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ABSTRACT

The problem of optimum distribution of the available spa-
tial degrees of freedom among two sparse antenna subarray
beamfomers in shared aperture receiver is investigated. The
two subarrays, forming a full array, co-exist on the same plat-
form and could perform separate RF sensing and communi-
cations tasks. The sparsity and cardinality of the subarray
configurations are joint optimization variables which consid-
erably affect the output signal-to-interference plus noise ratios
(SINR) of the two beamformer outputs. A minimum output
SINR figure value is imposed to guarantee minimum perfor-
mance. We solve this problem by utilizing Taylor series ap-
proximation to reformulate the initial non-convex problem to
a convex one. Simulation results validate the effectiveness of
the proposed method.

Index Terms— Adaptive beamforming, sparse array de-
sign, SINR optimization, multiple sources.

1. INTRODUCTION

Adaptive sensor array design techniques provide an effective
tool to enhance the response of the system towards the de-
sired sources while mitigating interference and noise at the
output of the receiver [1–7]. Optimum beamformer design
should exploit all available degrees of freedom, which com-
prise the sparse array configuration and the beampattern array
coefficients, in order to maximize system performance. Opti-
mal sparse array design for optimizing SINR has been investi-
gated in [8, 9], showing that it provides superior performance
over structured arrays, such as nested, coprime and uniform
arrays. The authors in [10, 11] studied the effect of sparse
array structures on the performance of adaptive beamformers.

The majority of existing sparse array design techniques
utilize all available antennas for maximizing SINR towards
one source. Recently, optimum sparse array configuration
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was provided using a single beamfomer with peaks towards
the sources of interest [12, 13]. With only one set of ar-
ray coefficients, unequal response towards different sources
is deemed to emerge, putting some sources at disadvan-
tage over others. The solution is to form different beam-
formers and designate separate sets of coefficients to each
source [14]. Multi-beam scenario is common in many sen-
sor array processing, and underpins different modes in radar
including scanned, switched, and simultaneous or staring
beams [15, 16]. In some applications, however, each beam-
former is provided using a separate array or subarray which
could be uniform or sparse. This situation of unshared anten-
nas arises when antenna specifications and signal bandwidth
differ for different beams, specifically when performing dif-
ferent missions and functions - a design known as shared
aperture [17–19].

In this paper, we design optimal sparse subarrays with dif-
ferent sets of weights, or beamformers, each is designated to
one look, or source. We consider a platform of N candidate
uniform grid locations forN antennas with positions given by
nd, n = 1, . . . , N , where d represents the inter-element spac-
ing. We consider two look directions or presume that there are
two sources in the far field with angles φA and φB . The main
goal of this work is to jointly design two sparse subarrays with
the objective of maximizing the SINR for one source, while
attaining a predefined SINR for the other source. The two
subarrays have their unique antenna elements and collectively
span the entire full array. As such, the problem amounts to op-
timum distribution of the spatial degrees of freedom such that
the SINR at each subarray beamformer output is maximized.

The rest of the paper is organized as: The system math-
ematical model is formulated in section 2. The SINR con-
strained sparse subarray design is examined in section 3. Sim-
ulation results and comments upon the results are presented in
section 4. The final conclusions are given in section 5.

2. SYSTEM MODEL

Let KA be the number of antennas in subarray A with lo-
cations defined by yAnd, yAn ∈ N, n = 1, . . . ,KA, and



KB the number of antennas that form the second subarray B,
placed at yBnd, yBn ∈ N, n = 1, . . . ,KB . Subarray A aims
to detect source A whereas subarray B does the detection of
source B. Suppose that there are m interfering signals arriv-
ing at the composite array from angles {φi1, . . . , φim}. We
consider that source B, if present, acts as an interference for
subarray A and vice versa. The receive steering vectors for
each subarray regarding direction φ can be written as:

a(φ) = [ejk0yA1dcosφ, . . . , ejk0yAKA
dcosφ]T (1)

b(φ) = [ejk0yB1dcosφ, . . . , ejk0yBKB
dcosφ]T ,

respectively, where k0 is the wavenumber and is defined as
k0 = 2π/λ with λ denoting the wavelength. The received
signals for each subarray at time instant t are given by:

xA(t) = sA(t)a(φA) +CAcA(t) + nA(t) (2)

xB(t) = sB(t)b(φB) +CBcB(t) + nB(t), (3)

where CA = [a(φB),a(φi1), . . . ,a(φim)] and CB =
[b(φA),b(φi1), . . . ,b(φim)] are the interference array mani-
fold matrices with full column rank for subarraysA andB, re-
spectively. SourcesA andB signals are denoted as sA(t) ∈ C
and sB(t) ∈ C, respectively, with corresponding powers σ2

As

and σ2
Bs. The vectors cA(t) = [sB(t), c1(t), . . . , cm(t)] ∈

Cm+1 and cB(t) = [sA(t), c1(t), . . . , cm(t)] ∈ Cm+1 stand
for the interfering signals for subarraysA andB, respectively,
with covariance matrices RbA and RbB and nA(t) ∈ CK ,
nB(t) ∈ CN−K denote the received Gaussian noise vec-
tors at subarrays A and B with common power σ2

n. The
interference plus noise covariance matrices for the two sub-
arrays are defined as RnA = CARbAC

H
A + σ2

nIK and
RnB = CBRbBC

H
B + σ2

nIN−K , respectively.
The output of the receiver at subarray A is wH

AxA(t),
when filtered by the KA-length complex weight vector wA.
The output SINR responsible for the detection of source A is
given by

SINRoA =
σ2
As|wH

A a(φA)|2

wH
ARnAwA

. (4)

The minimum variance distortionless response (MVDR)
beamformer maximizes the output SINR by minimizing the
variance of the total output at the beamformer, subject to a
distortionless response towards the direction of the desired
source and is given by [20]:

wA =
R−1
nAa(φA)

a(φA)HR−1
nAa(φA)

(5)

By substituting (5) into (4), the output SINR of the matched
MVDR beamformer regarding source A can be written as:

SINRoA = σ2
Asa(φA)

HR−1
nAa(φA). (6)

In order to illustrate the effect of the subarray structure on
the output SINR, we use the matrix inversion lemma and re-
formulate the interference plus noise covariance matrix R−1

nA

as:

R−1
nA = σ−2

n [IK −CA(RmA +CH
ACA)

−1CH
A ] (7)

where RmA = σ2
nR

−1
bA . By defining SNRiA = σ2

As/σ2
n as the

input signal-to-noise ratio (SNR) at subarray A and substitut-
ing (7) into (6), the output SINR at subarray A can be written
as in (8).

By following the same steps for subarray B, the output
SINR is given by (9), where SNRiB = σ2

Bs/σ2
n defines the

SNR at subarray B and RmB = σ2
nR

−1
bA . It is clear from (8)

and (9) that the subarray structures and their antenna element
positions affect the output SINR at both subarrays through the
source steering vectors a(φA) and b(φB) and the interference
array manifold matrices CA and CB .

3. SPARSE SUBARRAY SELECTION THROUGH
SINR CONSTRAINED OPTIMIZATION

It is typical for source detection to be constrained by a certain
SINR threshold which corresponds to a certain detection per-
formance [21]. Our primary objective in this section is to de-
sign an algorithm that maximizes the detection performance
of one source, while attaining a predefined SINR threshold
for the other source. The proposed method provides both
the optimal separable sparse subarray selections and the op-
timal number of antennas (KA, KB) for each subarray. We
set an SINR threshold γ∗A towards source A. With a total of
N antennas placed on uniform grid, the optimum sparse sub-
array design amounts to selecting the optimal KA = K and
KB = N − K non-overlapping candidate antennas towards
sources A and B and jointly maximize the detection perfor-
mance towards source B, while attaining the SINR threshold
towards sourceA. Hence, we define an antenna selection vec-
tor z ∈ {0, 1}N , where entry ”1” denotes an antenna selected
for subarray A and a zero ”0” entry denotes an antenna se-
lected for subarray B. Since we have information regarding
all the antenna locations, the full ULA receive steering vector
towards direction φ is given by:

â(φ) = [ejk0y1dcosφ, . . . , ejk0yNdcosφ]T . (13)

Thus, the respective steering vectors for subarrays A and
B towards direction φ can be defined as a(φ) = z � â(φ)
and b(φ) = (1N − z) � â(φ) and discard the zero entries,
where 1N is an all one vector of size N and � stands for the
Hadamard product (element-wise product). In order to design
the optimal separated, sparse subarraysA andB, we consider
the following SINRoA constrained-SINRoB maximization
problem:

max
z,K

SINRoB (14)

s.t. SINRoA ≥ γ∗A, 1TNz = K, z ∈ {0, 1}N



SINRoA = SNRiA[KA − a(φA)
HCA(RmA +CH

ACA)
−1CH

Aa(φA)] (8)

SINRoB = SNRiB [KB − b(φB)
HCB(RmB +CH

BCB)
−1CH

Bb(φB)] (9)

max
z,K

log |ĈH
aBdiag(1N − z)ĈaB +RB | − log |ĈH

Bdiag(1N − z)ĈB +RmB | (10)

s.t. log |ĈH
aAdiag(z)ĈaA +RA| − log |ĈH

A diag(z)ĈA +RmA| ≥ γ∗A, 1TNz = K, z ∈ {0, 1}N

log |ĈH
A diag(z)ĈA +RmA| ≈ log |ĈH

A diag(z
(k))ĈA +RmA|+5gTA(z

(k))(z− z(k)) , TA (11)

log |ĈH
Bdiag(1N−z)ĈB+RmB | ≈ log |ĈH

Bdiag(1N−z(k))ĈB+RmB |+5gTB(z
(k))((1N−z)−(1N−z(k))) , TB (12)

Based on [22], we can replace the output SINRs in (14)
with the logarithm of the output SINRs for both sources as in
(10), where ĈaA = [ĈA, â(φA)] and ĈA = [â(φB), â(φi1),
... , â(φim)]. Likewise, ĈaB = [ĈB , â(φB)] and ĈB =
[â(φA), â(φi1), . . . , â(φim)] and

RA =

[
RmA 01×m
0m×1 0

]
, RB =

[
RmB 01×m
0m×1 0

]
.

We relax the non-convex binary selection constraints z ∈
{0, 1}N of (10) to a box constraint 0 ≤ z ≤ 1, as the global
optimizer of the difference of two concave functions locates
at the extreme points of the polyhedron [23]. However, (10)
remains non-convex since the objective function and the first
constraint are differences of two concave functions. To over-
come this problem, we utilize first order Taylor series that
can iteratively approximate the negative logarithm terms of
the optimization problem, which cause the non-convexity of
(10). The (k + 1)th Taylor approximations of those terms
based on the previous solution z(k) are shown in (11) and
(12), where 5gA(z

(k)) and 5gB(z
(k)) represent the gradi-

ents of the logarithmic functions log |ĈH
A diag(z)ĈA+RmA|

and log |ĈH
Bdiag(1N − z)ĈB + RmB | evaluated at z(k),

respectively. By exploiting sequential convex programming
(SCP) techniques, the initially non-convex problem is refor-
mulated to a series of convex subproblems, that can be opti-
mally solved via convex optimization methods [24]. By sub-
stituting (11) and (12) in (10), we have the following approx-
imated convex optimization problem:

max
z,K

log |ĈH
aBdiag(1N − z)ĈaB +RB | − TB (15)

s.t. log |ĈH
aAdiag(z)ĈaA +RA| − TA ≥ γ∗A
1TNz = K, 0 ≤ z ≤ 1

Since SCP is a local heuristic, the solution of (15) is depen-
dent on the initial selection vector z(0). Hence, we consider
several feasible initialization vectors z(0) for (15) and keep
the solution that provides the maximum objective function
value.

4. SIMULATION RESULTS

In this section, simulation results are presented to validate the
efectiveness of the proposed algorithms. We consider a uni-
form linear array (ULA) of N = 20 antennas with an inter-
element spacing of d = λ/2. There are two source signals
arriving at the ULA from φA = 135o and φB = 50o and with
an SNR set at 0dB for both sources. An interference source
is presumed, impinging on the ULA at φi1 = 108o with
INR=20dB. We aim to design two separate subarrays, span-
ning the entire ULA, where the output SINR of subarray B
is maximized while attaining a predefined SINR or detection
threshold for sourceA. The algorithm not only decides on the
optimal locations of the antennas but also selects the optimal
number of antennas for each subarray (KA,KB). Fig.1 shows
the beampatterns towards source A for different preset SINR
values, γ∗A. As expected, higher γ∗A yields a better shaped
beampattern towards source A with lower sidelobes and bet-
ter cancellation of interference. The optimal number of an-
tennas for subarrays A and B and the maximum SINRoB
achieved from (15) for different γ∗A are depicted in Table 1. It
is clear that the higher the γ∗A the more antennas are allocated
to subarray A which leads to a drop of SINRoB .

In order to demonstrate the offerings of the proposed
adaptive method, we compare the performance of (15) to the
case when nested and coprime arrays are utilized to design
subarray A [25, 26]. We employ 8 antennas to differently



Fig. 1: Beampatterns towards source A for different γ∗A.

Table 1: Optimal number of antennas for subarays A and B
and maximum SINRoB (dB) for different target SINR γ∗A.

SINRoA target KA KB SINRoB

γ∗A = 5.86 4 16 12.02

γ∗A = 8.43 7 13 11.12

γ∗A = 9.53 9 11 10.39

build the nested and comprime subarray A. Since it is not
feasible to simultaneously design nested or coprime subar-
rays A and B, subarrays B are constituted from the remaining
sensors in each case. The two coprime numbers are Mc = 5
and Nc = 4, both starting from sensor 1 and hence provid-
ing 8 different sensor locations. The same settings as in the
previous example are used. SubarrayA structures for the pro-
posed optimization (15) with γ∗A = 8.39, the nested and the
coprime techniques are given in Fig.2, and the corresponding
beampatterns are shown in Fig.3. Table 2 illustrates the su-
periority of the proposed adaptive subarray selection over the
nested and coprime prefixed schemes. Nested and coprime
subarrays A provide less SINR than the proposed technique,
which is implementing only 7 antennas. The unengaged an-
tenna is used for maximizing the detection performance of
source B. Therefore the SINR of source B is also higher for
the proposed method as opposed to the prefixed techniques.

5. CONCLUSION

We examined the design of dual sparse subarrays in dual mis-
sion shared aperture passive sensing platforms. The proposed
algorithm uses SINR criterion to simultaneously decide on

Fig. 2: Subarray A: (a) Proposed method (15) with γ∗A =
8.39, (b) Nested array, (c) Coprime array.

Fig. 3: Beampatterns for subarrays A in Fig.2.

the location and the cardinality of the antennas in each subar-
ray. This could amount in radar to maximizing the detection
performance of one source, while securing a desired detec-
tion threshold for the other source(s). Sequential convex pro-
gramming and Taylor series approximation were utilized to
render the sparse subarray design a convex problem. Simu-
lation results demonstrated the effectiveness of the proposed
algorithm regarding joint maximizing SINR performance un-
der SINR constraint of two subarrays. The optimum design
demonstrated superiority over other sparse array configura-
tions.

Table 2: Comparison of the system performance for the pro-
posed method, the nested and the coprime arrays schemes.

KA Kb SINRoA SINRoB

Optimization (15) 7 13 8.39 11.13

Nested 8 12 8.30 10.78

Coprime 8 12 8.27 10.54
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