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Abstract—We consider sparse subarray design for multimis-
sion radars. The sparse array configuration significantly affects
adaptive beamformer performance measured by the output
signal-to-interference and noise ratio (SINR). In this paper, the
full array is divided into two sparse subarrays, each performs a
separate task. When antennas are not shared between the two
subarrays due to differences in their properties and patterns,
the design of two sparse subarray configurations to maximize
the joint SINR must allocate each antenna position to one of the
two tasks. We use Taylor series approximation to reformulate the
underlying non-convex problem to a sequential convex program-
ming (SCP) problem. The simulation results include examples of
highly and weakly source spatial correlations, and they validate
the efficiency of the proposed method.

I. INTRODUCTION

The use of a sensor array has long been an attractive solution
for statistical inference tasks, such as detection, estimation,
tracking and filtering, in many applications, including radar,
sonar, communication, satellite navigation, ultrasound, radio
telescopes and seismology [1]–[3]. Adaptive beamforming
utilizes sensor arrays to enhance the desired signals while
mitigating interference and noise of the receiving array [4],
[5]. The minimum variance distortionless response (MVDR)
provides a unit response towards the desired direction and
simultaneously reduces the noise and interference power at
the array output [6]. Although the nominal array configuration
is uniform, sparse arrays have recently emerged to play a
fundamental role in various sensing systems involving multi-
antenna transmitters and receivers. Diverse metrics have been
proposed to design optimum sparse arrays in different ap-
plications such as direction finding, beampattern synthesis,
target detection and spatial filtering [7]–[9]. Optimum sparse
array design for maximizing SINR or signal-to-noise ratio
(SNR) has been recently developed [10], [11] and shown to
provide superior performance over structured sparse arrays that
include uniform, nested, coprime, and minimum redundancy
arrays. As shown in [12], [13], sparse array configuration has a
significant effect on the performance of adaptive beamformers,
including the MVDR beamformer.

Existing sparse array design techniques for maximizing
SINR focus on a single task array where all available antennas
are employed by a single beamforming. Their aim is to
maximize the SINR at the receiver by properly configuring
the array and determining the beamforming weights. However,
situations may arise in active and passive sensing where

the array is tasked with multiple missions, requiring two
or more simultaneous beamformers. In this case, we are
faced with the problem of multitask sparse subarray design.
These tasks could belong to the same functionality, i.e., radar
or communications or across different functionality as part
of platform co-existence. Either case may demand unshared
antennas among the subarrays to avoid compounded signal
transmission and reception [14]. Furthermore, different tasks
may warrant antennas with different patterns, properties, band-
widths, or polarizations, beside logistics and mutual coupling
may prevent placing multiple antennas at the same location
or in very close proximity - a concept known as shared
aperture [15]. The same concept was discussed in [16] in
which an algorithm was designed for a shared dual-band
transmitting/receiving array antenna, where non-overlapping
sparse subarrays of S- and X-band elements are designed on
a single planar platform, constituting separate transmit and
receive apertures for simultaneous transmitting and receiving
operation. The mutual coupling of the adjacent antennas and
the different type of antennas for each frequency band are
also taken under consideration in sparse array design. These
situations mandate that a permissible antenna placement grid
point can accommodate only one antenna.

In this paper, we examine the scenarios of multimission
or multitask sensing with sparse subarrays. In particular, we
consider a uniform linear array (ULA) and two sources in the
far field of the array, as shown in Fig.1. The source can be
an active emitter or a target reflecting a transmitted waveform.
The main goal of the proposed method is to simultaneously
maximize the output SINR of the two sources, by optimally
designing two sparse subarrays that collectively span the full
length of the ULA. The optimum sparse subarray configu-
rations are obtained by solving a joint SINR optimization
applying MVDR beamforming. This optimization problem is
non-convex, since the objective function of the maximization
is not concave. We utilize Taylor series approximation of the
objective function to render the optimization problem a convex
one.

The rest of the paper is organized as follows: The system
mathematical model is formulated in section II. The sparse
subarray design is described in section III. Simulation results
and comments upon the results are presented in section IV.
The final remarks are given in section V.



II. SYSTEM MODEL

Fig. 1: System model with two interfering sources for N = 16.

We consider a ULA, consisting of N antennas with posi-
tions given by ynd, n = 1, . . . , N , where d represents the
inter-element spacing. We assume that there are two sources
at directions defined by φA and φB as viewed from the linear
array. The primary objective of this work is to jointly design
two sparse subarrays in order to maximize the SINR for both
sources. This criterion translates into improved source or emit-
ter detection performance. In either case, the source signals
are assumed uncorrelated. Let K be the number of antennas
in subarray A with coordinates yAnd, n = 1, . . . ,K, and the
rest, N − K antennas, form the second subarray B, placed
at yBnd, n = 1, . . . , N −K. There are m interfering signals
impinging on the composite array from angles {φi1, . . . , φim}.
In the problem formulation, we consider source B acts as
interference for subarray A and vice versa. An illustration of
the system is presented in Fig.1. The corresponding steering
vectors for each subarray towards direction φ can be written
as:

a(φ) = [ejk0yA1dcosφ, . . . , ejk0yAKdcosφ]T (1)

b(φ) = [ejk0yB1dcosφ, . . . , ejk0yB(N−K)dcosφ]T ,

respectively, where k0 is the wavenumber and is defined as
k0 = 2π/λ with λ denoting the wavelength. The received
signals for each subarray at time instant t are given by:

xA(t) = sA(t)a(φA) +CAcA(t) + nA(t) (2)

xB(t) = sB(t)b(φB) +CBcB(t) + nB(t), (3)

where CA = [a(φB),a(φi1), . . . ,a(φim)] and CB =
[b(φA),b(φi1), . . . ,b(φim)] are the interference array man-
ifold matrices with full column rank for subarrays A and B,
respectively. The source signals are denoted as sA(t) ∈ C and
sB(t) ∈ C, respectively, with corresponding powers σ2

As and
σ2
Bs. The vectors cA(t) = [sB(t), c1(t), . . . , cm(t)]T ∈ Cm+1

and cB(t) = [sA(t), c1(t), . . . , cm(t)]T ∈ Cm+1 represent
the interfering signals for subarrays A and B, respectively,
with covariance matrices RbA and RbB , and nA(t) ∈ CK ,
nB(t) ∈ CN−K denote the received Gaussian noise vec-
tors at subarrays A and B with common power σ2

n. The
interference plus noise covariance matrices for subarrays A
and B are defined as RnA = CARbAC

H
A + σ2

nIK and
RnB = CBRbBC

H
B + σ2

nIN−K , respectively.
The received signal at subarray A is filtered by the K-length

complex weight vector of subarray A denoted as wA. Thus,
the output of the beamformer at subarray A is wAxA(t), and
the output SINR associated with source A is given by

SINRA =
σ2
As|wH

A a(φA)|2

wH
ARnAwA

. (4)

It is evident that, in order to maximize the SINR, the desired
source signal must be secured while the undesired interfer-
ence is suppressed or significantly mitigated. The MVDR
beamformer minimizes the interference plus noise power at
the beamformer output, subject to a distortionless response
towards the direction of the desired source and is given by:

wA =
R−1nAa(φA)

a(φA)HR−1nAa(φA)
(5)

By substituting (5) into (4), we obtain the output SINR of the
matched MVDR beamformer regarding source A as:

SINRoA = σ2
Asa(φA)

HR−1nAa(φA). (6)

In order to present the full extent of the effect of the array
configuration on the output SINR, we exploit the matrix inver-
sion lemma and rewrite the interference plus noise covariance
matrix R−1nA as:

R−1nA = σ−2n [IK −CA(RmA +CH
ACA)

−1CH
A ] (7)

where RmA = σ2
nR
−1
bA . By defining SNRiA = σ2

As/σ2
n

as the input signal-to-noise ratio (SNR) at subarray A and
substituting (7) into (6), the output SINR at subarray A can
be written as in (8).

By following the same steps for subarray B, the output
SINR is given by (9), where SNRiB = σ2

Bs/σ2
n defines the

SNR at subarray B and RmB = σ2
nR
−1
bA . It is evident from

(8) and (9) that the output SINR at both subarrays is dependent
on the array configuration through the source steering vectors
a(φA) and b(φB) and the interference array manifold matrices
CA and CB .

III. SUBARRAY SELECTION FOR MATCHED MVDR
BEAMFORMING

We consider a setting of N candidate linear, uniform grid
locations, each equipped with an antenna. The respective



SINRoA = SNRiA[K − a(φA)
HCA(RmA +CH

ACA)
−1CH

Aa(φA)] (8)

SINRoB = SNRiB [(N −K)− b(φB)
HCB(RmB +CH

BCB)
−1CH

Bb(φB)] (9)

max
z

log |ĈH
aAD(z)ĈaA +RA| − log |ĈH

AD(z)ĈA +RmA|+ (10)

+ log |ĈH
aBD(1N − z)ĈaB +RB | − log |ĈH

BD(1N − z)ĈB +RmB |

s.t. 1TNz = K, 0 ≤ z ≤ 1

log |ĈH
AD(z)ĈA +RmA| ≈ log |ĈH

AD(z(k))ĈA +RmA|+5gTA(z
(k))(z− z(k)) (11)

log |ĈH
BD(1N − z)ĈB +RmB | ≈ log |ĈH

BD(1N − z(k))ĈB +RmB |+5gTB(z
(k))((1N − z)− (1N − z(k))) (12)

max
z

log |ĈH
aAD(z)ĈaA+RA|−5gTA(z

(k))(z−z(k))+log |ĈH
aBD(1N−z)ĈaB+RB |−5gTB(z

(k))((1N−z)−(1N−z(k)))

s.t. 1TNz = K, 0 ≤ z ≤ 1 (13)

receive beamforming weights are determined by utilizing
MVDR beamforming, as presented in the previous section.
We divide the receive array into two sparse subarrays which
collectively span the N uniform array. Each subarray is con-
cerned with one of the two sources. The optimum sparse
subarray design towards sources A and B can be described as
selecting the optimal K and N −K candidate antennas that
jointly maximize the SINR performance. Towards this goal,
we define an antenna selection vector z ∈ {0, 1}N , where
entry ”1” denotes an antenna selected for subarray A and a
zero ”0” entry denotes an antenna selected for subarray B.
The diagonal matrix D(z) is the antenna selection operator
with z populating the diagonal elements. Since we assume
knowledge regarding all the antenna locations, the full array
steering vector corresponding to direction φ is defined as
â(φ) = [ejk0y1dcosφ, . . . , ejk0yNdcosφ]T . Hence, the respective
steering vectors for subarrays A and B towards direction φ can
be expressed as a(φ) = z� â(φ) and b(φ) = (1N −z)� â(φ)
and discard the zero entries, where 1N is an all one vector of
size N and � stands for the Hadamard product. In order to
design the optimal sparse subarrays A and B, we consider the
joint output SINR optimization problem as:

max
z

SINRoA + SINRoB (14)

s.t. 1TNz = K, 0 ≤ z ≤ 1

Following [17], we can rewrite (14) as to maximize the
sum of the logarithms of the output SINRs for both sources

as in (10), where ĈaA = [ĈA, â(φA)] and ĈA =
[â(φB), â(φi1), . . . , â(φim)]. Similarly, ĈaB = [ĈB , â(φB)]
and ĈB = [â(φA), â(φi1), . . . , â(φim)] and

RA =

[
RmA 01×m
0m×1 0

]
, RB =

[
RmB 01×m
0m×1 0

]
.

It is clear that the binary constraint enforced by the antenna
selection vector z ∈ {0, 1}N is not a convex constraint and
it would render the optimization problem (10) non-convex.
Hence, we replace the binary constraint with the box constraint
0 ≤ z ≤ 1, since the objective function of (10) can be
written as the difference of two concave functions and the
respective global optimizer locates at the extreme points of
the polyhedron [18], [19]. However, (10) remains non-convex
since the objective function is a difference of two concave
functions. To overcome this problem, we utilize first order
Taylor series that can iteratively approximate the second and
fourth logarithm terms of the objective function, which cause
the non-concavity of the objective function. The (k + 1)th
Taylor approximations of those terms based on the previous
solution z(k) are shown in (11) and (12), where5gA(z

(k)) and
5gB(z

(k)) represent the gradients of the logarithmic functions
log |ĈH

AD(z)ĈA+RmA| and log |ĈH
BD(1N−z)ĈB+RmB |

evaluated at z(k), respectively. That is,

5gA = [d̂HA,j(Ĉ
H
AD(z(k))ĈA+RmA)

−1d̂A,j , j = 1, ..., N ]T

where d̂A,j denotes the jth column vector of the matrix
ĈH
A . The gradient for subarray B is analogously defined. By



utilizing sequential convex programming (SCP), the initially
non-convex problem is reformulated to a series of convex
subproblems, that can be optimally solved via interior point
methods [20]. By substituting (11) and (12) in (10), we obtain
the approximated convex optimization problem as shown in
(13). It should be noted that the first term at the right side of
the equations (11) and (12) are omitted from the optimization
(13), since they are constants and do not affect the result of
the optimization. Since SCP is a local heuristic, the solution of
(13) is dependent on the selection of the initial z(0). Therefore,
we initialize the SCP algorithm with a number of feasible
vectors z(0) and keep the solution that provides the maximum
objective function value.

IV. SIMULATION RESULTS

In this section, simulation results are presented to validate
the proposed optimal sparse subarray design for maximizing
the output SINR for two different sources. We consider a
uniform linear array (ULA) of N = 16 antennas with an
inter-element spacing of d = λ/2. We assume two subarrays
of equal number of antennas, K = 8, and each subarray is
designated to one source. The first source signal is incident
on the array with direction φA that is shifting from 0o to 180o

with a step of 5o, and with an SNR set at 0dB. The second
source is fixed at φB = 600 with an SNR set at 5dB. We
design the optimum sparse subarrays A and B for each φA
using (13). Subarray A considers source B as an interference
and vice versa. No other interferences are injected. In order
to validate the efficiency of the Taylor series approximation
SCP, Fig.2 shows the comparison of the output SINR from
(13) for each subarray with the respective optimum output
SINR through enumeration. It is evident that the proposed
subarray selection iterative algorithm closely approximates the
global optimum solution obtained from enumeration. There
is also a notable drop at the output SINR of both sources
when they are closely separated, since each source acts as
an interfering signal for the processing of the other source.
In order to display the effect of the subarray selection on the
output SINR, we set φA = 100o and enumerate every possible
subarray configuration. Fig.3 presents the output SINR of
subarrays A and B in a descending order with respect to
all the 12870 different selections. It is evident that there is
a substantial impact of different subarray configurations on
the output SINR.

In the second example, we examine the performance of
the proposed algorithm for high and weak spatially correlated
sources. We extend the ULA to N = 24 antennas and set the
number of sensors in each subarray to K = 12. For the first
case of highly spatially correlated sources, the angles-of-arrival
of the two sources are φA = 93o and φB = 91o, respectively.
In the second case, the source signals arrive from angles
φA = 135o and φB = 50o, respectively. The spatial correlation
matrices of the source steering vectors corresponding to the
high and the low correlation cases are:

Rhigh =

[
1 + 0j 0.2830 + 0.8819j

0.2830− 0.8819j 1 + 0j

]
,

Fig. 2: Output SINR for subarrays A and B derived from
enumeration and proposed method.

Fig. 3: Output SINR for all different sparse subarrays for φA =
100o and φB = 600.

Rlow =

[
1 + 0j 0.0023 + 0.0303j

0.0023− 0.0303j 1 + 0j

]
.

For both cases, the SNR of each source is set at 0dB.
An additional interfering signal is considered in the model,
impinging at the receiving array from φi1 = 108o with INR
equal to 20dB. In order to shed light to the mechanism of
joint optimal subarray design, we also derive the true optimal
subarrays that maximize the output for each of the sources A
and B separately, by solving the following optimization using
SCP for both the high and the low correlation cases:

max
z

SINRoi s.t. 1TNz = K, 0 ≤ z ≤ 1 (15)

for i = A,B. Figs.4 and 5 depict the optimum sparse arrays
obtained from (15) and the optimum sparse subarrays obtained
from the proposed method in (13) for the highly correlated
and less correlated cases, respectively. It is observed that in
the highly correlated case, the optimum sparse arrays for
sources A and B obtained from separate design are almost
fully-overlapped and consist of the same antennas except one,



TABLE I: Maximum SINR for the proposed method of (13)
and separate optimization (15) (dB).

Joint opt.(Eq.(13)) Separate opt.(Eq.(15))

SINRoA, φA = 93o 7.5068 9.2781

SINRoB , φB = 91o 7.9369 9.3065

SINRoA, φB = 135o 10.7526 10.7743

SINRoB , φB = 50o 10.7426 10.7730

whereas the optimum sparse arrays for the less correlated
case share only 5 antennas. Therefore, the competition for
the optimal antennas in the joint subarray selection is higher
for highly correlated sources. As depicted in Fig.4, arrays (c)
and (d) obtained from (13) opt to share the optimal antennas
located at the two edges of the ULA and the rest of the
antennas located at the center of the ULA, in order to maxi-
mize their output SINR. Table I presents the maximum output
SINR values for optimizations (13) and (15) for the considered
cases. For the case of highly correlated sources, the proposed
method provides a significantly lower SINR as compared to the
optimum SINR obtained from separate optimization, whereas
for less correlated sources the joint design almost matches
the separate optimization. The beampatterns for the subarrays
obtained from (13) for the high and low spatial correlation
cases are shown in Fig.6 and Fig.7, respectively.

Fig. 4: Array: (a) separate design for φA = 93o, (b) separate
design for φB = 91o, (c) joint optimization for φA = 93o, (d)
joint optimization for φB = 91o

Fig. 5: Array: (a) separate design for φA = 135o, (b) separate
design for φB = 50o, (c) joint optimization for φA = 135o,
(d) joint optimization for φB = 50o

Fig. 6: The beampatterns for subarrays A and B for φA = 93o

and φB = 91o.

Fig. 7: The beampatterns for subarrays A and B for φA =
135o and φB = 50o.

In order to test the efficiency of the proposed method we
compare the results of (13) to the case when prefixed nested
and coprime arrays are utilized to process source A [21],
[22]. We assume that the direction of the first and the second
sources as seen from the ULA is φA = 135o and φB = 50o,
respectively, but for this system we assume a ULA of N = 16
arrays, where K = 7 antennas are used to process source
A. One interfereing source is considered at φi1 = 108o with

TABLE II: Maximum SINR for the proposed method, the
nested arrays and the coprime arrays (dB).

Proposed method Nested Coprime

SINRoA, φA = 135o 8.4346 7.6046 6.1278

SINRoB , φB = 50o 9.4791 9.1356 8.8276



Fig. 8: Subarray A: (a) Nested array, (b) Coprime array, (c)
proposed method (13).

Fig. 9: Beampatterns for subarrays A in Fig.8.

INR equal to 20dB. The subarray A structures are given in
Fig.8 and the corresponding beampaterns in Fig.9. As shown
in Fig.9, the proposed joint subarray design yields a better
shaped beampattern with lower sidelobes and deeper nulls
at the direction of interference as compared to the nested
array and coprime beampatterns. Table II shows the maximum
SINR obtained from the proposed joint optimization method
and the prefixed nested and coprime techniques. As expected
the proposed adaptive technique significantly outperforms the
predefined nested and coprime arrays in terms of output SINR
for both sources A and B.

V. CONCLUSION

We presented a sparse subarray design technique for mul-
titask receivers. The main contribution of this method is the
joint design of two sparse subarrays; each handles one beam
or one source. The selection of the optimal sparse subarrays is
decided by performing a joint SINR maximization for matched
MVDR beamforming. The simulation results confirmed the
efficiency of the algorithm and the superiority of the proposed
adaptive technique over prefixed subarray selection.
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