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2. ABSTRACT  

Direction of Arrival (DOA) estimation using antenna 

arrays is an important problem for combating jamming in 

GPS, as accurate DOA estimates lead to better interference 

suppression. In this paper, we improve the estimation 

DOA accuracy when the true incident angles are off the 

discretised sampling grid points. We propose a bisection 

interpolation method based on MUSIC pseudo-spatial 

spectrum coefficients. The proposed method can be 

applied to multiple uncorrelated sources in the field of 

view without any constraints on the antenna array shape. 
For coherent sources, both beamspace transformation and 

spatial smoothing are utilised to decorrelate the signals for 

uniform circular arrays, with sufficient number of antennas, 

prior to dichotomous search. Both simulated and 

experimental results validate the effectiveness and 

efficiency of the proposed algorithm. 

 

3. INTRODUCTION 

Global navigation satellite systems (GNSS) receivers are 

vulnerable to the presence of interference. In order to 

counter this problem, antenna arrays are proposed to 

enhance the performance of GNSS receivers by steering 

nulls towards the interfering signals, [1] [2], [3], [4], [5]. 

Thus, accurate DOA estimates are important for desirable 

null formation. There has been extensive research on high-

resolution DOA estimation techniques, such as maximum 

likelihood technique and MUSIC algorithm. The main 

advantage of using MUSIC, rather than a maximum 

likelihood estimator, is its relative computational 
simplicity. Unfortunately, MUSIC is applicable only when 

the sources are either uncorrelated or partially correlated. 

There exist situations where the signals become coherent 

or almost coherent, such as multipath propagation or 

deliberately introduced coherent signals by smart jammers 

in GPS scenarios.  In [6], an effective spatial smoothing 

technique for uniform linear arrays (ULA) was introduced 

to restore the dimensionality of the signal subspace. In 

order to apply spatial smoothing techniques to arbitrary 

shaped arrays, Friedlander [7] proposed an interpolated 
array scheme that employed interpolation matrices to map 

the received signal of an arbitrary array onto that of a 

virtual ULA. However, different sets of interpolator 

coefficients are required to provide good estimates for 

different angle sectors. For uniform circular arrays (UCA), 

phase mode excitation-based beamforming is utilised to 

synthesize a beamspace manifold similar to that of a ULA 

under some conditions [8], [9], [10]. Afterwards, spatial 

smoothing techniques can be utilised to decorrelate 

coherent sources. 

 
However, all the aforementioned methods assume that true 

DOAs are exactly on the discretised sampling grid points 

and suffer considerable performance degradation when the 

assumption is violated. Although employing sufficiently 

dense sampling grids is one solution to improve the 

estimation accuracy, this approach requires an extensive 

search, hence incurring a high computational cost. The off-

grid DOA estimation problem was addressed in a number 

of ways, including the sparse total least-squares (STLS) 

approach [11], the Off Grid Sparse Bayesian Inference 

(OGSBI) method [12] and the Simultaneous Orthogonal 
Matching Pursuit Least-Squares (SOMP-LS) algorithm 

[13]. The obvious drawback of the STLS is its unrealistic 

model of Gaussian distributed off-grid errors. One 

shortcoming of the OGSBI is that up to 1000 iterations are 

required for high accuracy especially for dense sampling-

grids due to the probabilistic property of the Bayesian 

inference method. The SOMP-LS method, on the other 

hand, offers fewer guarantees on the estimation accuracy 

and resolution capability.  

 

There are various kinds of interpolators based on Fourier 

coefficients proposed in the literature to solve this problem 
as well. One simple and commonly used interpolator 

employs zero-padding for extended data vector. However, 

interpolating on every frequency component is not 

necessary, and the zero-padding interpolator gives fine 

resolution to spatial angular sectors of no jamming 



activities. More importantly, achieving a frequency 

resolution that is comparable to the Cramer-Rao Lower 

Bound (CRLB) would require substantial padding, 

especially in high signal to noise ratio (SNR) cases, and 

result in excessive computational load. Interpolation using 

only the peak Fourier coefficient and its two neighbours is 

intuitively justified by the fact that most the “energy” of a 

sinusoidal signal is contained in these three samples [14], 

[15], [16], [17], [18]. However, all these interpolators 
based on Fourier coefficients are constrained in the ULA 

cases and suffer a low resolution capability due to the 

Rayleigh criterion. Most of the GPS multi-antenna 

receivers are Controlled Radiation Pattern Antenna 

(CRPA) arrays, which have a circular aperture with one 

element in the center and three to seven elements on the 

circumference. Therefore, these interpolation methods 

based on Fourier coefficients are not applicable for DOA 

estimation in GPS scenarios. 

 

In order to estimate off-grid DOAs accurately and 

efficiently, we propose a bisection interpolation method 
based on MUSIC pseudo-spatial spectrum coefficients. 

The proposed method can be applied to multiple 

uncorrelated sources in the field of view without any 

constraints on the antenna array shape. For coherent 

sources impinging on the UCA with a certain number of 

antennas, beamspace transformation and spatial smoothing 

are utilised to decorrelate the signals prior to dichotomous 

search. We implement the proposed interpolation method 

in both simulated and real GPS experiments, where a 16-

antenna UCA and an 8-antenna UCA were employed 

respectively. In order to validate the proposed bisection 
interpolation approach, we collect clean GPS data utilizing 

the 8-antenna UCA and inject interference signals with 

Matlab, where their DOAs are off discretized sampling 
grid points. Both the simulation and experimental results 

prove that the proposed method can maintain accurate 

DOA estimates even under a set of coarse sampling grid 

points, thus reducing the computational complexity.  

 

4. ANALYSIS OF UCA WITH AND WITHOUT A 

CENTER ANTENNA 

 

In this section, we will analyse the UCA with and without 

an antenna in the center of the circle in terms of both the 
beampattern and DOA estimation variance. The geometry 

of an M-antenna UCA is depicted in Figure 1. The antenna 

elements are assumed to be identical and omnidirectional. 

There is one antenna located in the center (which we 

denote as the zeroth antenna) and other M-1 elements are 

uniformly distributed over the circumference of a circle of 

radius r in the x-y plane. Without loss of generality, we 

assume the first antenna is placed on the x axis, then the nth 

antenna is displaced by an angle 
n  from the x axis, 

 (n-1) 2 (n-1) /(M-1), n = 1,..., M 1n      (1) 

Here, 2 /(M-1)  is the angle between two consecutive 

antennas. Then, the position vector of the nth, n=1,…,M-1 

antenna is  

 [r cos , r sin ] .
T

n n n p  (2) 

First, we investigate the effect of the center antenna on the 

conventional beampattern of the UCA. We employ the 8-

antenna experimental UCA, i.e., there are seven elements 

uniformly distributed over the circular circumference. The 

radius of the circle is one wavelength. The elevation angle 

is fixed at 0° without special notice in the paper. The 

beampatterns of the UCA with and without center antenna 

are shown in Figure 2. We can observe that both the 

mainlobe width and the peak sidelobe level are the same 
for the two UCAs, whereas the two sidelobes closest to the 

mainlobe are much lower for the UCA with the center 

antenna due to the filled aperture. Thus the UCA with an 

antenna in the center is generally preferred for anti-

jamming. 
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Figure 1 Uniform circular array geometry with one antenna 

in the center of the circle. 

 
Figure 2 Conventional beampatterns of the UCA with and 

without center antenna. 

Next, we investigate the effect of the center antenna on the 

DOA estimation performance. Theoretically, we show that 

the absence of the center antenna has a negligible effect on 

the CRLB of the UCA. As shown in [19], the CRLB is a 

function of the array geometry only through the “moments 

of inertia” of the array. The CRLB of the azimuth angle   

of a two-dimensional antenna array for a given elevation 

angle   is 

 
2 2 2 2 2

0

1/
,

2 cos (sin cos sin 2 )xx yy xy

M
C

k Q Q Q




    




 
 (3) 

where  is the SNR and 
0 2 /k    is the wavenumber. The 

“moments of inertia” , ,xx yy xyQ Q Q of the UCA are defined as 

follows, 

 M M
2 2

xx m c yy m c

m=1 m=1

Q = (x - x ) ,Q = (y - y ) ,   
(4) 



 M

xy m c m c

m=1

Q = (x - x )(y - y ),  
(5) 

where 
m mx , y denote the x and y coordinates of the mth 

antenna respectively. Regardless of whether the UCA has 

a center antenna or not, its gravity center, 
c cx , y is actually 

the circular center, i.e. 

 M M

c m

m=2 m=2

2 (m- 2)
x = r cos r cos 0,

M-1


     

(6) 

  M M

c m

m=2 m=2

2 (m- 2)
y = r sin r sin 0.

M-1


     

(7) 

Therefore, according to Equations (4), (5), the “moments 

of inertia” of the UCA, in the two cases with and without 

the center antenna, are essentially the same. Accordingly, 

the difference of the CRLB between the two UCAs with 

and without the center antenna is, 

 
2 2 2 2 2

0

1
,

2 M(M-1) cos (sin cos sin 2 )xx yy xy

C
k Q Q Q


    

 
 

 (8) 

We can see from Equation (8) that the CRLB difference is 

negligible, which is also verified by experimental results in 

Section 7. In essence, the UCA with a center antenna is 
beneficial for interference nulling, whereas the additional 

center antenna does not improve the DOA estimation 

performance. Moreover, as shown in Section 5, the 

existence of the center antenna, makes the transformation 

to a virtual ULA inefficient. Therefore, in an open-loop 

null steering algorithm [20], [21], the UCA without the 

center antenna is preferred for DOA estimation, especially 

in the case with coherent sources, and the center antenna 

can be considered for the follow-on interference nulling. 

 

5. MUSIC ALGORITHM AND FORWARD 

SPATIAL SMOOTHING FOR UCA 
 

Since the proposed method interpolates off-grid DOAs 

based on the peak spatial spectrum coefficients and 

positions, a complete estimation procedure is comprised of 

two steps. In the first step, an initial DOA estimation is 

implemented utilising coarse estimation algorithms in 

order to obtain the number of estimated sources and their 

peak grid positions. Then a fine search, i.e. interpolation, 

is adopted in the second step to increase the estimation 

accuracy. Thus it is intuitive to conclude that the 

resolution capability and robustness against coherent 
signals of the proposed method have a great dependence 

on the first estimation step. We adopt the MUSIC 

algorithm in the first step, since it is capable of resolving 

two closely spaced or highly correlated signals (with 

spatial smoothing) even at low SNR cases, we adopt it in 

the first step.  

 

Let us assume there are K far-field stationary narrowband 

signals impinging on the UCA with elevation and azimuth 

1 2[ , ,..., ]K  θ  and
1 2[ , ,..., ]K  φ  respectively. The 

steering vector of the kth source is 

 k k 2 k kcos( ) cos( )

k [1, ,..., ] ,Mj j T
e e

      
a  (9) 

where 
k k(2 / ) rcos     and ()T is the transpose 

operation. The center antenna is included in Equation (9). 

The received signal can be expressed as, 

 K

k k

k=1

(t) = s (t) + (t) (t) + (t), t = 1,...,Tx a n As n  
(10) 

where 

 T

1 2 K(t) = [s (t),s (t),...,s (t)] ,s  (11) 

is the received signal complex amplitude and (t)n is the 

white noise vector, uncorrelated with the source signals. 
The steering matrix is defined as, 

 
1 2 K[ , ,..., ],A a a a  (12) 

with 
ka being the steering vector of the kth signal defined 

in Equation (9). The array covariance matrix R  can be 

approximated as 
 T

H 2

t=1

(t) (t) ,H   R x x ASA I  
(13) 

where S is the source covariance matrix defined as 

 T

t=1

( ) ( ),
H

t tS s s  
(14) 

where 2 is the variance of the additive noise and I is an 

identity matrix. ()H is the transpose conjugate operation. 

Taking eigenvalue decomposition of R yields, 

 H
,R = EΣE  (15) 

Under the condition of no coherent or highly correlated 

sources, the signal covariance matrix S becomes full rank. 

The noise eigenvector matrix is 

 
K+1 K+2 M[ , ,..., ],n E e e e  (16) 

where the columns are the eigenvectors corresponding to 

the M-K smallest eigenvalues. For a fixed elevation angle, 

let 
1[ ,..., ]L   be a uniform sampling grid over the range 

[0°, 360°]. In this case the unit grid interval is 360/L 

degrees. The MUSIC measurement is chosen to be 

 1
( , ) [ ( , ) ( ) ( , )] , 1,...,

H H

l l n n lM l L      
 a E E a  (17) 

The K values at which ( , )M   is maximized are taken as 

the rough estimates of the DOAs in the first step. 

 

When the source covariance matrix S is singular, the 

MUSIC algorithm in Equation (10) would fail. A pre-

processing scheme, called spatial smoothing, introduced in 

[6] can restore the rank of S, even when the signals are 
coherent. Since spatial smoothing techniques were initially 

developed for ULAs, for UCAs, phase mode excitation-

based beamforming can be utilised to transform the 

received signal to that of a virtual array whose structure is 

amenable to the application of spatial smoothing. The 

transformation procedure is detailed as follows. 

 

First, according to [9], a rule of thumb for determining the 

maximum number of mode order, H, is 

 2
H .r




  (18) 

For example, a UCA with radius r =  , the maximum 

mode order is H=6. In other word, the number of sensors 
in the virtual ULA is 2H+1 = 13. 

 



By omitting the center antenna and considering the M-1 

antennas on the circumference, the normalized beam-

forming weight vector, which excites the array with phase 

mode h, |h|<=H is 

 H j2 h/(M-1) j2 h(M-2) /(M-1)

h

1
= [1,e ,..., e ],

M 1

 


w  (19) 

The resulting beampattern for the kth source is then 

 
k kn

M
cos( )jhH

h h k

n=2

1
f = ( e ),

M 1

nj
e

   



w a  

(20) 

When the number of physical antennas,  
 M > 2H+1,  (21) 

the array pattern can be approximated as, 

 kjhh

h h kf M 1 j J ( )e ,
   (22) 

where 
h kJ ( ) is the Bessel function of the first kind of 

order h.  

 

The beamforming matrix F is defined, from Equation (19), 

as, [9], [10] 

 j2 H /(M-1) j2 H(M-2) /(M-1)

j2 /(M-1) j2 (M-2) /(M-1)

j2 /(M-1) j2 (M-2) /(M-1)

j2 H /(M-1) j2 H(M-2) /(M-1)

1 e ... e

... ... ... ...

1 e ... e
1

,1 1 ... 1
M 1

1 e ... e

... ... ... ...

1 e ... e

 

 

 

 

 

 

 
 
 
 
 

  
  

 
 
 
  

F
 

(23) 

The beamspace steering vector,
ka , synthesized by F is 

thus, 

 
k k k , a Fa Jv  (24) 

where the matrix J is diagonal, i.e., 

 -H 0 H

-H k 0 k H kM-1diag{j J ( ),..., j J ( ),..., j J ( )},  J  (25) 

To preserve only the angle-dependent phase, which is our 

goal, we multiply 
ka  by the inverse diagonal matrix J-1 

which yields 

 1 1

k k k k
ˆ ,

 
  a J a J Fa v  (26) 

where
kv is a 2H+1 dimensional vector, 

 k k- jH jH

k [e ,...,1,..., e ] ,
T 

v  (27) 

It is clear from Equation (27) that the M-antenna UCA is 

transformed to a virtual 2H+1-antenna ULA. Spatial 

smoothing can then be utilized to decorrelate the coherent 

signals. In this paper, we adopt a forward spatial 

smoothing method as follows.  

 

Firstly, received signals (t)x in Equation (10) are 

transformed to those of a virtual ULA, i.e. 
 1

(t) = (t), t = 1,...,T


y J Fx  (28) 

Then, the virtual ULA of 2H+1 sensors is divided into 

overlapping sub-arrays of size H0, with the first sub-array 

formed from the sensors {1,…,H0} and the second sub-

array formed from the sensors {2,…,H0+1} and so on. The 

spatially smoothed covariance matrix, with L=2H+2-H0 

smoothing steps, is  

 

1

1
,

L

p

pL 

 R R  
(29) 

where 
pR is the covariance matrix of the pth sub-array, i.e., 

 
0 0

H

: +H -1 : +H -1

1
( ),

T
p p p p pR Y Y  (30) 

where [ (1), (2),..., ( )]TY y y y  and 
0: +H -1p pY  is obtained by 

extracting from the 
thp  row to the 

0( + H -1)thp row. It 

should be noted that the number of sub-arrays, L, must 

equal to the degree of the largest coherent signal group [6].  

 

6. BISECTION INTERPOLATION BASED ON 

MUSIC PSEUDO-SPECTRUM COEFFICIENTS 

 

It is hard to derive a closed formula for the true off-grid 

value from the MUSIC pseudo-spectrum; thus we 

implement an iterative search where we halve interpolation 

step length at each iteration. The proposed bisection 

interpolation method is similar to the Dichotomous search 
in [16], with the difference that the latter is based on 

Fourier coefficients. Below, we elaborate on 

implementation procedures of the proposed bisection 

interpolation method in both cases of uncorrelated and 

coherent sources.  

 
6.1 BISECTION INTERPOLATION FOR 

UNCORRELATED SIGNALS 

 

In the case of uncorrelated signals, the MUSIC algorithm 

can be applied directly based on the circular array as 

shown in Equations (15), (16), (16 with the center antenna 

included. Let us assume that the K peak positions 

estimated from the first step of MUSIC search 

as
ik̂ , i = 1,...,K . Since most of the interferences are 

descending from the horizontal direction in GPS, we fix 

the elevation angle to be 0°. Then the implementation 

procedure of bisection interpolation method in the case of 

uncorrelated signals is as follows: 

 

Step 0: Initialize the threshold value  (for example 0.01), 

1 0.5   and
2 0.5   ; 

For each estimated signal i=1,..,K, iterate 

Step 1: Calculate the two shifted azimuth angles: 

 1

1
ˆ360(k 1) / ,i i L     (31) 

 2

2
ˆ360(k 1) / ,i i L     (32) 

and the corresponding shifted steering vectors are 
 1 1

i 2 ii i
cos( ) cos( )1

i [1, ,..., ] ,Mj j Te e
      

a  
(33) 

 2 2
i 2 ii i
cos( ) cos( )2

i [1, ,..., ] ,Mj j Te e
      

a  
(34) 

Step 2: Calculate the pseudo-spectrum coefficients: 

 
1 21H 1 2H 2

i i i i

1 1
, ,

( ) ( )
H H

n n n n

b b 
a E E a a E E a

 (35) 

Step 3: Let
1 2b - b  . Update 

1  and 
2  as follows: 

a) If    , then 
1 1 20.5( )    and

2 2  , go 

back to Step 2; 



b) If   , then 
2 1 20.5( )    and

1 1  , go 

back to Step 2; 

c) Otherwise, terminate the iteration with 

1 2
ˆ 0.5( )     and obtain the true DOA of the ith 

signal as 
i

ˆ ˆ360(k ) /i L   . 

It should be noted that the value of the off-grid parameter 

  is within the range [-0.5, 0.5] around the peak position. 

 
6.2 BISECTION INTERPOLATION FOR COHERENT 

SIGNALS 

 

For coherent sources, both beamspace transformation and 
spatial smoothing are required prior to DOA estimation, 

per Equations (28), (29), (30). Implementing the 

eigenvalue decomposition on the spatially smoothed 

covariance matrix R  in Equation (28) yields the noise 
subspace,  

 
K+1 K+2 2H 2-2K[ , ,..., ],n E e e e  (36) 

where each eigenvector ke  is of dimension 2H+2-K. 

Performing searching in the azimuth range [0°, 360°], we 

obtain the MUSIC measurements, 

 1
( , ) [ ( , ) ( ) ( , )] , 1,...,

H H

l l n n lM l L      
 a E E a  (37) 

where ( , )l a is the transformed beamspace steering 

vector, i.e. 

 - jH j(H+1-K)
( , ) [e ,...,1,..., e ] ,l l T

l

   a  (38) 

Assume the K estimated peak positions as 
ik̂ , i = 1,...,K . 

Then, the implementation procedure of the bisection 

interpolation method in the case of coherent sources is as 

follows: 

 

Step 0: Initialize the threshold value  (for example 0.01), 

1 0.5   and
2 0.5   ; 

For each estimated signal i=1,..,K, iterate 

Step 1: Calculate the two shifted azimuth angles: 

 1

1
ˆ360(k 1) / ,i i L     (39) 

 2

2
ˆ360(k 1) / ,i i L     (40) 

and the corresponding shifted steering vectors are 

 1 1- jH j(H+1-K)1

i [e ,...,1,...,e ] ,i i T 
a  (41) 

 2 2- jH j(H+1-K)2

i [e ,...,1,...,e ] , ,i i T 
a  (42) 

Step 2: Calculate the pseudo-spectrum coefficients: 

 
1 21H 1 1H 1

i i i i

1 1
, ,

( ) ( )
H H

n n n n

b b 
a E E a a E E a

 (43) 

Step 3: Let
1 2b - b  . Update 

1  and 
2  as follows: 

a) If    , then 
1 1 20.5( )    and

2 2  , go 

back to Step 2; 

b) If   , then 
2 1 20.5( )    and

1 1  , go 

back to Step 2; 

c) Otherwise, terminate the iteration with 

1 2
ˆ 0.5( )     and obtain the true DOA of the ith 

signal as 
i

ˆ ˆ360(k ) /i L   . 

7. SIMULATION AND EXPERIMENTAL 

RESULTS 

 

In this section, both simulation and experimental results 

are presented to validate the effectiveness of the proposed 

method. The experimental array has one antenna in the 

center and seven antennas uniformly distributed over the 

circular circumference with the radius of one wavelength. 

According to the condition in Equation (21), the number of 
antennas should be greater than 15 in order to guarantee 

the accuracy of the transformation. Therefore, we assume 

a 16-antenna UCA for the simulation with one antenna in 

the center and the remaining 15 elements are placed on the 

circumference. To be consistent with the theory, the 

elevation angle is fixed to be 0° in both simulation and 

experiment. 

 
7.1 THE CASE OF UNCORRELATED SIGNALS 

 

Firstly, we validate the theory that the center antenna in 

the UCA does not affect the DOA estimation performance 

by utilizing the experimental 8-antenna UCA in the case of 

a single source. The number of snapshots is set to be 200 

and that of the sampling grid points is 90. The arrival 

angle of the source is uniformly distributed within the 

range 2π/90*[29.5, 30.5] in each run. The estimation 

variance versus different values of SNR are plotted in 

Figure 3 for the two cases with and without the center 

antenna. Each point in Figure 3 is averaged by 200 Monte 

Carlo simulations. We also plot the CRLBs of the two 
UCAs for reference. We can observe that the estimation 

variance asymptotically approaches the CRLB when the 

SNR exceeds some threshold value. This result verifies the 

effectiveness of the proposed method. It is evident that the 

CRLB of the UCA with the center antenna is almost 

identical to that of the array without the center antenna, 

which verifies the theory developed in the section 4. 

Further, the estimation variances for the two cases are 

similar. Since the center antenna only affects the 

beamspace transformation in coherent signal environment, 

we omit it when dealing with DOA estimation of coherent 
sources. 

 

 
Figure 3 Estimation variance of experimental UCA with and 

without the center antenna. 



We proceed to demonstrate that the proposed bisection 

interpolation method works well, even under a set of very 

coarse searching grid points. Simulation results of a 16-

antenna UCA and experimental results of an 8-antenna 

UCA are both shown in Figure 4. The number of searching 

grid points is changing from 8 to 180 in steps of 4. The 

SNR is set to be 0dB and the number of snapshots is 200. 

Each point of the curve in Figure 4 is obtained by 

averaging 200 Monte Carlo runs. The off-grid offset   is 

uniformly distributed within the range [-0.5, 0.5] in each 

run. We can see that when the number of searching grid 

points is greater than 12, the estimation variance becomes 

nearly constant for the 16-antenna UCA, whereas this 

threshold value increases to 16 for the 8-antenna UCA. 

However, both curves verify the fact that the proposed 
bisection interpolation method is effective under a set of 

very coarse searching grid points. 

 
Figure 4 Estimation variance versus the number of searching 

grid points in the case of single source. 

 
Figure 5 DOA estimation variance versus SNR in the case of 

two uncorrelated signals. 

Finally, we present the curve of DOA estimation variance 
versus the SNR in the case of two uncorrelated signals. We 

consider two scenarios where the first signal is incident 

from the interval [29.5,30.5]  with 2 / 90   and the 

second source is incident from [44.5,45.5]  for widely 

separated sources and [33.5,34.5]   for closely spaced 

sources. The number of time snapshots is 200 and also 200 

Monte Carlo simulations are averaged to obtain the curve 

shown in Figure 5. It is clear that the estimation variance is 

much higher in the scenario where the two sources are 

closely spaced. More importantly, it demonstrates the 

effectiveness of the proposed bisection interpolation 

method in two typical scenarios when the SNR is larger 

than the threshold value for both the 16-antenna and 8-

antenna UCAs. 

 
7.2 THE CASE OF COHERENT SIGNALS 

 

We again consider two scenarios of widely and closely 

separated sources, with the difference that the two sources 

are coherent. Figure 6 presents the normalized pseudo-

spatial spectrum of two coherent signals based on the 16-
antenna UCA utilizing the Bisection Interpolation method. 

Both signals have the same power and the SNR is set to be 

20dB. The number of snapshots is 200 and that of 

searching grid points is 90.  Each point of the spatial 

spectrum in Figure 6 is obtained by averaging 200 Monte-

Carlo simulations. It is clear that, for widely separated 

coherent sources, where true DOAs are deviated from the 

discretized sampling grid points, the proposed bisection 

interpolation method can obtain accurate estimates. The 

method fails for the closely spaced source case. Thus, 

compared to the case of uncorrelated signals, the spatial 
resolution of the proposed method is decreased when the 

sources are coherent. 

 
Figure 6 Normalized spatial spectrum of two coherent signals 

utilizing the Bisection Interpolation method. 

 
Figure 7 DOA estimation variance versus SNR in the case of 

coherent signals. 



Next, we plot the curve of DOA estimation variance 

versus the SNR using two UCAs in the case of coherent 

signals. We set the first signal to come from the interval 

[29.5,30.5]  with 2 / 90   and the second source is 

coming from [44.5,45.5]  . The number of snapshots is 

200 and 200 Monte Carlo simulations are averaged to 

obtain the curve as shown in Figure 7. Firstly, we can see 

that the 16-antenna UCA works well when the SNR 
exceeds 16dB, which is much higher than the threshold of 

0.5dB for the case of two uncorrelated signals. Secondly, 

the 8-antenna experimental UCA cannot distinguish the 

two coherent sources, because the number of antennas 

does not satisfy the condition in Equation (21). 

 

Finally, we investigate the efficiency of the proposed 

method. The average computational time of estimating two 

coherent sources is 0.0048 seconds with 90 searching grid 

points and 200 time snapshots, which is much faster than 

the SBI-SVD method, which needs average 0.2 seconds 
for a similar example in [12]. 

 

8. CONCLUSIONS 

 

A Bisection Interpolation method based on MUSIC 

pseudo-spatial spectrum coefficients was for off-grid DOA 

estimation. The proposed method can be applied to 

arbitrarily shaped antenna arrays in the case of 

uncorrelated sources. For coherent signals, a beamspace 

transformation and spatial smoothing were utilised to 

decorrelate the signals for UCAs prior to dichotomous 

search. It is verified by both the simulation and 
experimental results that the proposed method is capable 

of handling coherent signals and work well even under a 

set of very coarse searching grid points. Since GNSS 

receivers are very vulnerable to the interference and 

multipath signals, more accurate jammer localization can 

result in better cancellation, therefore enhancing the 

receiver performance. It should be noted that the 

transformation of UCAs to corresponding ULAs requires a 

certain number of antennas. This may place a challenge for 

typical GPS receivers. 
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