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Abstract

One of the main challenges in through-the-wall radar imaging is the strong front wall returns, which tend to obscure

indoor stationary targets, rendering target detection and classification difficult, if not impossible. In this paper, we

propose an effective wall clutter mitigation approach for TWRI that does not require knowledge of the background

scene, nor does it rely on accurate modeling and estimation of wall parameters. The proposed approach is based on the

relative strength of the front wall returns compared to behind-wall targets. It applies an eigendecomposition method

to the data matrix constructed from the frequency-space measurements to identify the wall subspace. Orthogonal

subspace projection is performed to remove the wall electromagnetic signature from the radar signals. The paper

provides an analysis of the wall and target subspace characteristics, demonstrating that both the wall and target

subspaces can be multi-dimensional. While the wall subspace depends on the wall-type and building material, the

target subspace depends on its spatial extent and location, as well as the number of targets in the scene. Experimental

results using synthetic and real data demonstrate the effectiveness of the subspace projection method in mitigating

wall clutter while preserving the target image. It is shown that the performance of the proposed approach, in terms

of the improvement factor of the target-to-wall-clutter ratio, is better than existing approaches and is comparable to

that of background subtraction, which requires knowledge of a reference background scene.
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I. INTRODUCTION

Through-the-Wall Radar Imaging (TWRI) is an emerging technology of increasing interest. The main objective

is to sense through the wall and inside enclosed building structures by using electromagnetic (EM) waves for

determining the building layouts, discerning the intent of activities inside the building, and detecting, identifying

and tracking moving targets. This type of technology is highly desirable in search-and-rescue missions, behind-wall

target detection, and surveillance and reconnaissance in urban environments [1]–[4]. One of the main issues of

imaging stationary targets is the large clutter induced by the front wall, which is usually a highly reflective and

attenuative medium.

Most TWRI studies dealing with stationary targets [5]–[7] assume to have access of a background or reference

scene, where background subtraction is performed on the raw data prior to applying delay-and-sum beamforming

(DS) for image formation. This approach, though effective in removing wall returns, is not feasible in practice.

Different approaches have been proposed to deal with strong wall reflections without relying on the background

scene data [8]–[10], [13]. From the received signals, especially the first wave arrivals, it is possible to estimate the

front wall parameters, such as dielectric constant and thickness [10]. The estimated parameters can be used to model

the electromagnetic (EM) wall returns, which are subsequently subtracted from the total radar returns, rendering

the received signal free of the wall EM signature. This approach requires accuracy in parameter estimation and

modeling. Another method of suppressing the wall reflections is to use three antenna arrays placed parallel to the

wall at different heights, where the upper and lower arrays comprise receivers and the middle array consists of

transmitters [9]. A simple subtraction of the radar returns from the lower and upper arrays can lead to wall clutter

reduction. Due to the receiver symmetry with respect to the transmitter, the contribution of the reflection from the

wall in the difference signal is suppressed. In this scheme, two additional arrays are required and the effect of the

subtraction operation on the target reflections is unknown and cannot be controlled. In [8], the authors proposed a

spatial filtering method for wall clutter mitigation. This method relies on invariance of the wall characteristic and

is based on the assumption that the wall returns have the same characteristics with changing antenna location. This

spatial invariance can be horizontal, vertical, or along both dimensions in the wall plane. In this case, the application

of a notch filter across the array aperture can remove the zero-frequency or low spatial frequencies, which capture

constant or slowly varying wall returns. It is noted, however, that the filtering based approach is effective only for

homogeneous or near-homogeneous walls and at low operating frequencies.

In this paper, we assume that the scene is stationary, and hence change detection or Doppler processing is not

applicable for wall clutter removal. We present a new subspace method for mitigating wall clutter, or at least

significantly suppressing it, to reveal the targets behind the wall. The proposed technique first identifies the wall

clutter and target signal subspaces using singular value decomposition (SVD); then, it projects the radar signal

onto a subspace orthogonal to the wall subspace. SVD has been used previously in GPR (ground-penetrating radar)

to improve the signal-to-noise ratio (SNR) of the radar images [11], [12]; the B-scan image is decomposed into

several eigen-images and the first eigen-image is considered the target image. In [13]–[15], the authors proposed an
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SVD-based method to remove the wall clutter and to detect behind-the-wall targets from B-scan images. There, it is

assumed that the wall clutter resides in the first eigen-image, whereas the target reflections reside in second eigen-

image. More recently, Riaz and Ghafoor extended the SVD-based wall clutter mitigation method to multidimensional

target subspace, always assuming that the wall clutter is captured by the first eigen-image [16]. However, in [17] and

[18], we have shown that the wall clutter is generally characterized by a high dimensional subspace. Furthermore,

the weak wall singular components may be interleaved with the target singular components. Therefore, a more

effective technique is required to segregate the wall and target subspaces since the first singular component is

unlikely to account for all wall clutter signal.

This paper extends our previous work [17], [18] in both analysis and experimentation. It considers SVD of the data

matrix constructed from stepped-frequency matched filtered measurements obtained at different antenna positions.

In so doing, it operates on the data and not on the beamformed image. The results of the two operations are entirely

different due to the target localization through coherent combining. We show that, in near field imaging, the wall

returns can span a multi-dimensional subspace, which depends, among other factors, on the periodic structure of

the wall, the frequency response, the uniformity of the wall thickness, and the array geometry. Moreover, the target

reflections can span a subspace whose dimension depends on the spatial extent of the target, the target location,

the number of targets, and the configuration of the antenna array. Both empirical data and simulation confirm that

the wall returns generally span a multi-dimensional subspace, where the significant target singular components can

be interleaved with the wall singular components. The paper conducts a comprehensive analysis of the wall and

target eigen-subspaces. Furthermore, it presents a subspace classification method to segregate between the target

and wall subspaces. A subspace project method is then proposed for wall clutter mitigation, which works on the

frequency-space data matrix instead of the formed image.

The remainder of the paper is organized as follows. The next section presents the geometric model of TWRI and

describes delay-and-sum beamforming for image formation. Section III presents the analysis of the wall and target

eigen-structures supported by simulation results. Section IV describes the proposed subspace projection approach

for wall clutter mitigation. Experimental results using real data are given in Section V. Finally, the conclusion is

presented in Section VI.

II. THROUGH WALL RADAR IMAGING MODEL

There are several imaging formation approaches for TWRI including tomographic approaches, differential syn-

thetic aperture radar (SAR), compressed sensing, and adaptive beamformers. Here, we use delay-and-sum beam-

forming for image reconstruction, Furthermore, we apply the geometric model of TWRI as described in [19] to

estimate the signal propagation delay in the presence of a wall. For completeness, we briefly review the TWRI

geometry that will be used for the explanation of the proposed wall clutter mitigation approach. For simplicity, the

imaging scheme is firstly derived for free-space and then extended to imaging behind a homogeneous wall. The

case of heterogeneous walls will be treated in the experimental section when consider real data.
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In a free-space, the geometric model is depicted in Fig. 1(a). The ground-based SAR radar system has an N -

element array for two-dimensional (2-D) imaging. A local coordinate system is defined to represent the region of

interest with the horizontal and vertical axes denoted as z ′ and x′, respectively. The center of the scene is at (0, 0)

and θn is the viewing angle of the n-th antenna. Let Rn(0, 0) and cn denote the distances from the n-th antenna to

the center of the scene and to the center of the array aperture, respectively. The distance from the n-th antenna to

the pixel location (z ′p, x
′
p) within the region of interest is denoted as Rn(z

′
p, x

′
p) and can be approximated by [19]

Rn(z
′
p, x

′
p) ≈ Rn(0, 0) + z′p cos(θn)− x′

p sin(θn). (1)

The viewing angle θn of the n-th antenna is given by

θn = sin−1

(
cn

Rn(0, 0)

)
. (2)

Without loss of generality, let us assume a single target located at (z ′
p, x

′
p). The two-way propagation delay τn(z

′
p, x

′
p)

from the n-th antenna to the target is given by

τn(z
′
p, x

′
p) =

2

c
(Rn(0, 0) + z′ cos(θn)− x′ sin(θn)) . (3)

In the presence of a homogeneous wall, the two-way propagation delay of the radar signal from the n-th antenna

to the target can be rewritten as

τ̃n(z
′
p, x

′
p) =

2

c

(
Rn,air1(z

′
p, x

′
p) +

√
εRn,w(z

′
p, x

′
p) +Rn,air2(z

′
p, x

′
p)
)
, (4)

where ε is the relative permittivity of the wall and Rn,air1(z
′
p, x

′
p), Rn,w(z

′
p, x

′
p), and Rn,air2(z

′
p, x

′
p) denote,

respectively, the distances traveled by the signal from the n-th antenna to the target at location (z ′
p, x

′
p) before,

through, and after the wall. These distances can be estimated as follows [7]:

Rn,air1(z
′
p, x

′
p) =

zo
cos(ϕn(z′p, x

′
p))

, (5)

Rn,w(z
′
p, x

′
p) =

d

cos(φn(z′p, x
′
p))

, (6)

Rn,air2(z
′
p, x

′
p) =

zt
cos(ϕn(z′p, x

′
p))

, (7)

where d is the wall thickness, zt is the distance from the wall to the target, zo is the standoff distance from the

radar to the wall, and ϕn(z
′
p, x

′
p) and φn(z

′
p, x

′
p) are the angles of incidence and refraction from the n-th antenna

to the pixel at location (z ′
p, x

′
p), respectively, see Fig. 1(b).

Suppose that a stepped-frequency radar is used to interrogate the scene by emitting monochromatic signals with

frequencies equispaced over the desired bandwidth ωM−1 − ω0:

ωm = ω0 +mΔω, for m = 0, . . . ,M − 1, (8)

where ω0 is the lowest frequency in the desired frequency band, Δω is the frequency step size, and M is the total

number of frequencies. With DS beamforming, the complex amplitude of the pixel at location (z, x) is given by

I(z, x) =
1

NM

N−1∑
n=0

M−1∑
m=0

s(m,n) exp
(
jωmτ̃n(z, x)

)
, (9)
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(a)

Air

Wall

Air

(b)

Fig. 1. Through-the-wall radar imaging geometry: (a) in frees-space and (b) through the wall.

where s(m,n) is the radar signal of m-th frequency received at the n-th antenna and τ̃ n(z, x) denotes the focusing

delay for the pixel at location (z, x) with respect to the n-th antenna, including the propagation through the wall.

In the succeeding section, we present the analysis of the wall and target eigen-subspaces.

III. EIGEN-SUBSPACE ANALYSIS OF WALL AND TARGET

Many existing SVD-based wall clutter mitigation approaches assume that the wall reflections are characterized

by the first singular vector associated with the most dominant singular value [13]–[16]. In [17], [18], we have

shown that multiple singular vectors can span the wall subspace. In this section, we investigate the factors affecting

the wall and target eigen-subspaces. The dimension of the wall subspace is related to, among other factors, the

wall heterogeneity, the wall thickness uniformity, and the antenna array configuration. For the target subspace, its

dimension is affected by the target location, the spatial extent of the target, the number of targets behind the wall,

and the configuration of the array aperture. Results from simulations and real experiments are included to support

the analysis of the wall and target subspaces.

A. Wall Eigen-Subspace

In practical TWRI applications, we often deal with two types of walls: homogeneous and heterogeneous walls.

For homogeneous walls, the wall characteristics are spatially shift-invariant along both dimensions, i.e., height and

width. Heterogeneous walls, on the other hand, have varying material composition along either or both dimensions.

Examples of heterogeneous wall are cinderblock wall, reinforced wall, and drywall (wood with air gaps covered

with plaster). Electromagnetic simulation tool such as Finite Difference Time Domain (FDTD) has commonly been

used to model the radar returns from these wall types as it can predict accurately the fast-fading phenomenon caused

by the inhomogeneities of the wall. However, FDTD is time consuming and computation intensive in modeling an

entire large TWRI scene. In this paper, we use ray-tracing technique for simulations and consider a heterogeneous

wall as a dielectric slab with relative permittivity varying as a function of the antenna position.
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1) Heterogeneous Wall: Let us consider a lossless heterogeneous wall of thickness d to be modeled as a uniform

dielectric slab in which the dielectric properties vary as a function of position of the antenna. The reflection and

transmission behavior of an electromagnetic plane wave incident on the wall can be found using Maxwell’s equations

[20]. The total reflection coefficient Γ(km, εn) of the received signal at the n-th antenna location and m-th frequency

can be written as

Γ(km, εn) =
ρn(1 − exp(−2j

√
εnkmd))

1− ρ2n exp(−2j
√
εnkmd)

, (10)

where εn is the relative permittivity of the wall at the n-th antenna location, km = ωm/c is the m-th wave number

and ρn is the local Fresnel reflection coefficient given by

ρn =
1−√

εn

1 +
√
εn

. (11)

The radar signal backscattered from the wall received at the n-th antenna can be approximately written as

Sw(m,n) =
Gλ

8π

exp(−j2kmzo)

zo
Γ(km, εn), (12)

where zo is the standoff distance from the radar to the wall, λ is the wavelength, G is the antenna gain, and c is

the speed of light in free space [10]. For the sake of conciseness, we let

φ(km) =
Gλ

8π

exp(−j2kmzo)

zo
, for m = 0, . . . ,M − 1, (13)

and denote by bn the vector of reflection coefficients at the n-th antenna location:

bn = [Γ(k1, εn),Γ(k2, εn), . . . ,Γ(kM , εn)]
T
, for n = 0, . . . , N − 1. (14)

The signals backscattered from the wall and received by the N -element array can be arranged into a matrix B,

B ∈ CM×N , (M > N), where each column contains the monochromatic signals received at one antenna location.

Using (13) and (14), the matrix B is expressed as

B = Φ[b0, . . . ,bN−1], (15)

where Φ = diag(φ(k0), . . . , φ(kM−1)) is a diagonal matrix with its elements on the main diagonal given in (13).

The wall eigen-subspace can be obtained by applying an eigendecomposition method such as SVD and identifying

the singular vectors containing the wall returns. The rank of the matrix B, i.e., the number of linearly independent

columns in the matrix, determines the dimension of the wall subspace. It is clear from (14) and (15) that the

columns of the matrix B depend strongly on the relative permittivity of the wall, among other factors. Therefore,

if the wall relative permittivity varies across the antenna array, the columns of B will become linearly independent,

and thus the wall eigen-subspace will be spanned by multiple singular components.

To illustrate the effect of the relative permittivity on the wall subspace, we consider a heterogeneous wall as a

drywall with varying relative permittivity along the antenna array. The drywall is modeled as two parallel dielectric

slabs with an air gap. The dielectric constant of the wall is varied from 2 to 2.8 along the array aperture. Let us

consider a two-meter array aperture with 50 antennas and each antenna transmitting a stepped-frequency signal

with a bandwidth of 2 GHz centered at 2 GHz. The step size is set to 10 MHz to produce 201 monochromatic
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signals. The received signals at all antenna locations are arranged into the matrix B given in (15), which can be

expressed, using SVD, as

B = UΣV H , (16)

where H denotes Hermitian transpose, U = [u1, . . . ,uM ] and V = [v1, . . . ,vN ] are unitary matrices containing

the left and right singular vectors, respectively, and Σ is a rectangular matrix of the same size as B with singular

values σ on the diagonal arranging in decreasing order, i.e., σ 1 ≥ σ2 ≥ . . . ≥ σN ≥ 0. Figure 2 illustrates the image

of the scene and the singular values of B. Since there is no target behind the wall, the received signal consists of

wall reflections only, see Fig. 2(a). Therefore, all the nonzero singular values in Fig. 2(b) are due to wall reflections.

This shows that varying the wall relative permittivity results in a wall subspace spanned by several singular vectors.

Next, we investigate the subspace of a real (i.e., not simulate) drywall.

A ground-based stepped-frequency TWRI system was used to interrogate a drywall made of two types of materials:

plywood and gypsum wallboard. Details of the TWRI system and the drywall will be given in Section V. The

received signals are used to analyze the subspace of the drywall. Figure 3 shows the formed image and the singular

values of the data matrix. Figure 3(a) shows an image with strong wall clutter from the drywall in an empty

scene and Fig. 3(b) depicts the singular values. Results from the simulation and real experimental data confirm

that reflections backscattered from a heterogeneous wall reside in a multi-dimensional subspace spanned by several

singular vectors.
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Fig. 2. A simulated empty scene containing a heterogeneous wall: (a) image of the scene obtained using DS beamforming and (b) singular

values of the matrix B.

(a) (b)

dB

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

Index of singular value

   
   

  S
in

gu
la

r v
al

ue

Crossrange (m)

D
ow

nr
an

ge
 (m

)

 

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

-35

-30

-25

-20

-15

-10

-5

0

Fig. 3. A real empty scene containing a drywall wall: (a) image of the scene obtained using DS beamforming and (b) singular values of the

matrix B.
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2) Homogeneous Wall: For a lossless homogeneous wall, the relative permittivity is constant across the wall

plane, εn = ε. Thus, the total reflection coefficient is given by

Γ(km) =

1−
√
ε

1+
√
ε
(1− exp(−2j

√
εkmd))

1−
(

1−√
ε

1+
√
ε

)2

exp(−2j
√
εkmd)

. (17)

It follows from (13) and (17) that the columns of B are identical, i.e., Φb 0 = Φb1 = · · · = ΦbN−1, leading to a

matrix of rank one. Even the homogeneous wall is lossy, so long as the dielectric constant does not change along

the wall plane, the homogeneous wall subspace is one-dimensional— provided there is perfect alignment of the

array with the wall and the wall is of uniform thickness.

If the antenna array is not perfectly aligned with the wall, each antenna element will be at a different standoff

distance zn from the wall. Therefore, the term ϕ(km) in (13) becomes dependent also on the antenna location.

φ(km, zn) =
Gλ

8π

exp(−j2kmzn)

zn
. (18)

As the diagonal matrix Φn = diag(φ(k0, zn), . . . , φ(kM−1, zn)), n ∈ [0, N−1], is related to the antenna location,

it varies across the antenna array, i.e., Φ0 �= Φ1 �= · · · �= ΦN−1; thus, the rank of the matrix B is no longer one. This

implies that the homogeneous wall subspace is multi-dimensional. To investigate the effect of antenna misalignment

on the wall subspace, we perform several simulations with different degree of perturbations in the antenna standoff

distance. A subspace distortion factor is computed as a function of the perturbations in the standoff distance. Ideally,

a homogeneous wall subspace is spanned by the first singular vector associated with the most dominant singular

value. Perturbations in the remaining singular values, due to the antenna displacements, are considered as subspace

distortions. Mathematically, we define the subspace distortion factor δ s as the sum of the square of normalized

singular values with respect to the most dominant singular value σ1,

δs =

N∑
i=2

( σi

σ1

)2

, (19)

where σi is the i-th singular value. Suppose that for each antenna, the standoff distance is set to 1 m and is varied

by adding a small random value drawn in the range [0, 1] cm. In terms of the wavelength of the center frequency,

λ0, the perturbation range is [0, λ0/15], where λ0 = 15 cm based on a center frequency of 1.5 GHz. Figure 4(a)

illustrates the variations of the subspace distortion factor of a homogenous wall as a function of the perturbations

in the standoff distance. Figure 4(b) shows the singular values of the wall subspace for an antenna displacement

of 0.1 cm from the standoff distance. Clearly, there is more than one dominant singular value, indicating that the

homogeneous wall subspace is spanned by multiple singular vectors.
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Fig. 4. Perturbation analysis in the antenna standoff distance: (a) subspace distortion factor as a function of the variation in the standoff

distance and (b) singular values at a perturbation of 1mm in the standoff distance.

If the wall exhibits nonuniform thickness along the array, the total reflection coefficient will be a function of the

antenna location; it is written as

Γ(km, dn) =

1−
√
ε

1+
√
ε
(1− exp(−2j

√
εkmdn))

1−
(

1−
√
ε

1+
√
ε

)2

exp(−2j
√
εkmdn)

. (20)

Based on (20), the columns of the second term of (15) differ from each other, i.e., b 0 �= b1 �= · · · �= bN−1. Thus,

the columns of B become linearly independent and B is a high-rank matrix. To illustrate this, at each antenna

location, we alter the wall thickness d by adding a small random value in the range [0, 1] mm. The subspace

distortion factor is computed while varying the degree of perturbation in the wall thickness. Figure 5 illustrates the

effect of wall thickness perturbations on the wall subspace. Figure 5(a) displays the subspace distortion factor as a

function of the wall thickness perturbations. Figure 5(b) shows the singular values for a perturbation of 0.1 mm,

which corresponds to a subspace perturbation factor of 0.006.
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Fig. 5. Perturbation analysis in the wall thickness: (a) subspace distortion factor as a function of the variation in the wall thickness and (b)

singular values at a perturbation of 0.1mm.
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To summarize, the wall returns are not necessarily characterized by a single singular vector, but can be spanned

by multiple singular vectors. There are several factors that affect the dimension of the wall subspace, namely, the

wall electromagnetic characteristics, the wall thickness uniformity, and the configuration of the antenna array. Next,

we also analyze the target subspace for point-like and extended targets.

B. Target Eigen-Subspace

In this section, we analyze the eigen-subspace of point-like and extended targets. Firstly, we consider a point-

like target with frequency-dependent reflection coefficient σ(ωm) located at the location (z ′p, x
′
p) behind a lossless

homogeneous wall. The transceiver transmits a perpendicularly polarized wave that is propagated at an oblique

angle through the wall. The target signal received at the n-th antenna can be written as [21]:

St(m,n) =
Gλ

4π

T 4(n)

(Rn,air1 +Rn,w +Rn,air2)2
cos2(φn)

cos2(ϕn)
σ(ωm)ε exp(−jωmτ̃n(z

′
p, x

′
p)), (21)

where T (n) is the transmission coefficient received at the n-th antenna given by

T (n) =
2 cos(ϕn)

cos(ϕn) +
√
ε cos(φn)

. (22)

An extended target is simulated by assuming that its reflection coefficient is frequency independent and constant

over its spatial 2-D extent, σ(ωm) = σ. Let dz and dx denote the width and length of the extended target,

respectively. The signal reflected by an extended target located at (z ′
p, x

′
p) can be written as [19]:

St(m,n) = σϑn

∫ dz/2

−dz/2

exp

(
2ωm

c
cos(θn)(z

′
p + z)

)
dz ·

∫ dx/2

−dx/2

exp

(
−2ωm

c
sin(θn)(x

′
p + x)

)
dx

= 4σϑndxdz · sinc
(
ωm cos(θn)dz

c

)
sinc

(
ωm sin(θn)dx

c

)
exp

(
−j

2ωm

c
(z′p cos(θn)− x′

p sin(θn))

)
,

(23)

where sinc(x) is the Sinc function and ϑn given by

ϑn =
Gλ

4π

T 4(n)

(Rn,air1 +Rn,w +Rn,air2)2
cos2(φn)

cos2(ϕn)
. (24)

The target signals received at each antenna location are arranged into a column of the matrix B:

B = [s0, . . . , sN−1], (25)

where sn = [St(0, n), . . . , St(M − 1, n)]T , n ∈ [0, N − 1]. In (21) and (23), the incident and refracted

angles, ϕ and φ, as well as the two-way propagation delay from the antenna to the target, τ̃ , are dependent on

the antenna location. In near field imaging, these quantities are expected to vary significantly from one antenna

location to another, leading to linearly independent columns of the matrix B given in (25). Therefore, the rank of B

is dependent on the target location. For example, a target placed at the center of the array will yield a reduced rank

of B since the signal propagation delays from the antennas in the left half of the array are the same as those in the

right half of the array, i.e., τ̃1 = τ̃N , τ̃2 = τ̃N−1, etc. In our recent study [17], we have shown that reflections from

a point-like target span a multi-dimensional subspace, due to several factors that can influence the target reflections

and the signal propagation delays, e.g., the target location and the configuration of the antenna array. Here, we
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additionally analyze the target subspace of an extended target, and a combination of point-like and extended targets.

It is evident from (21) that the signal backscattered from a point-like target is a function of the two-way propagation

delay, which, in turn, is related to the distance from the antenna to the target. For an extended target, the received

signal is a function of not only the two-way propagation delay, but also the spatial extent of the target. A slight

change in these parameters, namely the two-way propagation delay and the spatial extent of the target causes the

columns of B to be different from each other. For illustration, we consider a point-like and an extended target

placed at locations (−1.38, 1.16) m and (1.05, 2.13) m in free space, respectively. Figure 6 presents images of

different target types, Figs. 6(a)–(c), and the singular values of B associated with these targets, Figs. 6(d)–(f). On

the other hand, having two targets and placing them far apart from each other increases the number of non-zero

singular values, see Fig. 6(f).
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Fig. 6. Formed images and singular values of matrix B for different target types in a free-space scene: (a) image of a point-like target, (b)

singular values of a point-like target, (c) image of a extended target, (d) singular values of an extended target, (e) image of combined point-like

and extended targets, and (f) singular values of combined point-like and extended targets.

Next, we investigate the subspace dimension of an extended target under two imaging scenarios: short-range

and long-range, where the target is placed close to or far from the radar system. In the former, the viewing angle

θn of the antenna varies considerably across the array aperture, causing the distance traveled by the signal from

each antenna to the target to be different. Based on the extended target signal model given in (23), it is clear

that the target signal is related to θn, and therefore, the number of linearly independent columns in the matrix B

increases when the viewing angle varies markedly across the array aperture. On the other hand, for a long-range
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target, the changes in the viewing angle across the antenna array are much smaller, resulting in almost the same

distance between each antenna element and the target; therefore, the target subspace is narrower compared to that

of a short-range target. To illustrate this, an extended target is placed at two different locations: a short range at

(−1, 1) m and a long-range at (−1, 5.5) m. The formed images and the singular values for both cases are shown in

Fig. 7. Figures 7(a) and (b) depict, respectively, the formed image and the singular values of a near target, whereas

Figs. 7(c) and (d) show the image and singular values of a distant target. The difference in the number of nonzero

singular values between Figs. 7(b) and (d) confirms that the subspace of a distant target is narrower than that of a

near target.
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Fig. 7. Formed image and singular values of two different imaging ranges: (a) image of a near target, (b) singular values of a near target, (c)

image of a distant target, and (d) singular values of a distant target. For visualization, only the first 20 singular values are shown.

In summary, the target returns do not span a one-dimensional subspace as reported in some existing literatures

[13]–[15], but a multi-dimensional subspace, dependent on several factors. These factors include, among others,

the target location, the target type, the number of targets in the scene, and the antenna array configuration. In the

following subsection, we investigate the eigen-structure of the combined wall and target returns.

C. Wall-Target Eigen-Subspace

In the above analysis, we have shown that the wall subspace can be multi-dimensional even when the wall is

homogeneous. Furthermore, when considering the data in frequency and space, the target reflections span a multi-

dimensional subspace. Here, we investigate the eigen-structure of combined wall and target returns. By including

reflections from both the wall and the target, the received signal can be expressed as a superposition of the wall

and target returns:

S(m,n) = Sw(m,n) + St(m,n), (26)

where Sw(m,n) is the wall returns and St(m,n) is the target returns. Since the wall reflections are relatively

stronger than the behind-the-wall target reflections, it is assumed that the wall returns mostly lie in a subspace

spanned by the singular vectors associated with the dominant singular values. Therefore, by discarding the singular

vectors associated with the dominant singular values, the wall returns can be removed from the radar signals. For
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demonstration, we simulate a scene with two extended targets placed behind a non-uniform lossless homogeneous

wall at coordinates (−0.66, 0.77) and (0.40, 0.98) m. A 0.15 m thick wall with a dielectric constant of 5.5 is placed

at a standoff distance of 1 m. By using SVD, the matrix B, which comprises the frequency-space measurements,

is decomposed into a set of N singular components:

B =

N∑
i=1

σiuiv
H
i . (27)

Figure 8 illustrates the formed images of the two targets behind the wall. Figure 8(a) shows the image formed by

using all N singular components in (27). Clearly, the wall reflections and ringing effects dominate the image and

obscure the targets. Figure 8(b) presents the image after removing the first leading singular component, and Fig. 8(c)

shows the image without the first two dominant singular components. Removing just the first dominant singular

component eliminates most of the wall reflections and the ringing effects. The target image is further enhanced by

removing the second singular component, Fig. 8(c).
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Fig. 8. Image of a scene with two extended targets placed behind a homogeneous wall: (a) image of targets and wall, (b) image without the

first dominant singular component, and (c) image without the first two leading singular components.

Because of misalignment of antenna elements and non-uniformity of wall thickness, the homogeneous wall returns

reside in a high dimensional subspace, spanned by more than two singular vectors. Some of the wall singular vectors

are associated with the non-dominant singular values, which may be interleaved among the target singular values.

To identify the singular vectors characterizing the wall returns, we propose a simple procedure. From (27), the

matrix B consists of a weighted sum of N singular components, where each singular component is given by the

outer product of a pair of left and right singular vectors multiplied by its corresponding singular value. Let B i

denote the i-th singular component, given by

Bi = σiuiv
H
i = [gi,1, · · · , gi,N ], (28)

where gi,j denotes the j-th column vector of the matrix B i. The range profile associated with the i-th singular

component can be computed as

ri =

N∑
k=1

IFFT(gi,k), (29)

where IFFT denotes the inverse fast Fourier transform. The main peak in a range profile is used to indicate whether

the singular component contains the wall or target returns, depending on the peak location with respect to the
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antenna standoff distance. Figure 9 shows the range profiles of the first eight singular components. The range

profiles depicted in Figs. 9(a)–(c) show the first three singular components consist of the wall returns since the

main peaks of their associated range profiles are located at around the standoff distance of the antenna array, which

is 1 m. The range profile of the fourth singular component has peaks around 2 m, where the target are located, see

Fig. 9(d). The small difference between the location of the peak in the range profile and the actual target range is due

to the wall attenuation. Figures 9(e) and (f) present the range profiles of the fifth and the sixth singular components,

indicating that they also contain the target returns. In Fig. 10(g), the main peak is around the wall location, meaning

that the seventh singular component consists of residual wall returns. The last range profile in Fig. 10(h) clearly

belongs to target. Figure 10 present images obtained from a subset of selected singular components. The image in

Fig. 10(a) is reconstructed from the seventh singular component and that depicted in Fig. 10(b) is obtained from

the combination of the 4, 5, 6, and 8 singular components. The simulation results show that apart from the first few

dominant singular vectors, there are other non-dominant singular vectors that capture the wall returns. Though the

non-dominant wall singular vectors are interleaved among the target singular vectors, their associated range profiles

look similar, i.e., their main peaks are located around the wall position. In the next section, we propose a technique

to estimate the wall subspace, and introduce a subspace projection method for mitigating the wall returns from the

radar signals.
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Fig. 9. The range profiles of the first 8 dominant singular components (ECs): (a) range profile of the EC-1, (b) range profile of the EC-2, (c)

range profile of the EC-3, (d) range profile of the EC-4, (e) range profile of the EC-5 (f) range profile of the EC-6, (g) range profile of the

EC-7, and (h) range profile of the EC-8.
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Fig. 10. Images formed using a subset of singular components: (a) image obtained from the 7th singular component and (b) image obtained

from singular components 4, 5, 6, and 8.

IV. WALL CLUTTER MITIGATION METHOD

The proposed wall clutter mitigation method is based on the assumption that the wall returns are relatively

stronger than the target returns and they reside in separate subspaces. Therefore, SVD is used to decompose the

matrix B:

B =
∑
i∈W

σiuiv
H
i +

∑
i∈T

σiuiv
H
i +

∑
i∈N

σiuiv
H
i , (30)

where W , T , and N are the sets of indices for wall, target, and noise singular vectors, respectively. However, not

all wall singular components will be associated with the dominant singular values. While it is expected that the

strong wall reflections will be represented by the first few singular vectors associated with the dominant singular

values, some weak components of the wall returns may reside in a subspace spanned by other singular vectors

associated with non-dominant singular values. Therefore, we propose a method for estimating the wall subspace

followed by a subspace projection method for mitigating the wall returns from the radar signals.

A. Wall Subspace Estimation

The proposed estimation method for wall subspace is based on the assumption that the strong reflections from the

front and back of the wall are captured by the first few dominant singular components. In [22], similar assumption

was made to estimate the time delay of UWB radar signals backscattered from a wall. Herein, we first estimate

the wall range, i.e., the distance from the antenna to the back of the wall from the range profiles of the dominant

singular components. Then, we classify the remaining singular components into the wall and target subspace, based

on their range profiles. The indices of the singular vectors forming the wall singular components are stored in the

index set W . Let η denote the wall range. If the standoff distance z o and the wall thickness d are known, the wall

range can be approximated as

η ≈ (d
√
ε+ zo). (31)
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In practice, the exact values of the wall parameters are not readily available. Therefore, we determine the wall

range from the range profiles associated with the dominant singular vectors. To determine the leading singular

vectors associated with the wall, we apply a threshold technique to segment the singular value spectrum into two

classes, one of which is the dominant wall singular values. Suppose the range of singular values is [0, σmax]. Given

a threshold τ ∈ [0, σmax], the singular value spectrum can be partitioned into two classes: Cw = {σi ≤ τ} and

Ct = {σi > τ}. Here, we employ Otsu’s method [23], which computes the optimum threshold τ ∗ by maximizing

the between-class variance:

Σ0 = Pw(μw − μ0)
2 + Pt(μt − μ0)

2, (32)

where Pw and Pt are the class probabilities, μw and μt are the class means, and μ0 is the total mean of the

classes. For more details on how to determine the optimum threshold of Otsu’s method, the reader is referred to

Appendix A.

After determining the optimum threshold, τ ∗, Eq. (29) is used to compute the range profiles associated with the

singular values in the class Cw. Let ρi denote the range of the main peak in the range profile associated with the

i-th singular value in the class Cw. The wall range η can be estimated as

η� = max
i

(ρi). (33)

From the estimated wall range, we can now identify the remaining wall singular components and determine the

singular vectors spanning the wall subspace. We classify a singular component belonging to the wall class when

the main peak ρ of its associated range profile is within the wall range η �. This classification is performed on all

singular components of B and the indices of the wall singular vectors are stored in the index set W .

B. Wall Clutter Mitigation

After identifying the wall subspace, the wall returns can be removed by projecting the radar signals onto the

subspace orthogonal to the wall subspace. Similarly, the noise can be removed by projecting the radar signals onto

the subspace orthogonal to the noise subspace. First, the radar signal is preprocessed to remove the common signal

across the array aperture. Let B̃ be the matrix obtained after subtracting the mean vector form each column of B,

B̃ = B −meT , (34)

where m is the mean of the columns of B and eT = [1, . . . , 1], e ∈ RN , is a row vector of 1. Using SVD, the

matrix B̃ can be expressed as

B̃ = ŨΣ̃Ṽ H . (35)

where Ũ = [ũ1, . . . , ũM ], Ṽ = [ṽ1, . . . , ṽN ], and Σ̃i,i = σ̃i. By summing the outer product of the pair of singular

vectors in the index set W , the wall subspace is given by

Pw =
∑
i∈W

ũiṽ
H
i . (36)
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The subspace orthogonal to the wall subspace is computed as

P⊥
w = I −PwP

H
w , (37)

where I denotes the identity matrix. To mitigate the wall returns, the matrix B̃ is projected onto the orthogonal

subspace:

B̂ = P⊥
wB̃. (38)

After removing the wall returns, the modified B̂ matrix is further processed to remove the noise subspace. The

modified B̂ is projected onto the subspace orthogonal to the noise subspace,

P⊥
n = I −PnP

H
n , (39)

where Pn =
∑

i∈N ûiv̂
H
i is the noise subspace. The pair of left and right singular vectors, i.e., û and v̂ are obtained

from the SVD of B̂. Since the noise is characterized by singular vectors associated with small singular values, there

are several methods to determine the noise subspace. Akaike Information Criterion (AIC) and Minimum Description

Length (MDL) methods are two commonly used methods to estimate the noise subspace [16]. Herein, we employ

one of the information theoretic criteria methods to determine the noise subspace. The AIC is given by

AIC(i) = N log

⎛⎜⎝
(
(1/(M − i))

∑M
m=i+1 σm

)M−i

∏M
m=i+1 σm

⎞⎟⎠+ i(2M − i), (40)

where σi is the i-th singular value of B̂. Similarly, the MDL is given by

MDL(i) = N log

⎛⎜⎝
(
(1/(M − i))

∑M
m=i+1 σm

)M−i

∏M
m=i+1 σm

⎞⎟⎠+
1

2
i(2M − i) log(N). (41)

The number of singular values belonging to the noise class is determined by minimizing the AIC or MDL. Once the

wall and noise subspaces are computed, the new matrix, B �, free from the wall and noise contributions is written

as

B� = P⊥
n (P

⊥
w B̃) = PtB̃, (42)

where Pt = P⊥
n P

⊥
w is the target subspace projection operator. Finally, to form an image of the scene, DS

beamforming is applied to the new matrix B �.

The proposed method is initially tested on simulated data based on the same radar setting as the previous

simulations. Here, two different types of walls are investigated: lossless and lossy homogeneous walls. The relative

wall dielectric parameters are permittivity ε = 5.5−j0.18, and conductivity σ = 5.01E-2 S/m. The calculation of the

reflection and transmission coefficients of a lossy homogeneous wall are given in the Appendix B. To measure the

performance of the wall clutter mitigation method, the improvement factor (IF) in terms of the target-to-wall-clutter

ratio (TWCR) is evaluated

IF = 10 log

(
TWCRo

TWCRi

)
, (43)
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where TWCRo and TWCRi are, respectively, the target-to-wall-clutter ratios of the formed image with and without

the use of the wall mitigation method. The TWCR of a radar image is calculated as

TWCR =

1
Nt

∑
(z,x)∈At

|I(z, x)|
1
Nc

∑
(z,x)∈Ac

|I(z, x)|
, (44)

where At is the target region, Ac is the wall clutter region, Nc and Nt are, respectively, the number of pixels in the

wall clutter and target regions. To measure the quality of the target image, the target power ratio (TPR) is computed

and is given by

TPR =
Pj

P0
, (45)

where P0 = 1
Nt

∑
(z,x)∈At

|I0(z, x)|, Pj =
1
Nt

∑
(z,x)∈At

|Ij(z, x)|, and I0(z, x) and Ij(z, x) denote, respectively,

the formed image after background substraction and the formed image after removing the first j dominant singular

components from the matrix B. Figure 11 shows images formed by DS beamforming before and after wall clutter

mitigation. Figures 11(a) and (b) illustrate the images before and after the use of the proposed method for a scene

with a lossless homogenous wall, whereas Figs. 11(c) and (d) depict images for a scene with a lossy homogeneous

wall. In both scenes, two targets are placed behind the wall. The simulation results clearly show that the proposed

method can effectively suppress the wall clutter for both wall types. Table I lists the improve factor (IF) and the

target power ratio (TPR) of the formed images after wall clutter mitigation. The proposed subspace projection

method in conjunction with the wall subspace estimation technique achieves an IF of 12.18 dB when the wall is

lossless and 11.86 dB when the wall is lossy. The wall subspace estimated by the proposed method is spanned by

singular vectors with indices of 1, 2, 3, and 7. In terms of TPR, the proposed method achieves a TPR of -0.06 dB

for lossless wall and -0.12 dB for lossy wall. When the dominant singular components are removed without the

use of the proposed wall subspace estimation method, the IFs of the formed images are presented as follows. After

the removal of the dominant singular component from the matrix B, the IF of the formed image is 4.55 dB for

lossless wall and 4.45 dB for lossy wall. Discarding the first two leading singular components improves the IF of

the image to 11.49 dB for lossless and 10.70 dB for lossy walls. By removing the first three singular components,

we achieve an IF of 12.16 dB for lossless and 11.81 dB for lossy wall. However, when we remove the first four

singular components from the matrix B, the IF of the formed images decreases slightly for both lossless (11.17

dB) and lossy (11.33 dB) walls. The TPR of the formed target image also decreases markedly when the first four

singular components are discarded. Considering the wall subspace spanned by the first four singular vectors gives

a TPR value of −2.26 dB for lossless wall and −2.36 dB for lossy wall, whereas the TPR of the proposed method

is −0.06 dB for lossless and −0.12 dB for lossy walls.
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Fig. 11. Images before and after wall clutter mitigation: (a) and (b) images obtained from a lossless homogeneous wall and (c) and (d) images

obtained from a lossy homogeneous wall. The dash rectangle in (a) and the solid rectangles in (b) represent the wall clutter and target regions

used for computing the TCR of the image.

TABLE I

IMPROVEMENT FACTOR OF THE IMAGE PRODUCED BY THE PROPOSED SUBSPACE PROJECTION METHOD AND THE BASIC SVD-BASED

METHOD WITH THE REMOVAL OF DOMINANT SINGULAR COMPONENTS, TESTED ON SYNTHETIC DATA.

Improvement factor (IF) Target power ratio (TPR)

Lossless wall Lossy wall Lossless wall Lossy wall

Proposed wall clutter mitigation method 12.18 dB 11.86 dB -0.06 dB -0.12 dB

Removal of first singular component 4.55 dB 4.45 dB 0.08 dB 0.12 dB

Removal of first two singular components 11.49 dB 10.70 dB 0.003 dB 0.02 dB

Removal of first three singular components 12.16 dB 11.81 dB -0.04 dB -0.03 dB

Removal of first four singular components 11.17 dB 11.33 dB -2.26 dB -2.36 dB

In a noiseless TWRI scene, we have shown that the proposed wall clutter mitigation method can mitigate the

wall returns from the radar signals. The proposed method is further tested under different noise levels, where the

simulated radar signals are corrupted by additive white Gaussian noise. The IF of the image formed by the proposed

method is computed while varying the signal-to-noise ratio (SNR) of the input signal. Figure 12 shows the IF of

the formed image as a function of the SNR of the input signal. The IF of the formed image remains unchange until

the SNR of the input signal decreases to 45 dB. Figure 13 shows examples of radar images obtained from input

signal with SNR of 30 dB and 60 dB. Figures 13(a) and (b) illustrates images after mitigating the wall returns from
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a lossless homogeneous wall based on an input signal of 30 dB and 60 dB, whereas images depicted in Figs. 13(c)

and (d) are from a lossy homogenous wall, respectively. In the next section, the subspace projection method is

evaluated on real radar data collected from a ground-based stepped-frequency TWRI system.
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Fig. 12. Improvement factor of the image as a function of the SNR of the input radar signal.
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Fig. 13. Examples of images obtained from input signal of different SNRs: (a) and (b) images at SNR of 30 dB and 60 dB for a scene with

a lossless wall, and (c) and (d) images at SNR of 30 dB and 60 dB for a scene with a lossy wall. In the scene, two targets are placed behind

the wall.
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V. EXPERIMENTAL RESULTS

Real data was collected in the Radar Imaging Lab of the Center for Advanced Communications at Villanova

University, PA, USA. An Agilent network analyzer, Model ENA 5017B, was used to implement a stepped-frequency

waveform for synthesizing a one-dimensional (1-D) and a two-dimensional (2-D) array apertures. A 7.62 by 7.62

meter room with pyramidal foam and laminated polyurethane foam sheet absorbers on the side and back walls

was constructed for imaging. For more details about the room setting and the specification of the radar system, the

reader is referred to [5].
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Trihedral 3" 
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Fig. 14. Image of the second scene: (a) image depicting the nine targets and (b) the ground truth.

A. Experimental Setup

For evaluation purposes, a 1-D and 2-D synthesized array apertures were used for 2-D and 3-D TWRI, respectively.

Furthermore, two different TWRI scenarios were designed using two types of walls: a 0.14 m thick solid concrete

wall and a 0.127 m thick hollow drywall. The drywall was built from a wooden frame, which is fastened with 0.019

m plywood on one side and 0.016 m gypsum wallboard on the other side. In the first scenerio, the radar was placed

at a standoff distance of 1.16 m from the concrete wall and a dihedral was positioned at 2.1 m behind the wall. An

array aperture of length 1.2446 m was synthesized with 0.0187 m inter-element spacing, and a stepped-frequency

signal covering 0.7 to 3.1 GHz frequency band was used to interrogate the scene. The second scenario involves

a scene populated with nine targets of different RCS placed behind the drywall. Figure 14 shows the image of

the second scene and its ground-truth. The nine targets in the second scene were three dihedrals, four trihedrals, a

sphere and a tophat. Each target was located at a certain height and angular displacement, as shown in Fig. 14(a).
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Its location within the scene is given in the ground-truth image depicted in Fig. 14(b). The scene was interrogated

by using a 69-element array of length 1.534 m and a stepped-frequency signal with a bandwidth of 1 GHz centered

at 2.5 GHz. Table II lists the characteristics of the reflectors used in the two TWRI scenes.

TABLE II

REFLECTORS USED IN THE TWRI EXPERIMENTS.

7.62cm Seam Triangular Plate Trihedrals, RCS = -20.6dBsm

15.2cm Seam Triangular Plate Trihedrals, RCS = -8.5dBsm

30.5cm Square plate Dihedrals, RCS = 11.3dBsm

30.5cm Diameter sphere, RCS = -11.4dBsm

Tophat: 7.62cm cylinder width, 50.8cm cylinder height, 71.1cm circular ground plane diameter

B. Two-Dimensional Through the Wall Radar Imaging

A line array aperture was used to interrogate the above described scenes for 2-D imaging. Before DS beamforming,

four different types of wall clutter mitigation methods were used, namely background subtraction, time gating, spatial

filtering, and SVD-based methods [13]–[16]. Their formed images are compared with that of the proposed subspace

projection method. The methods presented in [13]–[16] are based on the SVD of the beamformed image instead

of the matrix B containing the frequency-space measurements. In [13]–[15], the wall clutter was represented by

the first eigen-image and the target by the second eigen-image. Riaz and Ghafoor, on the other hand, assumed that

the target returns span a multi-dimensional subspace and used information theoretic criteria methods such as AIC

or MDL to determine the target subspace [16]. Both SVD approaches are compared with the proposed subspace

projection method. In time gating, the stepped-frequency signal is transformed into a range profile. Based on the

standoff distance and the wall parameters, the radar returns corresponding to the wall region are set to zero and the

range profile is converted back to the frequency domain. For background subtraction, radar signals from an empty

scene devoid of targets are subtracted from the radar signals received from the scene populated with target(s), before

DS beamforming is applied to reconstruct the target image. Background subtraction represents an ideal scenario,

where access to the background scene is available; this is not possible in real scenarios. In spatial filtering, an IIR

notch filter is used to remove zero frequency component. The frequency response of the notch filter is defined as

H(jω) =
1− exp(−jω)

1− a exp(−jω)
, (46)

where ω is the angular frequency and a(< 1) is positive constant denoting the width of the filter notch. In our

experiments, we define a at the point of achieving maximum IF. The first scene, which has a dihedral behind the

concrete wall, was illuminated by the synthesized array aperture, producing a matrix B of size 801× 57, i.e., 801

frequencies and 57 antennas. All five wall clutter mitigation approaches including the proposed subspace projection

method were used to suppress the wall returns. Figure 15 illustrates images before and after wall clutter mitigation,

using the different wall mitigation techniques.
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Fig. 15. Image of the first scene obtained using different wall clutter mitigation method: (a) no wall clutter mitigation, (b) background

subtraction, (c) time gating, (d) spatial filtering, (e) SVD-based method and (f) proposed subspace projection method. The solid and dash

rectangular regions in (a) represent the target and clutter areas for computing the TCR of the image.

With the availability of the background measurements, background subtraction produces a clear image as depicted

in Fig. 15(b) in which most of the wall and background clutter is removed. With time gating, the formed image

contains strong wall clutter, Fig. 15(c). Even though the target is far from the wall, time gating does not suppress

the wall clutter because the wall reverberations and target reflections highly overlap in the time domain. The image

in Fig. 15(d) shows spatial filtering is effective in removing the wall reflections without significantly compromising

the target image. The existing SVD-based method in conjunction with AIC [16] produces an image where most of

the wall clutter is suppressed but the shape of the target is distorted compared to that obtained from background

subtraction, see Fig. 15(e). Figure 15(f) illustrates the image produced by the proposed subspace projection method,

which is free of wall clutter and is as clear as that of the spatial filtering method. Figure 16 depicts the wall and

target singular values identified by the proposed wall subspace estimation method. The singular values depicted

in Fig. 16(a) belong to the wall and those shown in Fig. 16(b) belong to the target. From Fig. 16(a), we can

see that the wall subspace consists of the first two dominant singular components and components 5, 23, 24 and

25. Furthermore, the non-dominant wall components are interleaved with the target components. Table III presents

the improvement factor (IF) of the wall clutter mitigation methods for the images shown in Fig. 15. Background

subtraction achieves the highest IF of 10.44 dB, followed by the proposed subspace projection method with an IF

of 7.08 dB. Spatial filtering gives an IF of 3.72 dB. Among the SVD-based methods, the method based on a target
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subspace spanned by the second singular vector achieves higher IF than those using AIC and MDL to determine

the target subspace. Time gating achieves the worst performance with an IF of 1.45 dB.
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Fig. 16. Singular value spectrum of (a) the wall and (b) the target subspaces as identified by proposed wall subspace estimation method for

scene with a dihedral behind the concrete wall.

TABLE III

IMPROVEMENT FACTOR OF THE WALL MITIGATION METHODS TESTED ON RADAR DATA COLLECTED FROM THE SCENE WITH THE

DIHEDRAL BEHIND THE CONCRETE WALL.

Wall Clutter Mitigation method Improvement factor (IF)

Proposed subspace projection method 7.08dB

Background subtraction 10.44dB

Time gating 1.45dB

Spatial filtering 3.72dB

SVD-based method [15] with target subspace spanned by second singular vector only 4.27dB

SVD-based method [16] with AIC 2.75dB

SVD-based method [16] with MDL 2.63dB

For the second scene comprising nine targets of different RCS behind a drywall, Fig. 17 depicts the formed

images before and after wall clutter mitigation. Without any preprocessing, Fig. 17(a) depicts an image with strong

wall clutter. With the availability of an empty scene, background subtraction produces a clear radar image, as

shown in Fig. 17(b). Time gating and spatial filtering fail to remove the wall contributions from the radar data,

see Figs. 17(c) and (d). The existing SVD-based methods also cannot suppress the wall clutter in the formed radar

image. Figure 17(e) shows the output image from the SVD-based method with AIC; only the targets with large RCS

are slightly visible. Figure 17(f) shows the image obtained using the proposed wall clutter mitigation method. In

this image, the wall clutter is significantly reduced and the targets are as clear as those of background subtraction.

Table IV displays the IF of the images presented in Fig. 17. The proposed method achieves the highest IF of 13.03

dB, followed by background subtraction with an IF of 12.73 dB. Surprisingly, spatial filtering and the SVD method

as described in [15] give the lowest IFs of 5.47 dB and 5.37 dB, respectively. These results demonstrate that the
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proposed method can be as effective as background subtraction in removing clutter due to both homogeneous and

heterogeneous walls. In the next section, we apply the proposed method to wall clutter mitigation in 3-D TWRI.
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Fig. 17. Image of the populated scene obtained from the following wall clutter mitigation method: (a) no wall clutter mitigation, (b) background

subtraction, (c) time gating, (d) spatial filtering, (e) SVD-method and (f) proposed subspace projection method. The solid rectangular region in

(a) denote the clutter area for computing IF.

TABLE IV

IMPROVEMENT FACTOR OF WALL MITIGATION METHODS BASED ON THE SCENE WITH NINE TARGETS BEHIND THE DRYWALL.

Wall Clutter Mitigation Approach Improvement factor (IF)

Proposed subspace projection method 13.03dB

Background subtraction 12.73dB

Time gating 7.99dB

Spatial filtering 5.47dB

SVD-based method [15] with target subspace spanned by second singular vector only 5.37dB

SVD-based method [16] with AIC 7.48dB

SVD-based method [16] with MDL 6.77dB
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C. Three-Dimensional Through the Wall Radar Imaging

For 3D imaging, the scene is scanned by a 2-D array aperture along the horizontal and vertical directions to

reveal the properties of targets residing behind the wall, e.g., the height of the target. The received monochromatic

signals for all M frequencies at each antenna location of the 2-D array aperture are stacked to form a column of

matrix B, B ∈ C
M×N , where N is the total number of antenna locations in the 2-D array aperture. The order

of selecting the antenna locations, i.e., processing row-wise or column-wise, only results in a permutation of the

columns of B. It can be readily shown that the permutation of the columns of the matrix B does not change the

column order of the left and right singular vectors, and more importantly, it does not affect the singular values.

Hence, the arrangement of the received signals into a matrix B does not affect the wall and target subspaces. To

form 3-D images, DS beamforming is applied to compute the complex amplitude of each voxel I(z, x, y):

I(z, x, y) =
1

NM

N−1∑
n=0

M−1∑
m=0

S(m,n) exp
(
jωmτ̃n(z, x, y)

)
, (47)

where τ̃n(z, x, y) is the focusing delay from the n-th antenna of the 2-D array aperture to the voxel at location

(z, x, y). The computation of the two-way propagation delay from an antenna to a voxel is described in [7].

The first scene (a dihedral behind the concrete wall) and the second scene (nine targets behind the drywall) were

interrogated using a 2-D array aperture. Background subtraction and the proposed subspace projection method were

then used to mitigate the wall returns. We should point out that for the sake of clarity, the voxels below −20dB

were thresholded in the 3-D images. Figure 18 illustrates the 3-D radar images of the first scene. Applying DS

beamforming directly to the frequency-space measurements produces a cluttered 3-D image, as shown in Fig. 18(a).

Figure 18(b) shows the image obtained from background subtraction, which is free of wall clutter. The image

produced by the proposed wall clutter mitigation method is shown in Fig. 18(c). This image is as clear as that

produced by background subtraction. For the second scene, the formed images, using background subtraction and

the proposed method, are shown in Fig. 19; both images are free of wall clutter. Table V presents the IF of the

thresholded 3-D images depicted in Figs. 18 and 19. The proposed subspace projection method gives an IF of 21.33

dB for the first scene and 27.20 dB for the second, compared to background subtraction, which yields IF values of

20.82 dB and 27.01 dB, respectively.

TABLE V

IMPROVEMENT FACTOR OF THE WALL CLUTTER MITIGATION METHODS FOR 3-D IMAGING.

Approach 3-D scene with single target 3-D scene with multiple targets

Proposed subspace projection method 21.33dB 27.20dB

Background subtraction 20.83dB 27.01dB
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Fig. 18. The 3-D images of the first scene: (a) before wall clutter mitigation, after the use of (b) background subtraction, and (c) the proposed

subspace projection method. For visualization, the 3-D images are displayed in linear scale and voxels less than −20 dB are removed.
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Fig. 19. The 3-D images of the second scene after the use of (a) background subtraction and (b) the proposed subspace projection method.

For visualization, the 3D images are displayed in linear scale and voxels less than −20 dB are removed.

VI. CONCLUSION

Strong signal reflections from the front wall hinder the visibility of stationary targets in through-the-wall radar

imaging. This paper provided an analysis of the eigen-structure of imaged TWRI scene. The analysis showed

that when the radar is placed parallel to a homogeneous wall of uniform thickness, the wall returns span a one-

dimensional subspace. However, when there are perturbations to the antenna alignment or non-uniformity of the

wall thickness, which often occurs in practice, the wall subspace is no more one-dimensional but multi-dimensional.

January 14, 2013 DRAFT



28

For a heterogeneous wall, in which the dielectric properties vary in both dimensions, the wall returns span a multi-

dimensional subspace. The analysis also showed that the target subspace is not limited to the second singular vector,

as previously reported in the literature, but can be spanned by several singular vectors. Moreover, the dimension of

the target subspace is determined by the location and the spatial extent of the target, the number of targets in the

scene, and the configuration of the antenna array.

For wall clutter mitigation, we proposed a method that estimates the wall subspace and a subspace projection

approach to remove, or at least significantly suppress, the wall clutter. The proposed approach does not assume prior

knowledge of the scene and the wall electromagnetic characteristics. It was applied to demonstrate for wall clutter

mitigation in real 2-D and 3-D TWRI data. Experiments with simulated and real data showed that the proposed

method was as effective as background subtraction in removing wall clutter and revealing the behind-the-wall

targets—without prior knowledge of the background scene.

APPENDIX A

OTSU THRESHOLDING METHOD

Suppose we have N singular values which lie in the range [0, σmax], and the spectrum of singular values is

divided into L equal intervals [ξi, ξi+1), for i = 0, . . . , L− 1. Let P (ξi) denote the probability mass defined by the

relative frequency of singular values in the i-th interval; that is,

P (ξi) = n(ξi)/N,

where n(ξi) is the number of singular values σi ∈ [ξi, ξi+1). For a given threshold τ = ξk, k = 0, . . . , L − 1, the

spectrum of singular values can be partitioned into two classes: Cw = {σi ≥ τ} and Ct = {σi < τ}. The class

means of Cw and Ct are, respectively,

μw(τ) =
1

Pw(τ)

L−1∑
i=iτ

ξiP (ξi) (48)

μt(τ) =
1

Pt(τ)

iτ−1∑
i=0

ξiP (ξi) (49)

where iτ denotes the index of the left endpoint of the interval that includes τ , and Pw(τ) and Pt(τ) are normalizing

constants given by

Pw(τ) =

L−1∑
i=iτ

P (ξi) and Pw(τ) =

iτ−1∑
i=0

P (ξi).

The total mean of the classes, which is independent of τ , is

μ0(τ) =

L−1∑
i=iτ

ξiP (ξi) (50)

The optimum Otsu threshold is obtained by maximizing the between class variance

τ∗ = argmax
τ

{Σ0(τ)}, (51)
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where the between class variance is given by

Σ0(τ) = Pw(τ)[μw(τ) − μ0]
2 + Pt[μt(τ) − μ0]

2.

APPENDIX B

REFLECTION AND TRANSMISSION COEFFICIENTS OF A LOSSY DIELECTRIC SLAB

For a lossy homogeneous wall of thickness d and and complex dielectric permittivity ε = ε ′ − jε′′, where ε′

and ε′′ are the real and imaginary parts of the dielectric permittivity, respectively, the propagation constant of the

dielectric slab γ is defined in terms of the attenuation coefficient α and the phase factor β as

γ = α+ jβ. (52)

The attenuation coefficient α and the phase factor β are given by

α = ωm

√
μ0ε′ε0

2

√√
1 +

( ε′′
ε′

)2

− 1 (53)

and

β = ωm

√
μ0ε′ε0

2

√√
1 +

(ε′′
ε′

)2

+ 1, (54)

where ωm is the m-th angular frequency and μ0 is the free space permeability. When an electromagnetic wave

transmitted by the n-th antenna is incident at an angle θn relative to the normal of the interface between dissimilar

media, the reflection Γv/h and transmission Tv/h coefficients are given by [24]

Γv/h =
ρv/h

(
1− exp(−2γ cos(φn)d)

)
1− ρ2v/h exp(−2γ cos(φn)d)

(55)

and

Tv/h =
(1 − ρ2v/h) exp(−γ cos(φn)d)

1− ρ2v/h exp(−2γ cos(φn)d)
, (56)

where ρv/h is the Fresnel reflection coefficient, and the subscripts v and h denote, respectively, the vertical and

horizontal polarizations; for a more detailed description of the Fresnel coefficient, the reader is referred to [25].

REFERENCES

[1] M. G. Amin, (Ed.), Through-the-wall radar imaging, CRC Press, Boca Raton, FL, 2011.

[2] M. Amin and K. Sarabandi, “Special issue on remote sensing of building interior,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 47, no. 5, pp. 1267–1268, 2009.

[3] M. Amin, “Special issue on advances in indoor radar imaging,” Journal of the Franklin Institute, vol. 345, no. 6, pp. 556–722, 2008.

[4] M. G. Amin and F. Ahmad, “Wideband synthetic aperture beamforming for through-the-wall imaging,” IEEE Signal Processing Magazine,

vol. 25, pp. 110-113, July 2008.

[5] R. Dilsavor, W. Ailes, P. Rush, F. Ahmad, W. Keichel, G. Titi, and M. Amin, “Experiments on wideband through the wall imaging,” in

Proc. of the SPIE Symposium on Defense and Security, Algorithms for Synthetic Aperture Radar Imagery XII Conference, vol. 5808, 2005,

pp. 196–209.

[6] J. Moulton, S. A. Kassam, F. Ahmad, M. G. Amin, and K. Yemelyanov, “Target and change detection in synthetic aperture radar sensing

of urban structures,” in Proc. of the IEEE Radar Conference, 2008, pp. 1–6.

January 14, 2013 DRAFT



30

[7] F. Ahmad, Y. Zhang, and M. G. Amin, “Three-dimensional wideband beamforming for imaging through a single wall,” IEEE Geoscience

and Remote Sensing Letters, vol. 5, no. 2, pp. 176–179, 2008.

[8] Y.-S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 47, no. 9, pp. 3192–3208, 2009.

[9] M. Dehmollaian and K. Sarabandi, “Analytical, numerical, and experimental methods for through-the-wall radar imaging,” in Proc. of the

IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 5181–5184.

[10] M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Transactions on GeoScience

and Remote Sensing, vol. 46, no. 6, pp. 1589–1599, 2008.

[11] F. Abujarad, A. Jostingmeier, and A. S. Omar, “Clutter removal for landmine using different signal processing techniques,” in Proc. of the

Tenth International Conference on Ground Penetrating Radar, 2004, pp. 697–700.

[12] F. Abujarad, G. Nadimy, and A. Omar, “Clutter reduction and detection of landmine objects in ground penetrating radar data using singular

value decomposition (SVD),” in Proc. of the Third International Workshop on Advanced Ground Penetrating Radar, 2005, pp. 37–42.

[13] A. N. Gaikwad, D. Singh, and M. J. Nigam, “Study of effect of room window on through wall imaging in UWB range,” in Proc. of the

International Conference on Emerging Trends in Electronic and Photonic Devices and Systems, 2009, pp. 395–398.

[14] R. Chandra, A. N. Gaikwad, D. Singh, and M. J. Nigam, “An approach to remove the clutter and detect the target for ultra-wideband

through-wall imaging,” Journal of Geophysics and Engineering, vol. 5, no. 4, pp. 412–419, 2008.

[15] P. K. Verma, A. N. Gaikwad, D. Singh, and M. J. Nigam, “Analysis of clutter reduction techniques for through wall imaging in UWB

range,” Progress in Electromagnetics Research B, vol. 17, pp. 29–48, 2009.

[16] M. M. Riaz and A. Ghafoor, “Through-wall image enhancement based on singular value decomposition,” International Journal of Antennas

and Propagation, vol. 2012 (2012), Article ID 961829, 20 pages doi:10.1155/2012/961829

[17] F. H. C. Tivive, M. G. Amin, and A. Bouzerdoum, “Wall clutter mitigation based on eigen-analysis in through-the-wall radar imaging,”

in Proc. of the International Conference on Digital Signal Processing, 2011, pp. 1–8.

[18] F. H. C. Tivive, A. Bouzerdoum, and Moeness G. Amin, “An SVDbased approach for mitigating wall reflections in through-the-wall radar

imaging,” in Proc. IEEE Radar Conference, 2011, pp. 519–524.

[19] Y.-S. Yoon and M. G. Amin, “High-resolution through-the-wall radar imaging using beamspace music,” IEEE Transactions on Antennas

and Propagation, vol. 56, no. 6, pp. 1763–1774, 2008.

[20] C. A. Balanis, Advanced Engineering Electromagnetics, New York, NY: John Wiley and Sons, 1989.

[21] R. Linnehan, J. Schindler, D. Brady, R. Kozma, R. Deming, and L. Perlovsky, “Dynamic logic applied to SAR data for parameter estimation

behind walls,” in Proc. IEEE Radar Conference, 2007, pp. 850–885.
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