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Reconfigurable Adaptive Array Beamforming by
Antenna Selection

Xiangrong Wang?, Elias Aboutanios, Senior Member, Matthew Trinkle and Moeness G. Amin, Fellow

Abstract—Traditional adaptive array beamforming with a
fixed array configuration can lead to significant inefficiencies
and performance loss under different scenarios. As antennas
become smaller and cheaper relative to front-ends, it becomes
important to devise a reconfigurable adaptive antenna array
(RAAA) strategy to yield high signal to noise and interference
ratio using fewer antennas. This is achieved by selecting K
from N antennas to minimize the Spatial Correlation Coefficient
(SCC) between the desired signal and the interference. The
lower bound of optimum SCC is formulated with two relaxation
methods to give information about the suitable number of
selected antennas K. A Correlation Measurement (CM) method
is proposed to select the optimum subarray with K antennas,
thereby reducing complexity. We carry out performance analysis
and show that a 1/K2-suboptimum solution can be guaranteed
with arbitrary shaped arrays. Furthermore, a Difference of
Convex Sets (DCS) method is proposed to select the optimum
subarray with controlled quiescent pattern in order to reduce
the effect of interference during the reconfiguration time. The
utility of the proposed array reconfiguration for performance
improvement without increasing the cost is demonstrated using
both simulated and experimental data.

Index Terms—Antenna Selection, Adaptive Array Beamform-
ing, Convex Optimization, Correlation Measurement, Difference
of Convex Sets

I. INTRODUCTION

A. Motivation

Adaptive array processing plays an important role in diverse
application areas, such as radar, sonar systems and wireless
communication. Adaptive arrays are capable of spatial filter-
ing, which makes it possible to receive the desired signal
from a particular direction while simultaneously blocking the
interference from another direction [1]. However, the high
cost of an entire front-end per antenna makes large array
beamforming very expensive, for example for a phased array
radar with hundreds of antennas. Antenna elements, on the
other hand, are becoming smaller and cheaper. In Global
Navigation Satellite Systems (GNSS), adaptive array process-
ing has also proved to be very promising and a potentially
effective approach for combating multipath and interference.
It has been long known that increasing the number of front-
ends enables the formation of narrower beams. As a result, the
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benefits afforded by using more front-ends are only gained
at the cost of increasingly complex and expensive receiver
hardware [2]. Therefore, antenna selection strategies are be-
coming increasingly desirable. Existing techniques consider
the array configuration to be fixed and focuses on developing
adaptive beamforming and filtering techniques [3], [4], [5]. As
the array configuration is also a potential degree of freedom
(DOF), it plays a fundamental role in the performance of array
beamforming. In this paper, a reconfigurable adaptive antenna
array (RAAA) strategy is proposed, which can reduce the cost
incurred by many front-ends, while best preserving the desired
performance. This strategy is studied in the context of GNSS
applications.

The block diagram of the proposed RAAA strategy by an-
tenna selection is shown in Fig. 1. There are only K (K � N )
front-ends installed in the receiver. In general, the procedure is
as follows. We initially compose a K-antenna subarray which
gives the lowest estimation variance (such subarray usually
has symmetry with respect to the x or y axis and includes the
extreme antennas with largest aperture length [6], [7]). The
receiver obtains rough Direction of Arrival (DOA) estimates
for the desired signal and interference. The optimum array
configuration is then derived from the estimated DOAs. The
selected K antennas are switched on and connected to the
K front-ends, while the de-selected antennas are kept off or
connected to a matched load. In the case of GNSS, the receiver
is able to decode the navigation data, and obtain the DOA of
the satellites with high accuracy. The DOA of interference, on
the other hand, needs to be estimated prior to the adaptive array
processing step. Subsequently, a new iteration of adaptive
beamforming is applied based on the optimum subarray. Thus,
the hardware cost of front-ends is kept to a minimum, and the
computational load associated with the inverse of covariance
matrix is reduced. This is accomplished by identifying and
selecting the optimum array configuration, which corresponds
to the best performance of K-antenna subarrays.

B. Background

Synthesizing a desired beampattern by changing the array
configuration is an important problem with diverse appli-
cations. A discrete antenna selection method was recently
proposed to synthesize a desired beampattern with the fewest
possible antennas. There exist effective methods to solve this
problem, such as a heuristic method [8], a convex optimiza-
tion method [9], [10], [11], a Bayesian Compressive Sensing
method [12], a Matrix Pencil method [13] and an Iterative FFT
algorithm [14], [15] etc. These weight synthesis techniques
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Fig. 1. Block diagram of RAAA strategy with the green circle selected and the
dark one discarded: The DOAs of the satellite and interference are estimated
and used to obtain the optimum sub-array. The selected antennas are then
connected to the available front-ends. In this illustration, 8 front-ends are
available and an 8-antenna subarray is selected out of a 16-antenna array.

are referred to as deterministic design approaches [16]. In
contrast there is little research work relating data dependent
adaptive array processing with array reconfiguration. Hence,
we proceed in this work to combine an antenna selection
strategy that “chooses K from N antennas” using switches,
with adaptive array beamforming in order to enhance the
performance of traditional array processing.

Since the number K of selected antennas is an important
factor in the array processing performance, it should be con-
sidered carefully. The first part of this paper focuses on a the-
oretical analysis of the proposed RAAA strategy. In particular,
we solve the problem of determining the suitable value of K
with the aim of obtaining the best compromise between perfor-
mance and cost. To this end, the spatial correlation coefficient
(SCC), which characterises the spatial separation between the
desired signal and interference is introduced and the lower
bound of the optimal SCC is formulated using two convex
relaxation methods. These two methods, namely Lagrange
Dual and Semi-Definite Programming (SDP) relaxation, were
primarily motivated in multicast applications [17], [18]. Since
the detection performance of GNSS receivers is closely related
to the effective carrier to noise density ratio (effective C/N0),
we derive in closed form the relationship between the effective
C/N0 and the SCC. The trade-off curve of the effective C/N0

and the computational cost with respect to K gives the most
suitable value of K with the best compromise.

The second part of this paper develops a method to choose
the optimum K-antenna subarray from CKN = N !

K!(N−K)!
possible combinations. Searching every possible configuration
by enumeration is very computationally expensive even for
moderate N . Thus an effective method of solving the resulting
NP-hard problem is necessary. The deterministic methods in
[9]-[16] cannot be utilised in the underlying problem due to the
existence of the binary constraint which requires each entry of
the selection vector to be either zero or one. Additionally, the

extra cardinality constraint, i.e. the requirement to activate ex-
actly K antennas, makes this problem much more complicated.
The popular Gaussian randomization method after the SDP re-
laxation for solving homogeneous quadratic optimization can
be used to obtain the binary entry by projecting the solution
into the feasible set [19], but the number of entries equal to
one is not controllable. The upper bound calculation of the
branch and bound method [20], the feasibility cutting with
respect to binary constraints of cutting plane method [21] and
the recursive structure of dynamic programming [22] are not
suitable for real-time applications. Therefore, a simple greedy
approach, called Correlation Measurement (CM) method, is
adopted in this paper to solve the antenna selection problem
for single interference case. Both mathematical analysis and
simulation results show that the CM algorithm can return a fea-
sible solution that is at least 1/K2-suboptimum for arbitrary
shaped arrays. Subsequently, another method of solving the 0/1
integer programming, called Difference of Convex Sets (DCS),
is proposed to select the optimum subarray with a null towards
the interference and a controlled quiescent pattern. Although
the DCS method is more computationally expensive, the effect
of interferers during reconfiguration time is reduced for DCS
optimum subarrays.

C. Contributions
Although this paper only takes GNSS application as an

example to illustrate our proposed RAAA strategy, it is a
general topic and can be applied in many other applications
with antenna arrays. We focus only on the single interference
case which is fundamental to the solution of the multiple-
interference problem (this is beyond the scope of this paper
and will be the subject of future work.) This paper makes a
number of contributions: (i) We derive the non-linear relation-
ship between the effective C/N0 and the number of selected
antennas K and utilize it to prove that the optimum subarray
can maximally preserve the performance with reduced cost;
(ii) We formulate the lower bound of the optimum SCC to
obtain the suitable number of selected antennas for achieving
the required compromise between the performance and cost;
(iii) We present a modified CM method to select the optimum
subarray with minimum SCC value and analyse its perfor-
mance; (iv) We propose a DCS method to solve the 0/1 integer
programming problem and reconfigure an optimum subarray
with controlled quiescent pattern; (v) We demonstrate the
utility of array reconfiguration for performance improvement
by a comprehensive simulation of all the algorithms and data
set from real experiments.

The remainder of this paper is organised as follows. In
Section II the SCC is introduced, and the relationship between
it and the effective C/N0 is described. In Section III, the
lower bound of the optimal SCC is formulated with two
relaxation methods to indicate the suitable number K of
selected antennas. The proposed CM method, its performance
analysis and the DCS method are described in Section IV. In
Section V and Section VI, a set of representative numerical
results and real experimental results are reported and discussed
respectively. Finally, some conclusions are drawn in Section
VII.
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II. SPATIAL CORRELATION COEFFICIENT

The impact of the interference on the desired signal in
GNSS applications can be characterized by the effective
C/N0, [23]. In addition to the Doppler separation, the spatial
dimension also plays a vital part in the effective C/N0 in
the antenna array case [24], [25]. The array configuration, in
particular, is fundamental to the overall performance of the
receiver. Its effect on the performance is embodied in the
spatial separation coefficient (SCC) [26], [27], which expresses
the spatial separation between the desired signal and the
interference with respect to the array. Below, we formulate
the relationship between the SCC and the effective C/N0.

Consider an N -antenna uniformly spaced array placed on
the x-y plane with inter-element spacing d (A 4 × 4 planar
array is shown in Fig.1). Let the elevation and azimuth angles
of the desired signal and interference be given by (θs, φs) and
(θj , φj) respectively. Then, the u-space DOA parameters are
defined as

ui = [sin θi cosφi sin θi sinφi]
T , for i = s, j (1)

where T is the transpose. The steering vectors of the desired
signal and interference are

vs = ej
2π
λ Pus , vj = ej

2π
λ Puj , (2)

where the matrix P = [p1,p2, ...,pN ]T ∈ RN×2 contains the
coordinates of antenna elements,

P =


x1 y1

x2 y2

...
...

xN yN

 . (3)

Under the assumption that the noise and interference are
uncorrelated, their covariance matrix is given by

Rn = σ2I + PjvjvHj , (4)

where σ2 is the thermal noise power, Pj is the interference
power and the superscript H denotes the conjugate trans-
pose operation. Applying the Sherman-Morrison-Woodbury
formula to the inverse covariance matrix Eq. (4) yields

R−1
n = σ−2(I−

vjvHj
σ2

Pj
+ vHj vj

),

= σ−2(I−
vjvHj
σ2

Pj
+N

). (5)

Here, we have assumed, without loss of generality, that
vHj vj = vHs vs = N . Define the parameter SCC as

αjs =
vHj vs
‖vj‖‖vs‖

=
vHj vs√

vHj vj
√

vHs vs
=

vHj vs
N

. (6)

It is clear that |αjs| ≤ 1 and the SCC can be interpreted as
the cosine of the angle ϑ between the desired signal and the
interference as shown in Fig. 2. Small values of absolute SCC
indicate spatial dissimilarity between the desired signal and
interference, and orthogonality is achieved when SCC is zero.

Using Eqs. (5) and (6), the optimum weight vector is given
by

wopt = γR−1
n vs,

=
γ

σ2
(vs −

vjαjs
σ2

NPj
+ 1

), (7)

where γ is a constant that does not affect the output perfor-
mance. Finally, the corresponding output SINR becomes [28],

SINRout = PsvHs R−1
n vs,

=
NPs
σ2

(1− |αjs|2
NPj
σ2

1 +
NPj
σ2

),

= NSNR(1− |αjs|2%), (8)

where Ps denotes the signal power and SNR = Ps/σ
2. % is an

interference to noise figure given in terms of the interference
to noise ratio (INR = Pj/σ

2) as

% =
N INR

1 +N INR
. (9)

The interference to noise figure % characterises the relative
effects of the white noise and interference on the array
performance. It satisfies 0 ≤ % < 1. A value that is close
to 0 indicates that the white noise is the dominant source
of performance degradation, and a value close to 1 implies
that the interference dominates the noise. We now make the
following observations:

1) When the noise is dominant, % is close to 0 and the effect
of the SCC is suppressed. In this case, the SINRout is
linear with the number of array elements N . Therefore,
choosing a smaller subarray can incur a significant
performance loss.

2) If % is large (close to 1), the interference is dominant and
the effect of the SCC is pronounced. Then the optimum
weight vector wopt lies in the interference nullspace.
As a result, the spatial filter will also suppress the
interference directional component of the desired signal.
Therefore, choosing a smaller subarray that minimises
the SCC, i.e. makes the interference and the desired
signal identically or approximately orthogonal with re-
spect to the array configuration, may only incur a small
performance loss as compared with the full array.

Since our focus here is interference mitigation, we assume
the interference is much stronger than the noise in the rest
part of the paper. The SINRout at the output of adaptive
array filter shown in Eq. (8) is the measurement before
cross correlation with the locally generated pseudo-random
code. Because GNSS receivers adopt a direct sequence spread
spectrum (DSSS) processing technique, the effective C/N0,
given as the total GPS signal power divided by the noise
power in a 1Hz bandwidth, is recommended as a performance
measure. Converting Eq. (8) into effective C/N0 value gives
(here % .

= 1):

(C/N0)eff =
NP ds
GnN0

(1− |αjs|2), (10)

where P ds is the satellite signal power after pseudo-random
code de-spreading, N0 is the white noise power density per
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Fig. 2. Relationship between SCC and adaptive array weight vector.

Hz and Gn is the noise processing gain. Eq. (10) shows that
when the number of antennas N is fixed, the effective C/N0

can be improved by changing the array configuration to reduce
the SCC value. Thus the SCC characterizes the effect of the
array configuration on the array processing performance. Also
note that the relationship between effective C/N0 and the
number of available antennas is not linear because the SCC
also depends on the number of antennas by Eq. (6).

III. LOWER BOUND OF OPTIMUM SCC FOR SINGLE
INTERFERENCE

The mathematical model of antenna selection problem is
choosing K from N antennas to compose a subarray that
minimizes the SCC value. Let x be a selection vector with
N elements whose value can only be 0 (not selected) or 1
(selected). Thus the SCC expression based on the selected
subarray with K antenna elements can be expressed as

|αjs| =
|xT vjs|
K

⇔ |αjs|2 =
xTWrx
K2

. (11)

where vjs is the correlation steering vector defined as

vjs = ej
2π
λ P(us−uj), (12)

and Wr = real(vjsvHjs). The antenna selection problem can
then be cast as a two-way partitioning model [29] as follows:

min |αjs|2, (13a)

s. t. xi(xi − 1) = 0 i = 1...N, (13b)

and xT x = K. (13c)

Due to the existence of binary constraints in Eq. (13b), the
primal problem above is not a convex optimization (it is a 0/1
integer optimization). Thus, we resort to relaxation methods
to get the lower bound of the optimal value. There are two
kinds of commonly used relaxation methods: Lagrange Dual
Relaxation and Direct Semidefinite Programming (SDP) relax-
ation. The Lagrange Dual Relaxation utilizes weak duality and
the convexity of duals to obtain the lower bound, whereas the
Direct SDP Relaxation deletes the rank-one matrix constraint
to obtain a bound. We formulate these two methods and
discuss the relationship between them.

A. Lagrange Dual Relaxation Method

Now proceeding with the analysis, the Lagrangian is

L(x,µ, υ) = xT (
1

K2
Wr+diag(µ)+υI)x−µT x−Kυ. (14)

The Lagrange Dual function for the minimization of L(x,µ, υ)
over x becomes

g(µ, υ) = inf
x
{L(x,µ, υ)} (15)

=


− 1

4µ
T ( 1

K2 Wr + diag(µ) + υI)−1µ−Kυ,
if 1
K2 Wr + diag(µ) + υI � 0

and µ ∈ R( 1
K2 Wr + diag(µ) + υI);

−∞ otherwise.

where R(•) means the column space of the matrix •. It is
evident that the Lagrange dual function in Eq. (15) is a concave
function. Using the Schur complement, we can express Eq.
(15) as a linear matrix inequality (LMI),

max ζ, (16)

s. t.

[
1
K2 Wr + diag(µ) + υI − 1

2µ
− 1

2µ
T −Kυ − ζ

]
� 0.

The dual problem (16) is a Semidefinite Programming
(SDP) with three variables ζ, υ and µ and can be effectively
solved using the interior point based optimization method
through CVX [30]. Therefore, after calculating the maximum
value of gmax(µ̃, υ̃), the lower bound of the optimal SCC is

|αjs|2min ≥ gmax(µ̃, υ̃), (17)

where υ̃ and µ̃ are dual optimal solutions. Now in order to
derive the final relationship between the effective C/N0 and
K, we proceed to substitute Eq. (17) into Eq. (10). Thus, the
upper bound of the effective C/N0 becomes

(C/N0)eff ≤
KP ds
GnN0

(1− gmax(µ̃, υ̃)). (18)

Eq. (18) asserts that none of the K-antenna arrays can achieve
better performance than the upper bound calculated from
the lower bound of the optimum SCC. Furthermore, this
equation shows the trade-off between the bound on achievable
performance and the computational cost which increases with
the number of antennas. Therefore, Eq. (18) gives a way to
determine the suitable number of selected antennas K under
different scenarios as a direct result of this trade-off between
cost and performance. This point will be elaborated further in
the simulation results.

B. Direct SDP Relaxation Method

In addition to the Lagrange Dual Relaxation method, there
is another commonly used direct SDP Relaxation method
that relaxes the original problem by deleting the rank-one
constraint. Thus, the optimisation problem is cast as,

min
1

K2
tr(XWr), (19a)

s. t.

[
X x
xT 1

]
� 0, (19b)
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tr(XEi)− eTi x = 0, i = 1, 2...N, (19c)

tr(X) = K. (19d)

where the optimization variables are X ∈ RN×N and x ∈ RN ,
vector ei ∈ RN is the ith unit vector with the ith entry being
one and all others being zero. The matrix Ei = eieTi . The
function tr(•) is the trace of the matrix •.

Now we turn our attention to the relationship between
the Lagrange Dual Relaxation Eq. (16) and the Direct SDP
Relaxation Eq. (19). They are duals of each other according
to [31], and therefore the two bounds are identical provided
that Slater’s condition is satisfied. In our specific problem,
there is no duality gap between the pair of dual problems Eq.
(16) and Eq. (19). The detailed derivation of strong duality
is shown in Appendix A. The differences between the two
relaxation methods are:

1) Eq. (13)→ Eq. (16): dualizes N+1 constraints, produc-
ing a dual problem in RN+1;

2) Eq. (13)→ Eq. (19): linearises N + 1 constraints, pro-
ducing Eq. (19) with N2 extra variables.

Often the Lagrangian Duality Relaxation method is preferred
due to its simplicity.

IV. OPTIMUM SUBARRAY SELECTION

The two relaxation methods cannot return a binary selection
vector x due to the weak duality. Therefore, for single interfer-
ence cases, we adopt a simple greedy search approach, called
Correlation Measurement (CM) [32] to solve the selection
problem due to its low complexity. However, since the CM
method only places constraints on DOAs of the interference
and desired signal, the resulting subarray response can exhibit
high sidelobes even with grating lobes. Thus, we propose a
Difference of Convex Sets (DCS) method to compose the
optimum subarray with controlled quiescent pattern.

A. The CM method

The CM method adopts a bottom-up search strategy to
reduce the candidate set size by deleting the candidate that
is not in the optimum solution to the previous sub-problem.
The squared SCC in Eq. (11) is equivalent to the sum of the
selected entries of the matrix W̃r. That is

|αjs|2 = xT W̃x =

N∑
i,j=1

x(i)x(j)W̃ij , (20)

where the matrix W̃ = 1
K2 Wr. Essentially, the CM method

removes the antenna with the largest sum of correlation
measurement relative to all remaining sensors in every iteration
as shown in Table I.

It is difficult to derive a closed formula to describe the
performance of the CM method because of negative entries
of W̃ (or the complex entries of vjs) [22]. However, we can
still arrive at some bounds on the performance as given by the
following two theorems.

TABLE I
CORRELATION MEASUREMENT ALGORITHM

Step 1 Set all candidate antennas selected,
i.e. x = 1N and iteration number k = 0,

Step 2 Let i := arg maxl=1,...,N
∑N
j=1 W̃jl,

Step 3 Delete sensor i, i.e. set x(i) = 0,
Set the ith column and ith row of W̃ to zero,
Put k := k + 1,

Step 4 If k = N −K, terminate,
otherwise go back to Step 2.

1

2

3

4

N

Fig. 3. Proof of Theorem 4.1: N antennas are denoted as N nodes on the
unit circle. When the angle between every two successive nodes (distributed
evenly around the circle) is less than 2π

λ
d∆u, all nodes are located in the

upper half circle.

1) Theorem 4.1: For a uniformly spaced N -antenna lin-
ear array with inter-element spacing d, if the u-space DOA
between the desired signal and the interference satisfies

|∆u| = |us − uj | ≤
1

N − 1

λ

2d
, (21)

then,

1) the CM method can always return a global optimum
solution, and

2) the SCC value of a larger array is always greater than
that of a smaller array.

Proof: The SCC in Eq. (11) can be expressed as the
normalised sum of the selected exponentials in the polar
coordinate system as shown in Fig. 3,

αjs =
1

K

N∑
i=1

x(i)ej
2π
λ (i−1)d∆u. (22)

Thus, it is evident that the SCC minimization problem is
essentially to select K exponentials with opposite directions
to cancel each other. When ∆u ≤ 1

N−1
λ
2d , all exponentials lie

within the upper half of the circle. Thus the optimum subarray
consists of the antennas at two extremes of the linear array, as
a larger angle difference between two exponentials implies a
smaller sum. Clearly, the sum of more exponentials is larger
than the sum of fewer exponentials. Theorem 4.1 is a only
sufficient but not necessary condition for global convergence.
In fact, extensive simulations show that even when |∆u| is
much larger than 1

N−1
λ
2d , the CM method can still return a

global optimum solution.
The next theorem will focus on deriving the upper bound of

the distance between the CM local minimum and the global
minimum when CM method does not converge globally.
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2) Theorem 4.2: The distance between the objective value
obtained by the CM method and the global minimum is upper
bounded by 1/K2 for choosing K from N candidates when
|∆u| is sufficiently large.

The proof of Theorem 4.2 is shown in Appendix B. Now,
since the CM method requires 1

2 (N(N − 1) − K(K − 1))
additions and (N − 1)(N − K) subtractions in total, its
computational complexity is of order O(N2) operations for
K < N . Therefore, the CM method has a low complexity,
making it both effective and efficient for solving the antenna
selection problem in a single interference case.

B. Controlled Quiescent Pattern by DCS method

Although the CM method is highly suitable for selecting
the optimum subarray, it only puts constraints on the null
and mainlobe at the DOAs of the interference and the desired
signal respectively. As a result, high sidelobes may occur in
the synthesized beampattern due to the non-uniformly placed
antennas. This is of concern and is addressed here via a new
algorithm for solving the binary programming problem, called
Difference of Convex Sets (DCS).

1) Theorem 4.3: The binary constraint x ∈ {0, 1}N is
equivalent to the difference of two convex sets [33], i.e.
x = A−B or the intersection between a convex and an inverse
convex sets, i.e. x = A ∩Bc, with

A : x ∈ [0, 1]N , (23)

B :

N∑
n=1

x2
n −

N∑
n=1

xn = xT x− 1T x < 0, (24)

Bc :

N∑
n=1

xn −
N∑
n=1

x2
n = 1T x− xT x ≤ 0. (25)

where 1 ∈ RN is a vector with all entries being one.
Proof: The binary constraint x ∈ {0, 1}N is equivalent to

x2
n − xn = 0, n = 1, 2, ..., N. (26)

Eq. (26) results in xT x − 1T x = 0. Eq. (23) implies
xT x− 1T x ≤ 0, thus it is clear that x = A−B. Furthermore
constraint Eq. (23) together with constraint Eq. (25) result in
constraint Eq. (26). �

According to Theorem 4.3, we can express binary con-
straints in Eq. (26) as a minimization problem ,i.e.

min{1T x− xT x} = 0, s.t. 0 ≤ x ≤ 1; (27)

Or equivalently

min 1T x, (28)
s. t. x ∈ [0, 1]N ,

xT x = K.

It is clear that the constraint xT x = K is not convex. Therefore
we linearise it by the first-order Taylor decomposition. Since
the derivative of xT x is 2x, the constraint xT x = K can be
approximated in the (k+1)th iteration by the alternative form

2xTk x− xTk xk = K, (29)
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Fig. 4. Comparison between the true minimum SCC and lower bounds in
different scenarios.

Moreover, we sample the u-space DOA interval [−1, 1] to get
the set of correlation vectors vijs, i = 1, ..., L defined in Eq.
(12). Let us define desired SCC values for these samples as
δi, i = 1, ..., L. Then the subarray selection with controlled
quiescent pattern in the (k + 1)th iteration can be expressed
as

min 1T x, (30)
s. t. |xT vjs| ≤ Kδ,

|xT vijs| ≤ Kδi, i = 1, ..., L

x ∈ [0, 1]N ,

2xTk x− xTk xk = K.

where vjs and δ ∈ [0, 1] are the correlation vector and the
desired SCC value corresponding to the arrival direction of
the interference respectively. Then the iterative algorithm Eq.
(30) can be solved by Linear Programming (LP) using the
CVX toolbox. Since the minimum objective value is K and
the corresponding optimum solution x̂ has binary entries, the
termination condition is ‖ xk+1 − xk ‖ being small enough.
It is shown in [34] that the sequence produced by Eq. (30)
has non-increasing objective values. Therefore the iterative
algorithm Eq. (30) will converge to the optimum solution
x̂ which satisfies all the SCC value constraints, i.e. well
controlled quiescent pattern. Finally, we point out that as the
LP needs O(n2m) operations, where n and m are the numbers
of variables and constraints respectively, the computational
complexity of the DCS method is O(N3 +N2L).

V. SIMULATION RESULTS

In this section we present simulation results to validate the
theory presented above.

A. Lower Bound Of Optimum SCC Under Different Scenarios

In the first example, we consider a 4× 4 planar array with
half wavelength inter-element spacing, as shown in Fig. 1, and
proceed to choose the optimum subarray with K = 8 antennas
with minimum SCC value. The desired signal is assumed to be
coming from azimuth and elevation φs = 0.2π and θs = 0.1π
respectively. The azimuth angle of the interference is set to be
φj = 0.25π and the elevation angle, θj is varied from θj = 0
to 0.5π. The comparison between the true minimum SCC and
lower bounds obtained from the two methods under different
scenarios is shown in Fig. 4, and clearly demonstrates that the
calculated lower bounds of optimum SCC value are very tight
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Fig. 5. Lower bound with different number of selected antennas in a 16-
antenna half-wavelength spaced linear array.

in any scenario. Also observe that the two lower bounds are
identical.

B. Lower Bound Of Optimum SCC with Different Number of
Selected Antennas

In the second example we investigate the dependence of
the lower bound of optimum SCC on the number K of
selected antennas using a 16-antenna half-wavelength spaced
linear array. Supposing the desired signal is coming from
θs = 0.2π rad, the optimum SCC value with respect to
different values of K were simulated under the following four
different scenarios:

1) θj is 0.23π; |∆u| < 1/15;
2) θj is 0.25π; |∆u| > 1/15;
3) θj is 0.16π; |∆u| > 1/15;
4) θj is 0.18π; |∆u| < 1/15.

The simulation results are shown in Fig. 5. In this example,
when |∆u| ≤ 1

N−1 = 1/15 rad, both the blue and the black
curves are increasing with K. However when |∆u| > 1

N−1 ,
the optimum SCC value is nearly zero no matter how many
antennas are selected as shown by the red curve. Interestingly,
we find that the green curve is also increasing although |∆u| >

1
N−1 , the reason is Theorem 4.1 is only a sufficient but not
necessary condition for global convergence.

C. The Optimum Number of Selected Antennas

In this example, we again use the 4×4 rectangular array to
illustrate the method for finding a suitable value of K using the
performance-cost trade-off curve. The most computationally
expensive step for adaptive array processing is the inversion
of the matrix which requires order K3 complex operations,
where K is the dimension of the covariance matrix. Thus, to
appreciate the trade-off between the performance and compu-
tational cost, we calculate the normalised effective C/N0 gain
and computational cost by taking the entire full array as a
reference. The suitable values of K for different compromises
between the cost and performance can be found from this
trade-off curve. In this simulation, the arrival direction of the
desired signal is taken to be θs = 0.2π, φs = 0.2π and the
two DOAs of the interference are θj = 0.22π, φj = 0.22π
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Fig. 6. Trade-off curve between the performance and the cost
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Fig. 7. Comparison between minimum SCC value of CM method and lower
bound in a rectangular array.
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Fig. 8. Comparison between the error distance of CM method and upper
bound in a rectangular array.

and θj = 0.4π, φj = 0.4π for the first and second scenarios
respectively. The simulation results are shown in Fig. 6.
Observe that using an 8-antenna subarray saves 87.5% of com-
putational cost with only 0.622dB performance degradation in
scenario 1 and 2.971dB effective C/N0 loss in scenario 2.
This is a significant saving in computational load for a modest
performance loss. Note that this does not take into account the
additional hardware saving due to the reduction in the number
of front ends, which is equal to the reduction in the number
of antennas.

D. Validation of the CM method

Next we use the 4 × 4 uniform rectangular array to val-
idate the effectiveness of proposed CM method. The arrival
direction of the satellite signal is fixed at θs = 0.2π rad and
φs = 0.3π rad and the elevation angle of the interference is
fixed at θj = 0.3π rad. The azimuth angle of the interference
is changing from 0 to 0.5π rad. The comparison result is
shown in Fig. 7. According the Theorem 4.2, the upper bound
of the distance between CM objective value to the global
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minimum is 1
K2 = 0.0156 (K = 8 here). The result is shown

in Fig. 8. It is clear that when the desired signal is close to
the interference, the CM method can return a global optimum
solution. Moreover, when the two are well separated in space,
the CM method can guarantee a 1/K2-suboptimum solution.

E. Performance Comparison

We now use a 50-antenna uniform linear array to show the
performance of the proposed methods. We assume the desired
signal and interference to arrive from 30◦ and 20◦ respectively,
and set the signal to noise ratio to −20dB and interference to
noise ratio to 10dB. In this example, we use a desired SCC
value of 0.01 in the direction of the interference and 0.1 for
all other angles of arrival. The optimum 32-antenna subarray
returned by the CM method is shown in the upper plot of
Fig. 9. The corresponding MVDR beampattern obtained by
1000 Monte Carlo trials is shown by the green dash-dot curve
in Fig. 10. We can see that the peak sidelobe level (PSL)
is −9.127dB with 4◦ mainlobe width and −80.87dB null-
depth. The selected 32-antenna DCS subarray is shown in
the middle plot of Fig. 9 and the MVDR beampattern with
controlled quiescent pattern is represented in Fig. 10 by the
solid blue curve. The null depth of −80.62dB is nearly the
same as that of the CM method, but the peak sidelobe level
(PSL) is now reduced to −16.5dB. This reduction in the PSL,
however, comes at the cost of a slightly broader mainlobe with
a width of 5.2◦.

Most deterministic beampattern synthesis methods, such as
[9] and [13]-[16], assume random antenna positions, which
results in a greatly relaxed problem with respect to the
fixed antenna positions problem we consider in this work.
Furthermore, methods such as those of [13]-[16] do not make
any provision for specifying a null depth. Thus, a direct com-
parison of the performance of these methods with our approach
is not straightforward. Papers [9]-[12], on the other hand, allow
one to set a null and perform the design accordingly. But
these methods require the user to set the null depth, which
means the optimisation criteria is fundamentally different from
our approach. With our method, the null depth is calculated
automatically by the adaptive algorithm as it attempts to make
the signal and interference as orthogonal to each other as
possible. Moreover, our algorithm can be used to reconfigure
the array as the interference position changes relative to the
desired signal which is a significant advantage of our strategy.
Despite these major differences, a careful comparison of the
performance between the proposed RAAA strategy and the
reweighted l1-norm method of [12] is possible. To this end,
we set the peak and null positions at the DOAs of the target
and interference respectively. The number of selected antennas
for the reweighted l1-norm is 41 and the selected subarray is
shown in the lower plot of Fig. 9. The synthesized beampattern
is also shown in Fig. 10 by the red dash curve. We can see
that the mainlobe width is 4.4◦ and the PSL is −17dB, but
the depth of the null is only −67.03dB. It is important to note
that there is always a compromise between the mainlobe width
and null depth. Therefore, given that the antennae positions
are fixed, as we select them from a pre-determined array, the

0 5 10 15 20 25 30 35 40 45 50
antenna index

0 5 10 15 20 25 30 35 40 45 50
antenna index

0 5 10 15 20 25 30 35 40 45 50
antenna index

Fig. 9. Optimum Subarrays: with circle being selected and cross being
discarded; the upper one is the CM 32-antenna subarray, the middle one is
the 32-antenna subarray with quiescent pattern control, the lower one is the
41-antenna subarray with reweighted l1-norm method.
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Fig. 10. Beampatterns: the blue solid curve is the MVDR beampattern of
DCS subarray, the green dash-dot curve is the MVDR beampattern of CM
subarray, the red dash curve is the synthesized beampattern of reweighted
l1-norm subarray. 1000 Monte Carlo runs were used in the simulation.

algorithm makes the null deeper by putting more emphasis
on the null depth than the mainlobe width. Finally, we point
out that the proposed RAAA strategy allows adaptivity and
reconfigurability during operation, whereas the deterministic
beampattern synthesis methods in [9]-[16] are fixed and usu-
ally calculated off-line at the array design stage.

VI. EXPERIMENTAL RESULTS

Next, we validate the theoretical and simulation results by
using real experimental data. We use an 8-antenna circular
array to collect the satellite signal data, as shown in Fig. 11.
At the time of experiment, satellite SVN-25 was at azimuth
and elevation angles of φs = 29◦, θs = 35◦ respectively. In
the first scenario, we used Electromagnetic Interference (EMI)
from a desktop computer as the interference source, which was
coming from φj = 328◦, θj = 0◦. In order to create a case
where the satellite signal is close to the interference, we use
MATLAB to inject an interference into the collected clean
data from φj = 35◦, θj = 40◦ as the second scenario. The
interference-to-noise ratio are both more than 20dB in the
two cases.

The effective C/N0 was estimated by cross-correlating the
received signal with the known GPS pseudo-random codes.
Specifically, the Post-SINR is calculated by taking the cross
correlation peak as the signal amplitude and the variance of
the non-matching points in the cross-correlation function as
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Fig. 11. The circular array used in the experiment and the EMI desktop
interference.
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Fig. 12. SCC and corresponding experimental effective C/N0 values of 28
different 6-antenna subarrays in the first scenario.
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Fig. 13. Experimental and theoretical effective C/N0 in scenario 1.

the power of the noise. Additionally, the non-matching points
are restricted to code offsets for which the sidelobes in the
code cross-correlation function are more than 24 dB below
the matching point due to the auto-correlation sidelobes of the
pseudo-random code [35]. The Post-SINR is then normalised
to the noise power in a 1 Hz bandwidth to obtain the effective
C/N0.

The parameters used to calculate the theoretical effective
C/N0 in Eq. (10) are [36]:

1) the received satellite signal power is Ps = −159 dBW;
2) the IF bandwidth is 3 MHz;
3) the integration time Td is 10 ms;
4) the noise power density is N0 = −203.9 dB-Hz;
5) the sampling frequency is fs = 15.36 MHz;
Firstly, the utility of array reconfiguration for performance
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Fig. 14. Experimental and theoretical effective C/N0 in scenario 2.

improvement is validated by Fig. 12. Six antennas are chosen
from the circular array in the second scenario and giving
a total 28 candidate subarray configurations. The SCC and
corresponding experimental effective C/N0 values of all 28
subarrays are shown in Fig. 12. It is evident by comparing
the two curves that when the SCC has a minimum value,
the effective C/N0 is maximum for the fixed number K.
This confirms the inverse relationship between the SCC and
effective C/N0 derived in Eq. (10). Thus the subarray with the
minimum SCC value is also the optimum subarray with the
best performance. Also note from Fig. 12 that the optimum 6-
antenna subarray gives 53.33 dB-Hz effective C/N0, whereas
the worst subarray yields an effective C/N0 of 43.97 dB-Hz.
This confirms the utility of array reconfiguration for improving
the performance.

Next the antenna selection strategy is tested by Fig. 13 and
Fig. 14. Only the data received from the selected K antennas
are processed. In this way we can see the performance of sub-
arrays with different numbers of selected antennas by changing
the value K. The experimental results of the first and second
scenarios are shown in Fig. 13 and Fig. 14 respectively. Firstly
we can see that the experimental effective C/N0 exhibits good
agreement with the theoretical curve. Secondly, the effective
C/N0 shows a linear relationship with K in the first scenario,
while it flattens out when K exceeds 5 in the second scenario.
This coincides exactly with our simulation results in section
V. Hence increasing the array size may not be necessary in
some scenarios, an optimally configured subarray can preserve
the performance with a significant cost reduction.

VII. CONCLUSION

In this paper, a reconfigurable adaptive antenna array strat-
egy is proposed to utilise the array configuration as an ad-
ditional DOF to improve array processing performance. The
parameter, SCC, is introduced to characterise the effect of
array configuration on the performance. The lower bound of
the optimum SCC is derived with two relaxation methods and
the non-linear relationship between the effective C/N0 and
the number of selected antennas is formulated. The trade-off
curve between the performance and the cost gives information
about the suitable value of K. Then, the proposed CM method
was used to compose at least a 1/K2-suboptimum K-antenna
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subarray. The proposed DCS method can select an optimum
subarray with a null towards the interference as well as
achieve a controlled quiescent pattern. Both simulation and
experimental results demonstrate that the subarray can save
both hardware and software cost with maximum performance
preservation, given that K is suitably chosen and the subarray
is optimally configured.

APPENDIX A
THE PROOF OF STRONG DUALITY

First we will show that Eq. (16) and Eq. (19) are a pair of
duals, i.e. Eq. (19) is the bi-dual of the primal Eq. (13). We
take the bi-dual variable Y ∈ RN+1,

Y =

[
X x
xT t

]
� 0. (31)

Then the Lagrangian associated with Eq. (16) is

L(ζ,µ, υ,Y)

= ζ + tr(Y •
[

1
K2 Wr + diag(µ) + υI − 1

2µ
− 1

2µ
T −Kυ − ζ

]
),

= tr(
1

K2
WrX) + (1− t)ζ + tr(diag(µ)X)− µT x

+ υ(tr(X)−Kt). (32)

Its supremum with respect to (ζ,µ, υ) is +∞ unless t = 1,
tr(X) −Kt = 0 and the coefficient of each µi is zero. Thus
the dual function is exactly Eq. (19). Let us denote by val(·)
the optimum value of the optimization problem described in
Eq. (·). Applying weak duality twice and the lifting procedure,
we get

val(16) ≤ val(19) ≤ val(13). (33)

It is worth mentioning that the first inequality often holds as
an equality, as we show is the case here. Let us take the matrix

X =


K/N K2/N2 K2/N2 · · · K2/N2

K2/N2 K/N K2/N2 · · · K2/N2

...
...

...
...

...
K2/N2 K2/N2 K2/N2 · · · K/N

 ,
(34)

and x = [K/N,K/N, ...,K/N ]T . Then

X− xxT =



K
N −

K2

N2 0 · · · 0

0 K
N −

K2

N2 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · K

N −
K2

N2


� 0; (35)

Moreover, tr(X) = K and tr(XEi)− eTi x = 0, i = 1, 2, ..., N
which satisfy Slater’s condition in Eq. (19). Thus there is no
duality gap between the two relaxation methods Eq. (16) and
Eq. (19), and consequently val(16) = val(19).

Possible distribution of 

Possible distribution of 

Fig. 15. Proof of Theorem 4.2: The optimum SCC of the (N −K − 1)th
sub-problem is αK+1

js . The node ejΨn is the closest antenna to αK+1
js . ρ̃Kjs

is K times the optimum SCC value of the (N −K)th sub-problem. β is the
angle between αK+1

js and ρ̃Kjs. The range of ρ̃Kjs that ensures its amplitude
not exceed one is shown in the figure. Thus the amplitude of optimum SCC
value for choosing K from N , i.e. αKjs = ρ̃Kjs/K, will not exceed 1/K.

APPENDIX B
PROOF OF THEOREM 4.2

We prove Theorem 4.2 under two different cases which
are divided according to the SCC value of the previous sub-
problem. Let us assume the number of selected antennas
2 ≤ K ≤ N − 2, since the CM solution of choosing N and
N − 1 from N antennas is also the global optimum solution.

A. Case 1
Let us assume the SCC value returned by the (N−K−1)th

subproblem of CM approach, i.e. selecting K + 1 from N
antennas, equal to zero, then the SCC value of the (N −K)th
subproblem, i.e. selecting K from N antennas, is 1/K. The
reason is that when any antenna is removed from the (K+1)-
antenna subarray, the sum of the remaining K exponentials is
the exponential with opposite direction against the removed
one due to the zero SCC. Thus the amplitude of the sum of
K exponentials is one and the corresponding absolute SCC is
1/K after normalization.

B. Case 2
Let us suppose the optimum SCC of the (N − K − 1)th

sub-problem is

αK+1
js =

1

K + 1

N∑
i=1

x(i)ejψi 6= 0, (36)

where ψi = 2π
λ pTi (us−uj). Since the CM method deletes one

antenna with the largest correlation to the remaining antennas,
the correlation of the lth, 1 ≤ l ≤ N antenna with the
remaining K antennas is given by

cK+1(l) =
1

K + 1
real(

N∑
i=1

x(i)e−jψlejψi),

= real(e−jψlαK+1
js ), (37)

Let us assume without loss of generality that αK+1
js is real, if

not, then we rotate the axes to make it so. Then Eq. (37) can
be rewritten as

cK+1(l) = αK+1
js cos(ψl), (38)
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Since αK+1
js is common to all the K + 1 antennas, the

maximum correlation measurement corresponds to the min-
imum ψl, that is deleting the antenna with the smallest angle
difference with respect to αK+1

js , i.e. with respect to the x-axis
here, denoted by ejψn as shown in Fig. 15. Then we have that
have −π2 < ψn <

π
2 , for if the absolute value of ψn was larger

than π
2 then all of the exponentials would be in the other half

of the disk and the SCC cannot be along the positive real axis,
thus violating our assumption.

It is clear that αK+1
js is much less than the SCC value of

selecting K + 1 consecutive antennas, i.e.

αK+1
js � 1

K + 1

∣∣∣∣ sin[πd∆u(K + 1)/λ]

sin(πd∆u/λ)

∣∣∣∣ , (39)

Since we are analysing the performance of CM method under
the case where it cannot converge globally, we assume the
spatial separation |∆u| is large such that,

0 < αK+1
js ≤ 2 cosψn

K + 1
, (40)

The SCC αK+1
js can also be decomposed as the sum of ejψn

and ρ̃Kjs as follows,

αK+1
js =

1

K + 1
[ρ̃Kjs + ejψn ], (41)

where ρ̃Kjs is the sum of K exponentials which are selected in
the (N −K)th sub-problem. Because the projections of ejψn
and ρ̃Kjs onto the y-direction need to cancel each other, we
have that

sinψn + |ρ̃Kjs| sinβ = 0, (42)

where β is the angle between αK+1
js and ρ̃Kjs. Moreover, Eq.

(41) can be rewritten as

αK+1
js =

1

K + 1
(cosψn + |ρ̃Kjs| cosβ), (43)

Combining Eq. (40), Eq. (42) and Eq. (43), we have that

− cosβ
sinψn
sinβ

≤ cosψn, (44)

Next we consider to simply Eq. (44) from the following two
cases,

−ψn ≤ β ≤ π + ψn if − π

2
< ψn ≤ 0, (45)

and
−π + ψn ≤ β ≤ −ψn if 0 ≤ ψn <

π

2
, (46)

The possible distribution area of ρ̃Kjs is shown in Fig.15. Thus
the amplitude of ρ̃Kjs is bounded within

| sinψn| ≤ |ρ̃Kjs| ≤ 1, (47)

Therefore, the optimum SCC value of the (N − K)th sub-
problem is bounded within

| sinψn|
K

≤ |αKjs| =
|ρ̃Kjs|
K
≤ 1

K
. (48)

Since the selection of K from N antennas needs totally
N−K sub-problems for CM approach and the effective C/N0

is relevant to the squared SCC value, the upper bound of the
distance between the objective value of CM solution and the
global minimum is no more than 1

K2 in any scenario when
K ≤ N − 2; is zero when K = N or K = N − 1.
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