformer demonstrates the worst
output SNR, whereas its advantage is manifested by the well-
controlled sidelobes. The beamformer design combining both
adaptive and deterministic constraints offers a compromise
between the output SNR and quiescent beampatterns. The
reweighted l1-norm performs worse especially when dealing
with unsymmetric beampattern as it assumes symmetric array
configuration and conjugate weight coefficients. The optimum



TABLE II
THE OUTPUT SNR, PSL AND COMPUTATIONAL TIME OF EACH ARRAY.

Array sidelobe time
Name SNR (dB) PSL (dB) beamformer constraints sec

(a) 16.5 -2.54 MSNR No 0.52
(b) 16.04 -4.05 semi-adaptive No 0.65
(c) 16.17 -9.89 MSNR Yes 1.19
(d) 14.84 -10.12 semi-adaptive Yes 1.20
(e) 13.55 -10 deterministic Yes 1.80
(f) 13.66 -8.3 reweighted l1 Yes 1.67
(g) 15.56 -24.72 MSNR Yes 1.86
(h) 15.31 -21.34 semi-adaptive Yes 1.95
(k) 10.91 -33.54 deterministic Yes 2.37
(l) 11.18 -33.18 reweighted l1 Yes 1.6
(n) 20.72 -14 MSNR Yes 3.13

sparse array is calculated by the CVX software [36] embedded
in MATLAB using a desktop with 3.4GHz Intel i7-CPU and
16GB RAM. The computational times are listed in the last
column of Table II and demonstrate comparable values to the
benchmark of the well-known reweighted l1-norm algorithm.

VII. CONCLUSION

We examined the problem of optimum sparse array beam-
former design through antenna selection in the presence of
multiple desired sources in interference-free environment. Two
beamformers, namely the MSNR and semi-adaptive beam-
formers, were considered and compared with the deterministic
design. Unlike other work in the literature, we utilized the
array configuration as an additional DoF to improve the beam-
forming performance without concerning with complicated
beamformer design. We proposed a general sparse array de-
sign metric combining adaptive and deterministic approaches,
where the reconfigured beamformers exhibited well-controlled
sidelobes with an acceptable performance loss. Simulation
results validated the important role of array configurations
in determining the beamforming performance in interference-
free environments. The sparse array quiescent beamformer
designed by proposed metrics demonstrated a welcome com-
promise between output SNR and desired response pattern.
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[8] Ö. T. Demir and T. E. Tuncer, “Optimum discrete phase-only transmit
beamforming with antenna selection,” in Signal Processing Conference
(EUSIPCO), 2014 Proceedings of the 22nd European, pp. 1282–1286,
IEEE, 2014.
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