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Thinned Array Beampattern Synthesis by Iterative
Soft-Thresholding based Optimization Algorithms

Xiangrong Wang, Elias Aboutanios, Senior Member and Moeness G. Amin, Fellow

Abstract—In this paper we cast thinned array beampattern
synthesis as a linear inverse problem (LIP) and apply three
iterative soft-thresholding based optimization algorithms to solve
it effectively. We combine synthesis algorithms with beampattern
error reweighting and beampattern phase adjustment to achieve
accurate approximation of the desired reference pattern. The pro-
posed methods can be used to synthesize arbitrarily shaped beam-
patterns, including multibeam forming and radiation suppression
within several angular regions. These methods offer a number
of advantages in regard to array scale, beampattern specifics
and computational time compared to existing methods. Since
this paper focuses on synthesizing receiver arrays, there are no
explicit constraints applied to the excitation weights. Numerical
results demonstrate the efficiency of three proposed approaches
for designing non-uniformly spaced arrays. In particular, the fast
iterative soft-thresholding algorithm can synthesize of up to a few
hundred antennas.

Index Terms—Beampattern synthesis, Array thinning, Iterative
soft-thresholding, Alternating descent,Weighted least square.

I. INTRODUCTION

The last fifty years have seen a growing demand for large
aperture arrays exhibiting increased capabilities in terms of
flexibility and reconfigurability, yet simultaneously offering
reduced hardware cost and computational complexity [1], [2],
[3]. Thinned arrays are ideal for satisfying these requirements,
as they can maintain the same mainlobe width and peak
sidelobe level (PSL) with a significant reduction in cost,
weight and complexity. Moreover, thinned arrays are flexible
and reconfigurable due to the periodic quantization of the
element positions.

Adaptive algorithms can be broadly classified into open-
loop and closed-loop techniques [4], [5]. Closed-loop reconfig-
urable adaptive array techniques have been previously consid-
ered, e.g. [6], [7]. In this paper, we consider array reconfigura-
bility for open-loop null-steering algorithms. The high cost of
an entire front-end per antenna makes large array interference
nulling quite expensive. In order to reduce the hardware cost,
a smaller number of front-ends are installed in the receiver.
Thinning strategies then adaptively select an optimum subset
of antennas over a full array layout to connect to the following
beam forming network (BFN), whereas those belonging to the
complementary subset are connected to matched loads or re-
moved. The on-off status of the array elements is controlled by
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Fig. 1. The Diagram of the proposed reconfigurable array thinning strategy.

acting on a set of radio frequency (RF) switches [8], [9], [10],
giving an easily-reconfigurable and low-complexity antenna
architecture. Therefore, we propose an adaptive thinned array
framework for open-loop interference suppression, as shown
in Fig. 1.

There are many effective methods for synthesizing thinned
arrays existing in the literature. These include techniques
such as heuristic method [11], convex optimization [8], [12],
Bayesian Compressive Sensing [13], Matrix Pencil [14] to
list a few. These methods, however, are prohibitively com-
putationally expensive or can even fail when the scale of
the problem becomes large. Yang [15] combined the iterative
fast Fourier transform (FFT) algorithm [16], [17] and array
interpolation together to synthesize large antenna arrays, but
the convergence rate of his method is highly dependent on
the choice of parameter values and initial search points. It is
desirable to adaptively achieve arbitrary sidelobe levels and
the required deep nulls for combating interferences and noise
according to continuously changing environmental scenarios
[18]. Thus developing fast array thinning algorithms becomes
necessary for adaptive interference nulling [19].

In order to address these issues, we apply an iterative soft-
thresholding based optimization method for array thinning,
which has been shown to effectively address large-scale op-
timization problems in the areas of compressive sensing and
image processing due to its simple structure. Each iteration of
this algorithm comprises a multiplication by a matrix and its
transpose, along with a scalar shrinkage step on the obtained
result [20], [21], [22], [23]. However, when the problem scale
is small or moderate with many constraints, the iterative soft-
thresholding algorithms do not exhibit obvious advantages
[23]. Our main contributions in this paper build on our initial
work in [24] and are shown as follows: (1) We cast the
beampattern synthesis problem into the appropriate form that
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is amenable to the application of iterative soft-thresholding
algorithms. We also combine beampattern error reweighting
and beampattern phase adjustment with the synthesis algo-
rithm. (2) We propose the Amplitude Sparse Optimization
(ASO) algorithm. (3) We provide a mathematical interpretation
of the beampattern phase adjustment that offers an important
insight into complex beampattern synthesis problems. (4) We
introduce a vector form thresholding in lieu of the commonly
used scalar threshold in order to preserve the array aperture
length. (5) We analyse the sparse property and compare the
advantages and disadvantages of the three algorithms in the
area of beampattern synthesis.

A brief description of the notation used in this paper is
given next. Bold lowercase letters (such as v) denote column
vectors and bold uppercase letters (such as V) are reserved
for matrices. We use v(i) to refer to the ith element of v,
vi and vTi to the ith column and row vectors which are
usually the ith column and row of a corresponding matrix V
respectively, and v(k)i is the ith vector at the kth iteration. vT
and vH are the usual transpose and Hermitian operations. The
symbols ◦ and � are element-wise multiplication and division
respectively. ‖ · ‖0, ‖ · ‖1 and ‖ · ‖2 denote the l0, l1 and
l2 norm operations respectively, while ‖v‖M means vHMv.
λmax(M) means the maximum eigenvalue of matrix M. |v|
means taking the absolute value of the vector v element-wise.
sign(·) takes value 1 if · > 0, value −1 if · < 0 and value 0
if · = 0. diag(v) is a diagonal matrix with the vector v along
the diagonal.

The paper is organised as follows. In section II, we describe
the LIP model of thinned array beampattern synthesis and the
three iterative soft-thresholding based optimization algorithms.
In section III, we show numerical results to demonstrate the
efficiency of the proposed approach. Finally, some conclusions
are drawn in section IV.

II. BEAMPATTERN SYNTHESIS ALGORITHMS

Consider an N -antenna array in the x-y plane of a Cartesian
coordinate system and let the vector P ∈ RN×2 contain the
positions of the array elements. A plane wave with wavelength
λ is impinging on the array from a direction of arrival (DOA)
that is specified by elevation angle, θ, and azimuth angle, φ.
The steering vector of the array in the look direction (θ, φ) is

a(θ, φ) = ej
2π
λ P[ux,uy ]T , (1)

where ux = cos θ cosφ and uy = cos θ sinφ. We are interested
in synthesizing a desired beampattern for this array using a
minimum number of antennas. This is formulated in the next
subsection.

A. Problem Formulation

Let us assume that we have a desired reference pattern, fd,
over some (K × L) sampling of the elevation and azimuth
ranges, where KL > N . That is fd is available for the KL
positions θ1, θ2, ..., θK and φ1, φ2, ..., φL. Let x ∈ CN denote
the complex excitation vector. Then the array response can be
expressed as

fd = Ax, (2)

where A ∈ CKL×N and

A = [a(θ1, φ1), ..., a(θ1, φL), ..., a(θK , φ1), ..., a(θK , φL)]T .

Now we write the desired reference pattern comprised of two
parts, the amplitude and phase, as follows:

fd = fdM ◦ fdP = FdMfdP, (3)

where ◦ means Hadamard product, and FdM = diag(fdM).
The thinned array beampattern synthesis problem can be
formulated as composing a subarray with as few antennas as
possible that gives the desired beampattern fd, i.e.,

min
x

‖x‖0,
s.t. Ax = fd. (4)

The l0 norm, ‖x‖0, is defined as the number of nonzero entries
of the excitation vector x. So if xi = 0, the ith antenna is
discarded; otherwise the nonzero value is taken as the corre-
sponding complex excitation for it. The l0-norm minimization
problem is non-convex and generally very hard to solve, as its
solution usually requires an intractable combinatorial search
[25]. Therefore, we relax Eq. (4) by replacing the l0 norm
with the well-known l1 norm [25], and replace the equality
constraint by an inequality to give the new problem

min
x

‖x‖1,

s.t. ‖Ax− fd‖2 ≤ ε, (5)

for some fidelity parameter ε ≥ 0. In order to control the trade-
off among the errors in the mainlobe ripple, sidelobe level
and null depth, we introduce a weight vector w (the corre-
sponding weight matrix is the diagonal matrix W = diag(w))
to reweight the l2-norm of the error. Then, if we want to
maintain a high fidelity (i.e. smaller error) in the synthesised
beampattern in some looking directions, we make the entries
of w that correspond to these look directions larger. Eq. (5)
can be re-cast into the following unconstrained weighted least
squared form,

min
x
‖x‖1 +

β2
2
‖Ax− fd‖2W, (6)

where the matrix norm is defined as ‖Ax − fd‖2W = (Ax −
fd)HW(Ax − fd). β2 > 0 is a regularization parameter that
balances between the solution sparsity and the minimization
of the synthesized beampattern error. Generally, a smaller β2
yields a sparser minimizer x, but also a larger error between
the synthesised and desired beampatterns.

B. Transformation from the complex to the real domain

The problem presented above is complex. Therefore, we
transform it to the real domain in order to implement the
optimization algorithms directly. The transformation is defined
as follows:

Ã =

[
R(A) −I(A)
I(A) R(A)

]
, (7)

x̃ = [R(x)T , I(x)T ]T , (8)

f̃d = [R(fd)T , I(fd)T ]T , (9)
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w̃ = [wT ,wT ]T , (10)

W̃ = diag(w̃), (11)

where R(·) means the real part of · and I(·) its imaginary
part. Using Eqs. (7) - (11), the optimization problem in Eq.
(6) becomes

min
x̃

‖x̃‖2,1 +
β2
2
‖Ãx̃− f̃d‖2W̃. (12)

In this formulation the l2,1 norm is defined as

‖x̃‖2,1 = ‖x‖1

=

N∑
i=1

√
R2(x(i)) + I2(x(i))

=

N∑
i=1

‖x̃gi‖2, (13)

where
x̃gi = [x̃(i), x̃(i+N)]T , i = 1, ..., N. (14)

The weighted l2 norm, on the other hand, remains the same:

‖Ãx̃− f̃d‖2W̃ = ‖Ax− fd‖2W. (15)

C. Setting the desired beampattern phase

In most applications of antenna arrays in communications
and radar [26], we do not have a phase requirement on
the directional response of the array. Therefore, we can use
the phase of the desired beampattern, fdP, as an extra free
parameter in the optimisation in order to make the synthesized
beampattern approach the desired one. Substituting Eq. (3) into
the objective function in Eq. (6) yields,

‖x‖1 +
β2
2
‖Ax− fd‖2W = ‖x‖1 +

β2
2
‖Ax− FdMfdP‖2W. (16)

It is clear that Eq. (16) is non-convex with respect to both
variables x and fdP. Thus we utilise an alternating descent
method that iteratively shifts between the two variables x
and fdP. The l1 norm in the above equation does not depend
on fdP. Thus, we choose fdP that minimises the re-weighted
l2 norm, which reduces the error between the desired and
synthesised beampattern. Given the excitation vector x, we
take the derivative of Eq. (16) with respect to fdP and set it to
zero to give

f(u)dP = F−1
dMAx. (17)

Since the entries of the phase vector fdP have unit magnitude,
and noting that the ith entry of Ax is aTi x, we normalise each
entry of f(u)dP as follows:

fdP(i) =
f(u)dP (i)

|f(u)dP (i)|
=

aTi x
|aTi x|

. (18)

Eq. (18) reveals an interesting insight of the complex beam-
pattern synthesis problem, which should be formulated as the
following power pattern synthesis,

min
x
‖x‖1 +

β2
2
‖|Ax| − fdM‖2W. (19)

However, since the function |Ax| is non-differentiable with
respect to the complex vector variable x, it is difficult to mini-
mize Eq. (19) directly. Therefore we retain the formulation in
Eq. (16) and update the desired beampattern phase fdP in each
iteration. Now let us denote x(k) and x(k+1) as solutions of
the kth and (k+ 1)th iterations respectively. Then combining
Eqs. (16) and (18) in the (k + 1)th iteration yields,

‖x(k+1)‖1 +
β2
2
‖Ax(k+1) − FdM(Ax(k) � |Ax(k)|)‖2W. (20)

Here � denotes the element-wise division as defined in Eq.
(18). Since the distance between two successive solutions
x(k+1) and x(k) becomes small with the convergence of the
algorithm, we have that xo = x(k) ' x(k+1). Then proceeding
from Eq. (20) yields

‖xo‖1 +
β2
2
‖Axo − FdM(Axo � |Axo|)‖2W

= ‖xo‖1 +
β2
2
‖|Axo| − fdM‖2W, (21)

where Axo = |Axo| ◦ (Axo� |Axo|) with ◦ denoting element-
wise product. We can see that Eq. (21) converges to the power
pattern synthesis Eq. (19) finally.

D. Setting the beampattern weight

The challenge for the least-squared optimization is the
control of sidelobe levels. As shown in [12], the shaped
beampattern synthesis with PSL constraints is expressed as:{
−δ ≤ |Ax| − fdM ≤ δ, for mainlobe region,
|Ax| − fdM ≤ 0, for sidelobe and null region,

(22)

where δ is a fidelity factor of the beampattern error in the
mainlobe region. From Eq. (22), we can observe that the
desired beampattern amplitude fdM is actually the “mask”
in the sidelobe region, as fdM sets the upper bound on the
sidelobe level and the lower bound is −∞. However, for
the mainlobe region, fdM is not a “mask” but the desired
reference pattern that should be achieved with a tolerance
error δ. Thus the upper and lower bounds for the mainlobe
region are fdM + δ and fdM − δ respectively. Therefore, large
negative differences between the sidelobes of the synthesised
and desired beampatterns satisfy the requirements. The least-
squared optimization, however, treats both the negative and
positive errors in the same way, therefore trying to match
the desired sidelobe level rather than bettering it. In order
to circumvent this problem, we update the weight vector w
iteratively (or w̃) using a similar method to [27]. We adjust
the weight vector value element-wise in the (k+1)th iteration
as follows:

Let us denote the ith entry of the error |Ax(k)| − fdM by
e(k)(i). That is e(k)(i) = |aTi x(k)| − fdM(i). Then for the
mainlobe region,

w(k+1)(i) =

{
w(k)(i), |e(k)(i)| ≤ δ
w(k)(i) + km|e(k)(i)|, otherwise.

(23)

For the sidelobe region,

w(k+1)(i) = max{kse(k)(i), 0}, (24)
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and for the null region,

w(k+1)(i) = max{kne(k)(i), 0}, (25)

where km, ks and kn are positive gain factors corresponding to
the mainlobe, sidelobe and null respectively. Observe that for
the mainlobe region, w never decreases from its initial value.
Whereas for both the sidelobe and null, the weight w is zero
if the synthesised beampattern is lower than the desired level.

E. Group Sparse Optimization

In this section, we will apply the Group Sparse Optimization
(GSO) method to deal with the mixed l2,1-norm regularisation
in Eq. (12). The GSO approach introduced in [28], [23] is
based on a variable splitting strategy and the classic alternating
direction method (ADM). The convergence rate of the GSO
method is guaranteed by the existing ADM theory.

Now we introduce an auxiliary variable z to Eq. (12), giving

min
x̃,z

‖z‖2,1 +
β2
2
‖ Ãx̃− f̃d‖2W̃,

s.t. z = x̃. (26)

The augmented Lagrangian problem is of the form,

min
x̃,z
‖z‖2,1−λT (z− x̃)+

β1
2
‖z− x̃‖22 +

β2
2
‖Ãx̃− f̃d‖2W̃, (27)

where λ is a multiplier and β1 is a penalty parameter. Using
the ADM approach, we minimize the augmented Lagrangian
in Eq.(27) with respect to x̃ and z alternatively. Minimizing
with respect to x̃ yields,

x̃ = (β1I + β2Ã
T

W̃Ã)−1(β1z− λ + β2Ã
T

W̃f̃d). (28)

When the matrix Ã has more columns than rows, we can
reduce the computational complexity of the matrix inversion
by using the Sherman-Morrison-Woodbury formula:

(β1I +β2Ã
T

W̃Ã)−1 =
1

β1
I− β2

β1
Ã
T

(β1W̃
−1

+β2ÃÃ
T

)−1Ã.
(29)

Now minimizing over z yields the following problem

min
z
‖z‖2,1 − λT z +

β1
2
‖z− x̃‖22. (30)

By some simple manipulations, the problem in Eq. (30) is
equivalent to

min
z

N∑
i=1

[
‖zgi‖2 +

β1
2
‖zgi − x̃gi −

1

β1
λgi‖22

]
, (31)

where similar to the definition of x̃gi in Eq. (14), we have that

λgi = [λ(i),λ(i+N)]T , i = 1, ..., N, (32)

and
zgi = [z(i), z(i+N)]T , i = 1, ..., N. (33)

Eq. (31) has a closed form solution using the vector-form soft-
thresholding formula:

zgi = max{‖ri‖2 −
1

β1
, 0} ri
‖ri‖2

, (34)

where

ri = x̃gi +
1

β1
λgi . (35)

For brevity of notation, we refer to the above group-wise soft-
thresholding operator by z = Shrink(x̃+ 1

β1
λ, 1

β1
). Finally, the

multiplier λ is updated in the standard way:

λ = λ− γβ1(z− x̃), (36)

where γ is the step length. In this method, the preference
of some specific antennas or the preservation of maximum
aperture length can be realised by changing ‖z‖2,1 to ‖z‖t,2,1
in Eq. (26), where t(i) is the weight imposed on the ith

antennas and ‖z‖t,2,1 =
∑N
i=1 t(i)‖zgi‖2. Then the group-wise

soft-thresholding operator becomes z = Shrink(x̃ + 1
β1
λ, t

β1
).

Now we summarise the implementation procedure of the
GSO algorithm as follows:

• Initialisation: Set the initial desired beampattern phase
to zero, i.e. fdP = 1; Initialise z(0) = x̃(0) = 0, λ(0) =
0 , γ =

(√
5 + 1

)
/2, β1 = 10/mean(fdM) and β2 =

1/mean(fdM); Initialise km, ks, kn - for example set km =
40, ks = 4000, kn = 105;

• Outer Iteration: while the desired beampattern has not
been achieved do

1) Inner Iteration: while ‖x̃(k+1) − x̃(k)‖2 > ν do
a) Transform the problem from the complex to the

real domain according to Eqs. (7)-(11);
b) z(k+1) = Shrink(x̃(k) + 1

β1
λ(k), 1

β1
);

c) x̃(k+1) = (β1I+β2Ã
T

W̃Ã)−1(β1z(k+1)−λ(k)+

β2Ã
T

W̃f̃d);
d) λ(k+1) = λ(k) − γ1β1(z(k+1) − x̃(k+1));
e) Transform the real solution x̃(k+1) back to

a complex solution x(k+1) by x(k+1)(i) =
x̃(k+1)(i) + jx̃(k+1)(i+N). Update the desired
beampattern phase fdP using Eq. (18). Go back
to the start of the Inner Iteration.

End Inner Iteration.
2) Update the weight vector w according to Eq. (23) -

Eq. (25); Go back to Outer Iteration.
End Outer Iteration.

In the above procedure, the inner iterations are stopped
when two consective solutions are close enough to each other.
This is controlled by setting ν to the desired tolerance.

F. Fast Iterative Soft-Thresholding Algorithm

In this method, we relax the regularizer ‖x̃‖2,1 to ‖x̃‖1.
Intuitively, this relaxation decouples the real and imaginary
parts from each other and one would expect it not to be
able to synthesize very sparse arrays with respect to the
coupled case. In the extreme, the array weights can be either
purely real or purely imaginary, which leads to small ‖x̃‖0
norm (half the original value) but an entirely non-sparse array
[29]. However, as we will show mathematically, the soft-
thresholding operator prevents such problems from occurring.
We will in fact elucidate the relationship between the two.
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Let us rewrite the relaxed version of the optimisation
problem in Eq. (12) as follows,

min
x̃

‖x̃‖1 +
β2
2
‖ Ãx̃− f̃d ‖2W̃ . (37)

Using the function G(x̃) to represent the second part of Eq.
(37), the gradient of G(x̃) denoted by OG(x̃) is

OG(x̃) = Ã
H

W̃(Ãx̃− f̃d). (38)

It is well known that the minimizer of Eq. (37) can be obtained
by an iterative soft-thresholding algorithm [21], [22]. That is

x̃(k+1) = argmin
x̃
‖x̃‖1 +

τβ2
2
‖x̃− (x̃(k) − 1

τ
OG(x̃(k)))‖22,

(39)
with τ ≥ λmax(Ã

H
W̃Ã). Then the unique minimizer of Eq.

(39) is

x̃(k+1) = Shrink
(

x̃(k) − 1

τ
OG(x̃(k)),

1

τβ2

)
. (40)

Similarly to the vector-form soft-thresholding operator in Eq.
(34), the scalar soft-thresholding operator is defined as,

Shrink
(
·, 1

τβ2

)
= sign(·) max{| · | − 1

τβ2
, 0}. (41)

It is well-known that the array aperture length is a crucial
factor for the mainlobe width. In some applications, there are
stringent requirements on the array resolution and mainlobe
width. Here we propose a modification that allows us to
preserve the maximum array aperture length, namely we
replace the constant scalar β2, by a constant vector β2 ∈ RN .
Thus a larger entry of β2 implies lower threshold, and a higher
likelihood of selecting the corresponding antenna. So for
example, if we hope to preserve the full array aperture length,
we can assign large values to the entries of β2 corresponding
to the boundary antennas.

It has been shown in [22] that the convergence rate of the
traditional soft-thresholding algorithm of Eq. (40) is linear,
which is not fast enough for reconfigurable array applications.
In order to accelerate the convergence speed, a fast iterative
soft-thresholding algorithm (FISTA) that uses a linear combi-
nation of the previous two points was proposed in [21]. This
method can achieve a quadratic convergence rate. Starting with
y(1) = x̃(0) and t1 = 1, we make at the kth iteration the
following calculations

x̃(k) = Shrink
(

y(k) − 1

τ
OG(y(k)),

1

τβ2

)
, (42)

t(k+1) =
1 +

√
1 + 4(t(k))2

2
, (43)

y(k+1) = x̃(k) +

(
t(k) − 1

t(k+1)

)(
x̃(k) − x̃(k−1)

)
. (44)

It is desirable to design thinned arrays having no more
elements than necessary. For this reason, the continuation
strategy proposed in [22] is adopted here to adjust the value
of β2 for automatic determination of the required number of
antennas during the design process. Now we give the detailed
implementation procedure of the FISTA as follows:

• Initialisation: Initialise the desired beampattern phase to
zero, i.e. fdP = 1. Set x̃(0) = 0. Initialise the trade-off
parameter β2 according to the sparsity requirement, and
set the values for km, ks, kn.

• Outer Iteration: while the desired beampattern has not
been achieved do

1) Inner Iteration: while ‖x̃(k+1) − x̃(k)‖2 > ν do
a) Transform the problem from the complex to the

real domain according to Eqs. (7)-(11);
b) Obtain x̃(k) using Eqs. (42)-(44);
c) Transform the real solution x̃(k+1) back to

a complex solution x(k+1) by x(k+1)(i) =
x̃(k+1)(i) + jx̃(k+1)(i+N). Update the desired
beampattern phase fdP using Eq. (18). Go back
to the start of the Inner Iteration;

End Inner Iteration.
2) Update the weight vector w according to Eqs. (23)-

(25);
3) Adjust the value of β2 utilising the continuation

strategy outlined below; Go back to the Outer
Iteration.

End Outer Iteration.
Continuation Strategy:
Let N (i)

a , β(i)
2 and ∆β

(i)
2 denote respectively the number of

selected antennas, the value of β2 and the step size at the ith

iteration. While the desired beampattern has not been reached,
we adjust the value of β2 in every iteration as follows:

1) If N (i−1)
a < K then β(i)

2 = β
(i−1)
2 + ∆β

(i)
2 , where

a) if β(i−1)
2 > β

(i−2)
2 (that is β2 was increased in the

previous iteration), then ∆β
(i)
2 = ∆β

(i−1)
2 ;

b) if β(i−1)
2 < β

(i−2)
2 (that is β2 was decreased in the

previous iteration), then ∆β
(i)
2 = 0.5∆β

(i−1)
2 ;

2) If N (i−1)
a > K then β(i)

2 = β
(i−1)
2 −∆β

(i)
2 where

a) if β(i−1)
2 > β

(i−2)
2 (that is β2 was increased in the

previous iteration), then ∆β
(i)
2 = 0.5∆β

(i−1)
2 ;

b) if β(i−1)
2 < β

(i−2)
2 (that is β2 was decreased in the

previous iteration), then ∆β
(i)
2 = ∆β

(i−1)
2 .

Here K is the number of front-ends installed in the receiver.
In our work, we have found that setting the initial step size,
∆β2 equal to the initial value of β2, works quite well.

G. Sparsity Performance of the FISTA

As mentioned above, the decoupling of the real and imagi-
nary parts from each other might be expected to produce a less
sparse solution by suppressing only either the real or imaginary
parts to zero. In this section, we give a simple proof of the
optimality of Eq. (40) that gives insight into the comparable
sparsity that is achieved by the FISTA and GSO approaches.
Let us denote the optimum solutions obtained from the FISTA
and the GSO to be x̃oF and x̃oG respectively. We define a
mapping M : R2N → RN+ as

M(x̃oT )(i) = max{|x̃oT (i)|, |x̃oT (i+N)|}, T = F,G. (45)

That is the mapping which selects the maximum absolute
value between the real and imaginary components of the
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corresponding excitation vector element for each antenna.
Then the number of selected antennas for each algorithm can
be expressed as the l0-norm of M(x̃oT ).

Theorem: The number of selected antennae of the FISTA
is always less than or equal to that of the GSO for the same
threshold value, i.e.

‖M(x̃oF )‖0 ≤ ‖M(x̃oG)‖0. (46)

Proof: For simplicity, we rewrite the objective function of
Eq. (39) as the following form,

‖x̃‖1 +
τβ2
2
‖x̃− y‖22. (47)

It is well known that the condition for x̃oT being one of the
optimal solutions of Eq. (47) is

0 ∈ SIGN(x̃oT ) + τβ2(x̃oT − y), (48)

where 0 is the zero vector in R2N . The function SIGN(x̃oT ) is
the subgradient function of the l1-norm ‖x̃oT ‖1, where x̃oT ∈
R2N . It is defined elementwise with respect to each entry of
the vector x̃oT :

SIGN(x̃oT (i))


= 1 x̃oT (i) > 0,

∈ [−1, 1] x̃oT (i) = 0,

= −1 x̃oT (i) < 0.

(49)

Substituting Eq. (49) into Eq. (48) yields

τβ2(x̃oT (i)− y(i))


= −1 x̃oT (i) > 0,

∈ [−1, 1] x̃oT (i) = 0,

= 1 x̃oT (i) < 0.

(50)

Therefore we have that

x̃oT (i) =


y(i)− 1

τβ2
y(i) > 1

τβ2
,

0 y(i) ∈ [− 1
τβ2

, 1
τβ2

],

y(i) + 1
τβ2

y(i) < − 1
τβ2

.

(51)

which is the same as Eq. (40). We can observe that the soft-
thresholding operator works by suppressing the entries within
the region bounded by the positive and negative thresholds,
[− 1

τβ2
, 1
τβ2

], to zero and using a linear mapping for the other
areas, i.e. the magnitude of y(i) is reduced by an amount equal
to 1

τβ2
. Thus, as shown in Fig. 2, the two-dimensional nulling

region for the FISTA is a square with sides of length 2
τβ2

. The
GSO algorithm, on the other hand, compares each pair of y, i.e.√

y(i)2 + y(i+N)2 to the threshold. Consequently, its two-
dimensional nulling region is a circle with radius 1

τβ2
. Clearly,√

y(i)2 + y(i+N)2 ∈ [0, 1
τβ2

] implies |y(i)| ∈ [0, 1
τβ2

]

and |y(i + N)| ∈ [0, 1
τβ2

], whereas the converse does not
hold (put another way, the nulling region of the GSO is
circumscribed by that of the FISTA). This means that an
antenna that is nulled by the GSO will also be discarded
FISTA, but an antenna discarded by FISTA may be kept by
the GSO algorithm. Therefore, for the same threshold value
1
τβ2

, ‖M(x̃oF )‖0 ≤ ‖M(x̃oG)‖0. This shows that the FISTA
can generate a sparser solution than the GSO and prevent the
purely real or imaginary solution from happening, in contrast
to the Baysian Inference Solver of [29] that needs to utilise
the multi-task strategy to address this problem.

Zero Zone of GSO

Zero Zone of 
FISTA

ix

i Nx 

2

1

2

1




2

1




2

1



Fig. 2. The suppression to zero (nulling) regions for the FISTA and the GSO
under the same threshold. The FISTA has a square nulling region whereas
that of the GSO is a circle internally tangent to the square.

H. Amplitude Sparse Optimization

In this section, we propose another method, called Ampli-
tude Sparse Optimization (ASO), which imposes the sparsity
constraint on the amplitude of the excitation vector x. We de-
compose the complex excitation x into two parts: the amplitude
and the phase, i.e. x = Xaxp = Xpxa, where Xa = diag(xa)
and Xp = diag(xp). Now the problem is formulated as

min
xa,xp

1T xa +
β2
2
‖AXaxp − fd‖2W, (52)

where 1 is the vector with all entries 1. In this method, we
assume the desired beampattern fd is real. Firstly, we minimize
the objective function in Eq. (52) with respect to xp. Setting
the first derivative with respect to xHp to zero yields

xp = X−1
a (AHWA)−1(AHW)fd. (53)

After normalisation, we obtain

xp = [(AHWA)−1(AHW)fd]�|(AHWA)−1(AHW)fd|. (54)

Next we minimize the objective function in Eq. (52) with
respect to xa, which can be rewritten as,

1T xa +
β2
2
‖AXpxa − fd‖2W

= 1T xa +
β2
2

(AXpxa − fd)HW(AXpxa − fd)

= 1T xa +
β2
2

xTa R{XHp AHWAXp}xa

−β2xTa R{XHp AHWfd}+
β2
2

fTd Wfd. (55)

Setting the derivative with respect to xa to zero and noting that
xa ≥ 0, we find that

xa = max
{
R{XHp AHWAXp}−1[
R{XHp AHWfd} −

1

β2
1
]
, 0
}
. (56)

Now we summarise the implementation procedure of the
proposed ASO method as follows:

• Initialisation: Initialise w(i) = 1/fd(i), the trade-off
parameter β2 as well as km, ks, kn.
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• Loop: while the desired beampattern has not been
achieved do

1) Calculate the phase of the excitation vector x ac-
cording to Eq. (54);

2) Calculate the amplitude of the excitation vector x
according to Eq. (56);

3) Obtain the complex excitation vector by x = Xaxp;
4) Update the weight w according to Eqs. (23) - (25);
5) According to the sparsity of selected subarray, ad-

just β2 utilising the continuation strategy;
6) go back to Step 1) if stopping criterion is not met,

otherwise terminate.
End Loop.

In this method, the preservation of the maximum aperture
length can be realised by changing 1T xa to tT xa, where smaller
entries of t imply that the corresponding antennas have a
higher likelihood of being selected. It should be noted that the
assumption of real beampattern in the ASO algorithm results
in a slightly worse performance compared to the other two
methods, a fact that is borne by the simulation results.

Now we will summarise the merits and disadvantages of
the proposed three methods for beampattern synthesis: (1) It
is hard for the ASO algorithm to synthesize large antenna
arrays due to the matrix inversion involved in the formulas.
Moreover, since AHWA may become singular due to the
high coherency of the steering matrix A, the ASO algorithm
may not work under some scenarios. However, the ASO
algorithm converges very fast when synthesizing small antenna
arrays due to its simple iteration structure. (2) Because of
the transformation from the group sparsity promoting variable
z to x̃ in Eq. (28), the GSO algorithm focuses on the least
squared error more than the solution sparsity. Thus it is good
at controlling the mainlobe ripple but produces less sparse
arrays especially when the least squared solution does not have
an approximate sparse structure. (3) The FISTA method can
be used to synthesize large arrays with sparse solutions, but
with more computational time compared to the GSO and ASO
methods.

III. SIMULATION RESULTS

In this section, we present extensive numerical results
to validate the effectiveness and reliability of the proposed
methods. We give a number of examples based on represen-
tative reference patterns, including both focused and shaped
beampatterns, as well as arbitrary initial array layouts. We also
compare their performance to the reweighted l1-norm method
described in [8] and the iterative FFT algorithm in [15]. The
computational time, number of selected antennas, Dynamic
Range Ratio (DRR) and performance of these examples are
summarised in Table II. Since we are aiming at synthesizing
receiver array beampattern, we do not place any explicit
constraints on the excitation weights. The computer used for
simulation has an Intel-i5 CPU and 8GB RAM.

A. Focused Beampattern Synthesis

1) Example 1: In the first example, we synthesize a
nonsymmetric focused beampattern as shown in [12]. The
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Fig. 3. Focused beampattern of Example 1 with mainlobe width |u| = 0.12,
sidelobel level −20dB and −30dB. The beampattern of the GSO is similar
to the FISTA and is omitted here for clarity.

TABLE I
COMPLEX EXCITATION WEIGHTS OBTAINED BY THE FISTA METHOD FOR

EXAMPLE 1.

Element No. Position (λ) Amplitude Phase (rad)
1 0 0.3479 0.6421
2 0.34 0.4089 1.4605
3 0.80 0.4486 1.4876
4 1.27 0.5137 1.454
5 1.74 0.6071 1.4385
6 2.20 0.7003 1.4961
7 2.67 0.7817 1.4876
8 3.14 0.8717 1.4774
9 3.60 0.9415 1.5365
10 4.07 0.9814 1.5291
11 4.53 1 1.5824
12 5.00 0.9796 1.5777
13 5.47 0.9617 1.5708
14 5.93 0.9126 1.6332
15 6.40 0.8382 1.6277
16 6.86 0.7461 1.6925
17 7.33 0.6376 1.6884
18 7.80 0.5429 1.6918
19 8.26 0.4457 1.7492
20 8.73 0.35 1.729
21 9.20 0.264 1.6907
22 9.66 0.2204 1.9198

mainlobe width is |u| = 0.12 with the left and right sidelobe
level being −20dB and −30dB respectively. The synthesized
beampattern is shown in Fig. 3. The 22-antenna positions are
same as those in [12]. The synthesis speeds of both the FISTA
and the GSO algorithms are an order of 10 faster than the l1-
norm method, while the ASO is an order of 100 faster. Both
the FISTA and the GSO algorithms can maintain a −24dB left
sidelobe level with preserved array directivity. The complex
antenna excitations for the FISTA are shown in Table I.

2) Example 2: In the second example, We compare our
method with iterative FFT based algorithm [15] for large
array synthesis problems that CVX cannot handle. The array
aperture length is 180λ and [15] has 326 randomly placed
antennas with inter-element spacing greater than λ/4. Since ar-
bitrarily placed antennas are not practical in real applications,
we apply array thinning to a 721-antenna uniform linear array
with inter-element spacing λ/4. The 3dB mainlobe width and
sidelobe level given in [15] are [−0.36◦, 0.36◦] and −24.6dB
respectively. Since there is a stringent requirement on the
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Fig. 4. Focused Beampattern of Example 2: the sidelobe level is −26dB, the
mainlobe width is [−0.34, 0.34] degrees.

mainlobe width, the maximum aperture length should be used.
Therefore, instead of using the scalar trade-off parameter β2 in
Eq. (6), we employ a vector β2 with the first and last entries
set much larger than the others (with values 100 versus 0.05).
The beampattern that is obtained from the proposed FISTA
method is shown in Fig. 4. Neither the ASO nor the GSO
method work well in this example, where the least squared
solution does not have an approximate sparse structure. We can
see that the sidelobe level of the FISTA method is −26dB and
the mainlobe width [−0.34◦, 0.34◦]. Both of these are better
than the results obtained by the FFT method. The cost of this,
however, is that the computational time of our method is 16.18
seconds, which is slower than the 6 seconds reported in [15]
with an Intel i5-Core and 4GB RAM. The computational time
of the FFT method may be less than 6 seconds if run on our
computer, but it is important to point out that their method is
fast only when best values of the parameters are chosen. The
search for right parameters requires many trials which will
dramatically increase the computational load. The number of
selected antennas is 325 for the FISTA, one antenna fewer
than the arbitrarily placed antennas in [15].

B. Shaped Beampattern Synthesis

1) Example 3: In the third example, we synthesise a non-
uniform 41-antenna linear array as was done in [8]. This is a
symmetrical array with an aperture length of 20 wavelengths.
The antenna positions are shown in [30]. The mainlobe width
and ripple are 40◦ and −0.4455dB respectively and the side-
lobe level is −30dB in [8] with 31 selected antennas. The ASO
gives the worst performance with −0.5dB mainlobe ripple and
35 selected antennas. The GSO presents the lowest sidelobe
level −31.23dB and −0.4dB mainlobe ripple with 30 selected
antennas. The proposed FISTA method has the smallest main-
lobe ripple −0.3845dB with only 24 selected antennas. Thus
in this example, the FISTA produces a much sparser array
than other methods while still fulfilling the requirements. For
the computational time, the ASO method is the fastest. The
FISTA is slower than the ASO and a little faster than the
GSO, but much faster than the reweighted l1-norm method.
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Fig. 5. Flap-top beampattern of Example 3.
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Fig. 6. Antenna positions and corresponding normalized excitation amplitude
of Example 3.

The selected antenna positions and corresponding normalized
excitation amplitude are shown in Fig. 6.

2) Example 4: In order to show the proposed method
can deal with arbitrary shaped beampatterns, we synthesise
in the fourth example a flat-top pattern with a notch, again
using the same non-uniform 41-antenna linear array. The
synthesised beampattern is shown in Fig. 7. The sidelobe level
is −40dB and the notch depth is −60dB. We can see that
all four methods used select 37 antennas. Note that the GSO
gives the smallest mainlobe ripple of −0.145dB and very fast
convergence rate, while the FISTA method has the deepest
null depth of −63.32dB with −0.309dB mainlobe ripple. The
computational time of the FISTA is still half of the reweighted
l1-norm. The ASO method is again the fastest, but with
unsatisfactory null depth. The reweighted l1-norm exhibits the
highest mainlobe ripple and the slowest convergence rate.

3) Example 5: In the fifth example, we again use the same
non-uniform 41-antenna linear array. The desired beampattern
has two flat-top mainlobes around 90◦ and 125◦ respectively
with a sidelobe level of −30dB as shown in Fig. 8. We can see
that the beampattern of the ASO method has the largest main-
lobe ripple, around −1.972dB. The GSO method shows the
best performance, with only −0.597dB mainlobe ripple and 35
selected antennas. The proposed FISTA method also selects 35
antennas, but with −0.8938dB mainlobe ripple similar to the
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Fig. 7. Flap-top beampattern with notch of Example 4.
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Fig. 8. Two flap-top beams of Example 5.

reweighted l1-norm. Looking at the computational time, the
ASO is always the fastest in the above three examples, while
the reweighted l1-norm method is the slowest. Except for the
second example, the FISTA is slightly faster than the GSO
and saves approximately half the computational time compared
with the reweighted l1-norm method.

4) Example 6: Finally, a quarter wavelength spaced rectan-
gular planar array is considered. We employ the same 21×21
antenna array that was used in [8]. The required mainlobe
region is (u2x + u2y) ≤ 0.22, and the sidelobe region is
u2x + u2y ≥ 0.42. The synthesised beampattern reported in
[8] has a mainlobe ripple of −1.69dB and sidelobe level of
−25.85dB as shown in Fig. 8 of that reference. The resulting
beampattern using the proposed FISTA method is shown in
Fig. 9 and the contour plot of the synthesized beampattern is
shown in Fig. 10. Although the mainlobe ripple is slightly
higher with −1.72dB, the sidelobe level is maintained by
FISTA under −26.68dB. The selected subarray is shown
in Fig. 11 which has similar configuration to the selected
subarray in [8]. Both comprise of an inner circle and an outer
region that is a square here and circle in [8]. Although the GSO
method can also be utilised here and its mainlobe ripple is the
smallest with −0.7751dB, its sidelobe level is only −23.32dB
with 165 selected antennas. The computational time in this
example is nearly same for both the FISTA and the GSO, and

Fig. 9. Synthesized beampattern of a 21 × 21 planar array, the mainlobe
region is u2x + usy ≤ 0.04, the sidelobe level is -26.68 dB.
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Fig. 10. Contour plot of the planar array beampattern.
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Fig. 11. 76-antenna subarray selected in a 21× 21 planar array, with circle
being selected and cross being abandoned.

both are much faster than the reweighted l1-norm method.

IV. CONCLUSION

Three soft-thresholding based optimization methods are
proposed in this paper to synthesise thinned arrays with
arbitrary shaped beampatterns including multi-beam forming
and several angular regions of suppression. The proposed
methods are highly flexible, easily reconfigurable and can
handle arbitrarily shaped arrays. They exhibit significant im-
provement with respect to convex optimization in regard to
the mainlobe ripple control, sidelobe level reduction and also
the computational time. Moreover, the FISTA can be utilised
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TABLE II
THE COMPUTATIONAL TIME, SPARSITY, DRR AND PERFORMANCE OF THE FISTA, THE GSO, THE ASO AND THE REWEIGHTED l1-NORM METHOD.

Focused Beampattern
Exam Method Time Antenna Main Side Null DRR
No. Name (sec) Number (u/deg) (dB) (dB) 1
1 l1-norm 3.05 22 ±0.12 2 -30,-20 - no 1

FISTA 0.57 22 ±0.12 2 -30,-24 - 4.54
ASO 0.013 22 ±0.12 2 -30,-22.5 - 8.64
GSO 0.17 22 ±0.12 2 -30,-24 - 4.63

2 l1-norm − − − − - −
FFT 3 6.1 326 ±0.36◦ -24.6 - no 1

FISTA 16.18 325 ±0.34◦ -26 - 5.43
ASO − − − − - −
GSO − − − − - −

Shaped Beampattern
Exam Method Time Antenna Main Side Null DRR
No. Name (sec) Number (dB) (dB) (dB) 1
3 l1-norm 2.08 31 -0.4455 -30 - 61.35

FISTA 0.89 24 -0.3845 -30 - 39.9
ASO 0.023 35 -0.5 -30 - 119.05
GSO 1.32 26 -0.4 -31.23 - 81.18

4 l1-norm 2.05 37 -0.91 -40 -60 140.85
FISTA 1.1 37 -0.309 -40.8 -63.32 157.14
ASO 0.01 37 -0.3448 -42.61 -58.12 184.62
GSO 0.043 37 -0.145 -42.4 -61.67 157.14

5 l1-norm 2.28 39 -0.8965 -30 - 68.03
FISTA 1.33 35 -0.8938 -30 - 35.46
ASO 0.01 37 -1.972 -30 - 50.76
GSO 1.43 35 -0.597 -30 - 34.36

6 l1-norm 146.72 76 -1.69 -25.85 - 34.22
FISTA 119.05 76 -1.72 -26.68 - 11.45
ASO − − − − - −
GSO 112.48 165 -0.7751 -23.32 - 19.92

1 Papers [15] and [12] do not report the DRR value;
2 Paper [12] and its reference papers define the mainlobe width in terms of u = sinθ,

i.e. |u| = 0.12;
3 Simulation results for the iterative FFT algorithm are only given for example 2.

to synthesize large scaled antenna array that the CVX cannot
handle. Therefore, the proposed FISTA based array thinning
method can be utilised in applications requiring a fast method
to adaptively reconfigure large antenna arrays with specified
beampattern requirements.
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