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Wideband MIMO Radar Waveform Design

with Low Peak-to-Average Ratio Constraint

Yonghao Tang, Yimin D. Zhang, Moeness G. Amin, and Weixing Sheng

Abstract

Multiple-input multiple-output (MIMO) radar systems allow array antennas to transmit different

waveforms and enable flexible transmit beampattern synthesis. Most existing transmit beampattern

synthesis methods focus on narrowband MIMO radar system configurations. In this paper, we propose

a novel technique to design transmit waveforms for wideband MIMO radar systems. This technique

is based on the optimization of the cross-spectral density matrix and achieves a low peak-to-average

power ratio as desired in practical radar systems. Simulation results are provided to verify the low PAR

waveform design capability corresponding to arbitrary beampatterns.

Index Terms

Wideband MIMO radar, transmit beampattern synthesis, waveform design, peak-to-average power ratio.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar is an emerging field that has attracted increasing

interests [2–5]. Compared to conventional phased-array radar, one of the major advantages of
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MIMO radar is its waveform diversity that enables synthesis of transmit beampatterns with

great flexibility [6]. Optimized MIMO radar waveform design plays a key role in achieving

the desired system performance. Existing literature on MIMO radar waveform design focuses

on narrowband signals [7–14] which can be generally classified into two main categories with

different design objectives. The methods in the first category, including beampattern matching

design and minimum sidelobe design, optimize the cross-correlation matrix of the transmit

waveforms so as to achieve or closely approximate a desired transmit beampattern [6, 8, 9]. As

the transmit beampattern is a linear function of the correlation matrix, optimized cross-correlation

leads to desirable beampatterns. On the other hand, the objective of the methods in the second

category is designing the actual transmit waveforms based on a given cross-correlation matrix. In

[11, 14], for example, partially correlated signal design methods have been developed based on a

given cross-correlation matrix for transmit energy concentration in an angular sector. Subarray-

or subaperture-based waveform design methods trade off between coherent array directivity gain

and diversity gain [7, 15]. By designing the waveforms to be coherent within each subarray but

orthogonal across the different subarrays, these methods benefit from both types of gains. These

design categories represent two-stage waveform design approaches, with the cross-correlation

matrix acting as an intermediate result. Unfortunately, such approaches cannot be directly applied

in the waveform design for wideband MIMO radars [16]. This is attributed to the fact that the

cross-correlation matrix for wideband signals is not only a function of the array sensors but also

of the time delays. As such, the problem is much more complicated than the narrowband case.

Compared to the narrowband MIMO radar, transmit beampattern synthesis for wideband

MIMO radar systems has not received sufficient attention [16–18]. Inspired by the methods de-

veloped for narrowband MIMO radar systems, wideband transmit beampattern synthesis through

optimizing the cross-spectral density matrix (CSDM) was first proposed in [16]. CSDM-based

beampattern design performs independent cross-correlation matrix optimization in each fre-

quency, thereby avoiding the consideration of convolutive time delays and achieving a flexible

beampattern design with a low complexity. Beampattern matching design and minimum sidelobe

design are examples of such beampattern design methods based on CSDM optimization for

wideband MIMO radar [16, 17]. In these approaches, convex optimization techniques are used

to generate the desired spatial beampatterns subject to transmit power constraints. Once the opti-

mized CSDM is obtained, the next stage is to design the actual transmit waveforms according to
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the optimized results. For example, the spectral density focusing beampattern synthesis technique

(SFBT) [18] designs actual transmit waveforms based on the optimized CSDM. A major problem

with these methods is that, because the waveforms at different frequencies are independently

designed, the peak-to-average ratio (PAR) of synthesized waveforms across the array sensors

is generally high. MIMO radars exploiting high PAR waveforms suffer from reduced radiation

efficiency and signal distortion, and cause problems like harmonic interferences, reduction of

power efficiency, and, for some systems, damages to transmitter equipment. Therefore, low PAR

waveforms are highly desirable in practice, particularly when the transmit power is high.

Different from the CSDM-based waveform design methods, the wideband beampattern for-

mation via iterative techniques (WBFIT) directly links the beampattern to signals through their

Fourier transform [19], and the fast one-dimensional frequency invariant wideband transmit

beampattern (F1D-FIWTB) method [20] designs waveforms through the Fourier transform by

using frequency invariant beamforming (FIB) method developed in [21]. Although these methods

can achieve low PAR waveforms with a desirable beampattern, they only solve simple beam-

pattern matching design problems. As these methods do not utilize CSDM optimization, they

cannot accommodate other constraints, such as low sidelobe beampattern or frequency-dependent

beampatterns.

In this paper, we propose a novel two-stage technique for low PAR waveform design in the

wideband MIMO radar context. The proposed technique is based on CSDM optimization and

implements low PAR constraints in the waveform synthesis stage. In the first stage, CSDM

optimization using convex optimization achieves the desired beampatterns satisfying mainlobe

and sidelobe constraints. In the second stage, the proposed approach obtains low PAR waveforms

based on the optimized CSDM. The key contribution of this paper lies in the development of a

novel low PAR waveform design method based on the optimized CSDM. The proposed technique

also supports waveforms design that synthesizes beampatterns with other desired constraints, such

as low sidelobe levels.

The remainder of the paper is organized as follows. The signal model is formulated in

Section II. In Section III, we summarize three beampattern design methods that optimize transmit

beampatterns based on CSDM. Then, the proposed waveform design algorithm for CSDM-based

wideband beampattern synthesis is presented in Section IV. Simulation results are provided in

Section V to verify the effectiveness of the proposed technique. Conclusions are drawn in Section
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VI.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). (·)∗

denotes complex conjugate, and (·)T and (·)H , respectively, denote transpose and conjugate

transpose of a matrix or vector. trace(·) denotes the matrix trace, and diag(x) denotes a diagonal

matrix that uses the elements of x as its diagonal elements. A � 0 means that A is a positive

semi-definite matrix. In addition, E(·) denotes statistical expectation, and Re(·) denotes the real

part of a complex value. || · ||F denotes the Frobenius norm of a matrix.

II. SIGNAL MODEL

Consider a uniform linear array (ULA) consisting of M omnidirectional antennas with an inter-

element spacing d. Denote the signal transmitted by the mth antenna as sm(t) = Re{xm(t)ej2πfct},

m = 1, . . . ,M , where fc is the carrier frequency and xm(t) is the complex baseband waveforms

occupying the spectral band [−B/2, B/2]. The received signal at a far-field point in the direction

of θ can be expressed as

ŝ(t, θ) =
M∑
m=1

sm(t− τm(θ)), (1)

where τm(θ) denotes the time delay between the mth antenna and the reference one corresponding

to the direction of θ. For notational simplicity, we use τm instead of τm(θ) in the sequel. Then,

the total signal power due to all signals is given by [16]

E
{
‖ŝ(t, θ)‖2

}
= E

[∥∥∥∥∥
M∑
i=1

s2i (t) +
M∑

j,i=1,i 6=j

sj(t− τj)si(t− τi)

∥∥∥∥∥
]

=
M∑
i=1

M∑
j=1

Rij(τi − τj), (2)

where

Rij(τi − τj) = E[si(t− τi)sj(t− τj)]

= E{Re[xi(t− τi)ej2πfc(t−τi)]Re[xj(t− τj)ej2πfc(t−τj)]}

=
1

2
Re{R̄ij(τi − τj)e−j2πfc(τi−τj)}, (3)

with

R̄ij(τi − τj) =
1

2
E{xi(t)x∗j(t+ τi − τj)}. (4)
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For the assumed ULA, the power due to all transmitted signals at spatial angle θ can be

represented as

P (θ) = E
{
‖ŝ(t)‖2

}
=

1

2
Re

{
M∑
i=1

M∑
j=1

R̄ij(τij)e
j2πfcτij

}
, (5)

where τij = τi − τj .

For narrowband signals, only the carrier frequency fc is considered. Because R̄ij(τ) ≈ R̄ij(0),

the spatial power distribution becomes [6]

P (θ, fc) = aH(θ, fc)Ra(θ, fc), (6)

where R is the narrowband signal cross-correlation matrix which can be properly chosen to

synthesize the desired transmit beampattern [5, 6, 11], and a(θ, fc) is the narrowband array

steering vector, which is defined as

a(θ, fc) = [1 ej2πfcd cos θ/l . . . ej2πfc(M−1)d cos θ/l]T , (7)

with l representing the velocity of electromagnetic wave propagation. The narrowband transmit

waveforms that satisfy the cross-correlation matrix R can be designed using methods proposed

in, e.g., [13, 14].

In the wideband case, the spatial power distribution is frequency-dependent over the frequency

band [fc−B/2, fc+B/2]. We define the cross-spectral power density matrix (CSDM) at frequency

f as [16],

S(f) =

∫
R̄(τ)e−2πfτdτ, (8)

where the correlation matrix is given by

R̄(τ) =


R̄11(τ) R̄12(τ) · · · R̄1M(τ)

R̄21(τ) R̄22(τ) · · · R̄2M(τ)
...

... . . . ...

R̄M1(τ) R̄M2(τ) · · · R̄MM(τ)

 . (9)

The corresponding transmit power pattern is expressed as

P (θ) =

∫ B/2

−B/2
aH(θ, fc + f)S(f)a(θ, fc + f)df, (10)

where a(θ, fc + f) is the frequency-dependent array steering vector at frequency fc + f , which

is similarly defined as that in Eq. (7) by replacing the fixed frequency fc by fc+f , which varies
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within the signal bandwidth. Divide the spectral range [fc − B/2, fc + B/2] into N frequency

bins, denoted as f−N/2, f−N/2+1, . . ., fN/2−1, where, without loss of generality, N is assumed

to be even. The spatial angle interval [−π/2, π/2] is divided into a K-point grid with the kth

entry denoted as θk, k = 1, . . . , K. The power distribution at spatial angle θk and frequency fn

can then be written as

p(θk, fn) = aH(θk, fn)S(fn)a(θk, fn). (11)

From Eq. (11), it is clear that, at each frequency bin fn, we can appropriately choose the CSDM

S(fn) to design the transmit beampattern in a similar manner to the narrowband case.

Note that large values of N and K enable a small mismatch error between the designed and the

desired beampatterns. They require a long waveform and a high number of frequency grids, thus

demanding a high computational complexity. On the contrarily, small values of these parameters

may yield an unacceptable mismatch error. As such, it is important to choose the proper values of

N and K that provide an acceptable mismatch error with an affordable computational complexity.

III. CSDM BASED BEAMPATTERN OPTIMIZATION

As discussed in the previous section, the transmit beampattern of a ULA MIMO radar can be

expressed using an integral expression in terms of CSDM S(fn). Similar to the cross-correlation

matrix in the narrowband case, the CSDM can be designed to optimally approximate a desired

transmit beampattern in each frequency bin. In this section, effective methods for CSDM-based

wideband beampattern design are introduced. We first summarize the beampattern matching

design [16] and the minimum sidelobe beampattern design [17] methods. The min-max sidelobe

beampattern design method, which is developed in [22] for narrowband waveform design, is then

extended to wideband beampattern design. Among these methods, the beampattern matching

design is useful when a specific beam shape is desired as this method achieves a desired

beampattern through the optimization of the CSDM. On the other hand, the minimum sidelobe

beampattern design yields a low sidelobe level, and the min-max sidelobe beampattern design

provides flatter sidelobes in the synthesized beampattern. As such, the latter two methods are

useful in applications where the sidelobe levels are mainly concerned. It is noted that, similar

to the narrowband case, the CSDM determines the beampattern but does not directly lead to

the actual transmitted waveform. In addition, because a wideband waveform synthesized from
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multiple independently designed narrowband constant modulus waveforms is no longer constant

modulus, separately designing narrowband waveforms at multiple subbands renders a high PAR

in the yielding wideband waveform, which is undesirable in practice. The waveform design under

low PAR constraints will be discussed in the next section.

A. Beampattern matching design

Similar to the narrowband MIMO radar beampattern design described in [9], the wideband

beampattern of MIMO radar can also be designed by optimizing the CSDM S(fn) to match a

desired beampattern [16]. For a given desired beampattern pD(θk, fn), the CSDM S(fn) can be

deigned to minimize the following convex optimization problem

min
{S(fn)}N/2−1

n=−N/2
,β

N/2−1∑
n=−N/2

K∑
k=1

[pD(θk, fn)− βp(θk, fn)]2

s.t. p(θk, fn) = aH(θk, fn)S(fn)a(θk, fn), ∀n,

S(fn) � 0, ∀n,

trace [S(fn)] = 1, ∀n, (12)

where β is an auxiliary scale variable. The last two constraints require a semi-definite CSDM and

unit transmit energy at every discrete frequency. In this formulation, we can arbitrarily choose

the desired beampattern pD(θk, fn) to be synthesized in a wideband MIMO radar.

B. Minimum sidelobe beampattern design

In some applications, the beampattern is required to satisfy strict sidelobe constraints. This can

be achieved by optimizing the CSDM S(fn) [17]. The minimum sidelobe beampattern design

for a wideband MIMO radar can be cast as the following semi-definite programming (SDP)



8

problem

min
{S(fn)}N/2−1

n=−N/2
,q

− q

s.t. S(fn) � 0, ∀n,

trace [S(fn)] = 1, ∀n,

aH(θ0, fn)S(fn)a(θ0, fn)− aH(θk, fn)S(fn)a(θk, fn) ≥ q, θk ∈ Θ, ∀n,

aH(θl, fn)S(fn)a(θl, fn) =
1

2
aH(θ0, fn)S(fn)a(θ0, fn), ∀n,

aH(θr, fn)S(fn)a(θr, fn) =
1

2
aH(θ0, fn)S(fn)a(θ0, fn), ∀n, (13)

where q is an auxiliary variable, Θ is the sidelobe regions, θ0 represents the main beam direction,

and θl and θr are the lower and upper angles determining the 3dB beam-width at each frequency.

The main beam direction and beam-width are determined by properly choosing θ0, θl and θr.

C. Min-max sidelobe beampattern design

Another sidelobe rejection constraint was proposed in [22] to obtain much flatter sidelobe

levels than that provided by the minimum sidelobe beampattern design. This approach, referred to

as min-max sidelobe beampattern design, can be modified for wideband MIMO radar beampattern

design, expressed as

min
{S(fn)}N/2−1

n=−N/2
,q

max
θk∈Θ

p(θk, fn)

s.t. p(θk, fn) = aH(θk, fn)S(fn)a(θk, fn), ∀n,

S(fn) � 0, ∀n,

trace [S(fn)] = 1, ∀n,

aH(θl, fn)S(fn)a(θl, fn) =
1

2
aH(θ0, fn)S(fn)a(θ0, fn), ∀n,

aH(θr, fn)S(fn)a(θr, fn) =
1

2
aH(θ0, fn)S(fn)a(θ0, fn), ∀n. (14)

This optimization problem is also convex and thus can be conveniently solved.
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IV. LOW PAR WAVEFORMS DESIGN METHOD

In narrowband MIMO radar, transmit waveforms can be designed according to a given corre-

lation matrix R [6, 8, 9]. For wideband MIMO radars, however, transmit waveform design based

on the correlation function matrix R̄(τ) becomes more complicated as R̄(τ) involves different

lags. To the best of our knowledge, low PAR waveform design based on the optimized CSDM

has not been considered so far. In the following, we propose a novel approach to design low

PAR waveforms that approximately satisfy a specified CSDM. The problem is first considered

for the case where the CSDM is rank-one, and then a general case for a higher-rank CSDM is

considered.

A. Single-rank Case

We first consider the simple case where the CSDM S(fn) at each frequency has a single

primary eigenvalue, whereas the other eigenvalues are negligible. In this case, S(fn) can be

expressed as

S(fn) = ynyHn , (15)

where yn represents the primary eigenvector. Performing eigen-decomposition of S(fn) for each

frequency fn, n = −N/2, . . . , N/2 − 1, we express the transmit waveforms in the frequency

domain as

Y = [y−N/2, y−N/2+1, . . . , yN/2−1] = [ỹ1, ỹ2, . . . , ỹM ]T , (16)

where ỹTm denotes the mth row of Y, m = 1, ...,M . The N -symbol transmit sequence xm
corresponding to each ỹm can then be computed through inverse discrete Fourier transform

(IDFT).

As the waveform is independently optimized in each frequency, the yielding waveforms

that combine all the frequency components will have a high PAR. Maintaining a low PAR

is important in practice to minimize energy loss and signal distortions. For this purpose, the low

PAR waveform design problem is described as

min
X,φ
‖Z− X‖F (17)

s.t. PAR(xm) ≤ ρ, ∀m,

‖xm‖22 = c, ∀m,
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where

Z = [̃z1, z̃2, . . . , z̃M ]TM×N , (18)

z̃m = IDFT[diag(φ)ỹm], (19)

X = [x1, x2, . . . , xM ]TM×N , (20)

IDFT(·) is the IDFT operator, and φ = [φ−N/2, . . . , φN/2−1] represents the phase ambiguities

because S(fn) is transparent to the signal group phase, i.e., ynφnφ∗nyHn = ynyHn = S(fn). In

addition, c is the energy transmitted from each transmitter, and ρ ≥ 1 is the maximum permissible

PAR of the mth sequence, defined as

PAR(xm) =
N max |xm(n)|2∑

n |xm(n)|2
. (21)

Note that ρ = 1 implies that the resulting waveform is constant-modulus.

Because of the complex expression (21), the minimization in (17) with respect to X and φ

does not have a closed-form solution. However, several local optimal solutions with respect to

either X or φ dimension are available. In the proposed iterative algorithm, this optimization

problem is solved by iteratively updating the individual optimization problems with respect to

the transmit waveforms X and the phase ambiguity φ. This kind of optimization techniques has

been applied in, e.g., [23, 24] with a guaranteed convergence. The proposed iterative algorithm

is summarized in Algorithm 1.

B. General Case

We now extend the proposed method to the general case where the rank of the CSDM S(fn)

is larger than one. In this case, S(fn) is expressed as

S(fn) = εn1yn1
yHn1

+ εn2yn2
yHn2

+ . . .+ εnD
ynD

yHnD
, (25)

where D is the number of the primary eigenvalues of S(fn), and εnd
and ynd

denote the dth

largest eigenvalue and the corresponding eigenvector, respectively. Similar to the single-rank

case as described in Section IV-A, each set of {ynd
}N/2−1n=−N/2 can be used to compute a set of

{Yd,Zd,Xd}, d = 1, ..., D.
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Algorithm 1 Iterative algorithm for waveform design
1: Apply eigen-decomposition to the given S(fn), and initialize φ = [ej0, . . . , ej0];

2: Compute Y and Z by Eqs. (16), (18), and (19);

3: For each m,m = 1, . . . ,M , solve the nearest-vector problems [25] to obtain xm based on

φ:

min
xm
‖z̃m − xm‖2 (22)

s.t. PAR(xm) ≤ ρ,

‖xm‖22 = c.

4: For each n, n = −N/2, . . . , N/2− 1, update φn based on the estimated X by solving

min
φn
‖ynφn − ŷn‖2, (23)

where ŷn is the nth column of [DFT(x1), DFT(x2),. . ., DFT(xM )]T , with DFT(·) representing

the discrete Fourier transform (DFT) operator. This minimization problem (23) has a closed-

form solution:

φn = exp{jarg[yHn ŷn]}. (24)

5: Repeat steps 2 to 4 until convergence is achieved.

It is noted that simultaneous transmission of the optimized waveforms Xd, d = 1, . . . , D, will

violate the PAR constraints. As such, the D waveforms are sequentially transmitted, i.e., the

transmit waveforms are expressed as

X̂ = [X1,X2, . . . ,XD]M×DN . (26)

Consequently, the low PAR waveform design problem in (17) can be modified as

min
X̂,φ
‖Ẑ− X̂‖F (27)

s.t. PAR(x̂m) ≤ ρ, for each m,

‖x̂m‖22 = c, for each m,

where Ẑ = [Z1,Z2, . . . ,ZD]M×DN . The solution for the minimization problem in (27) follows

the same iterative steps as in Algorithm 1.
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Note that, as the D waveforms are sequentially transmitted, the overall waveforms span a

longer time period as the number of significant eigenvalues increases. In practice, therefore,

there is a tradeoff between the pulse width and the code width such that the total waveform

length is acceptable.

C. Analysis

Unlike the WBFIT method [19], which only solves the beampattern matching problem, and

the SFBT method [18], which does not design low PAR waveforms based on a given CSDM, the

proposed algorithm can synthesize low PAR transmit waveforms which match any given CSDM

corresponding to an arbitrary beampattern. The proposed method is generally suboptimal because

there are distortions between the resulting beampattern and the desired one due to two factors.

One is caused by the negligence of insignificant eigen-terms in Eqs. (15) and (25). This error

can be controlled by properly choosing the number of effective eigenvalues of S(fn). A large

value of D generally yields a smaller error in (25), but will result in a longer transmit sequence.

Note that each eigen-term requires a separate waveform to be cascaded, and the waveform

magnitude is determined to meet the PAR requirement. Therefore, when a low PAR is required,

the waveform corresponding to a small eigenvalue, which has to be transmitted with a similar

power so as to meet the PAR requirement, yields overall beampattern distortion. Consequently,

we should choose a minimum number of primary eigenvalues, D, such that their sum exceeds a

certain percentage (say, 99%) of the sum of all eigenvalues, as suggested in [26]. On the other

hand, a strict low PAR constraint also results in mismatches between the optimized and desired

beampatterns, especially in multi-rank case. This can only be relieved by choosing a larger value

of ρ within the acceptable limit.

The overall computational complexity of the proposed method is O(L1KN(M2I2.5 + I3) +

NM3 + L2DMN(N + log2N)), where L1 and L2 are the numbers of iterations in each stage,

and I is the number of the constraints. In comparison, the complexities of WBFIT in [19] and

F1D-FIWTB in [20] are O(L3(K + M)NM2 + L4MN(N + log2N)) and O(M1N log2M1 +

L5MN(N + log2N)), respectively, where L3, L4, and L5 are, respectively, the numbers of

iterations in different stages, and M1 ≥ M . The computational complexity of the proposed

method is similar to the WBFIT method, and is slightly higher than the F1D-FIWTB because

the latter does not require iterations when computing the first term.
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V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate the effectiveness of the proposed

algorithm for wideband MIMO waveform design based on a given CSDM, which can be obtained

by the optimization methods described in Section III. Throughout the simulations, the carrier

frequency of the transmitted signals is fc = 1 GHz. The signal bandwidth is set as B = 100

MHz, and N = 64 frequency-domain samples are used. The inter-element spacing is set as half

wavelength at the highest in-band frequency to avoid grating lobes. In addition, the spatial region

is divided into K = 181 grid points.

A. Performance comparison

In this example, the number of transmit antennas is set as M=16. The minimum sidelobe

beampattern design method is adopted to design the desired beampattern pointing at 0◦ with a

main beam width of 8◦. The sidelobe regions are set as

Θ = [−90◦,−9◦] ∪ [9◦, 90◦],−N/2 ≤ n < N/2. (28)

Note that buffer zones with a width of 5◦ are assumed between the −3 dB power points and

the sidelobe regions. By solving the optimization problem (13), we obtain the CSDM S(fn) at

each frequency fn. The desired beampattern computed from the optimized CSDM is shown in

Fig. 1(a). In the proposed method, D is chosen to be 2, and the PAR constraint is set as ρ = 2.

As shown in Fig. 1(b), the beampattern synthesized by the actual waveforms is very close to the

desired one except small distortions in the sidelobe region. As shown in Fig. 2, when compared to

the synthesized beampattern using the method introduced in [19], the proposed method achieves

a lower sidelobe level as a result of the sidelobe constraint in the CSDM optimization, although

the mainlobe beamwidth becomes slightly wider. However, such constrained problem cannot be

solved by the method developed in [19].

B. Beampattern design with wide main beam

The rank of CSDM may increase with the increase of the width of main beam or the number

of main beams. In this example, the beampattern matching method is adopted to design the

transmit beampattern with a wide beam under the low PAR constraint. The ULA is assumed to
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Fig. 1. Beampatterns synthesized with respect to spatial angle and frequency using (a) the optimized CSDM and (b) the

proposed iterative algorithm with ρ=2.
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Fig. 2. Comparison of beampatterns generated by two different methods with respect to spatial angle dimension.

have M = 10 antennas. The desired beampattern is assumed as

pD(θk, fn) =

 1, −20◦ ≤ θk ≤ 20◦,

0, otherwise,
(29)

for all fn. That is, the beampattern has a main beam pointing at 0◦ with a beam-width of 40◦

across the entire frequency band. The desired transmit beampattern in spatial angle-dimension

is shown in Fig. 3. According to the optimized CSDM obtained by solving the problem in (12),

a set of frequency-domain waveforms {Y1,Y2,Y3} are generated, i.e., D = 3. The beampattern
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synthesized by the optimized CSDM is shown in Fig. 4. By applying the proposed method in

(27), the final extended transmit sequences can be obtained as X̂ = [X1,X2,X3]M×3N . We perform

the proposed method under two different PAR constraints of ρ = 1 and ρ = 2, respectively. The

corresponding beampatterns are shown in Fig. 5. The beampatterns with respect to the spatial

angle computed from the optimized CSDM and the designed waveforms are also shown in

Fig. 3 along with the desired one. It is evident from Fig. 5(a) that the transmit beampattern

synthesized by the actual waveforms suffers distortions owing to the strict constant modulus

(ρ = 1) constraint. By relaxing the constraint to ρ = 2, as shown in Fig. 5(b), the beampattern

distortions become much less significant. As such, we would need to trade off the PAR constraint

and acceptable beampattern distortions.
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Fig. 3. Comparison of beampatterns generated by four different methods.

C. Beampattern design with multiple frequency subbands

In this experiment, the ULA is assumed to have M=12 antennas. As shown in Fig. 6, a beam

pointing at 20◦ with a 10◦ beam-width is desired in one of the two equally divided subbands,

whereas another beam, pointing at −30◦ with the same 10◦ beam-width, is desired in the other

subband. In this case, the sidelobe regions are set as

Θ =

 [−90◦, 10◦] ∪ [30◦, 90◦], −N/2 ≤ n < 0,

[−90◦,−40◦] ∪ [−20◦, 90◦], 0 ≤ n < N/2.
(30)
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Fig. 4. Beampattern synthesized using the optimized S(f) with respect to spatial angle and frequency.
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Fig. 5. Beampatterns synthesized using the proposed method with respect to spatial angle and frequency: (a) ρ=1, (b) ρ=2.

The min-max sidelobe beampattern design in (14) is adopted to design the transmit beampat-

tern, and the single-rank CSDM is obtained. Fig. 6 shows the beampattern synthesized from

the optimized CSDM with respect to spatial angle and frequency. The transmit beampatterns

synthesized by the actual waveforms under the constraints of ρ=1 and ρ=2 are respectively

shown in Figs. 7(a) and 7(b). The comparison clearly shows that a higher PAR constraint allows

the synthesized beampattern to be smoother and less distorted. As the CSDM at each frequency

only has a single primary eigenvalue, the main beams suffer less distortion than the higher-

rank case in Subsection V-B. It is also revealed that the transmit waveforms can be effectively
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generated by the proposed method under a lower PAR or constant-modulus constraint with a

tolerable distortion in the single-rank case.
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Fig. 6. Beampattern synthesized using the optimized CSDM with respect to spatial angle and frequency.
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Fig. 7. Beampatterns synthesized using the proposed method with respect to spatial angle and frequency: (a) ρ=1, (b) ρ=2.

D. Beampattern design under special constraints

In some applications, special transmit beampatterns are desired. For example, certain airborne

radars require extreme low sidelobe in one side of the spatial angle regions in order to suppress

ground clutter. Other applications require no transmission to be made to a spatial region to
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avoid interference. Such constraints must be reflected in the waveform design. In this example,

a beampattern with single-side extreme low sidelobe (less than −20 dB) is desired with a ULA

of M = 15 antennas. The beampattern matching design in (12) is adopted, and the desired

beampattern is assumed as

pD(θk, fn) =

 1, −5◦ ≤ θk ≤ 5◦,

0, θk ∈ Θ,
(31)

for all fn, where Θ = [−90◦,−10◦], for all n. Note that in this example the sidelobe level in the

other side is not of a concern because it does not cause undesired interference. In this case, the

extra sidelobe constraint for the extreme low sidelobe requirement in the concerned single-side

is set as

10log10(aH(θj, fn)S(fn)a(θj, fn)− aH(θ0, fn)S(fn)a(θ0, fn)) ≤ −30dB, θk ∈ Θ. (32)

The WBFIT [19] and F1D-FIWTB [20] approaches provide a closed-form solution to obtain

the waveforms in the frequency domain in each iterative process. They are, however, effective

only when the optimization is unconstrained and thus fail to solve this waveform design problem

for the particular constraint described in (32). However, the approach proposed in this paper

can obtain the CSDM corresponding to the desired beampattern by solving the optimization

problem in (12) subject to the additional constraint (32). Applying the proposed waveform

design algorithm to the optimized CSDM, the extended waveforms (D = 2) are obtained under a

PAR constraint of ρ = 2. The beampatterns synthesized by the optimized CSDM and the actual

waveforms are shown in Fig. 8 with respect to the spatial angle and frequency. Both requirements

described in (31) and (32) are satisfied, and the distortion of the beampattern synthesized by the

actual waveforms is insignificant and is confined within the sidelobe regions.

VI. CONCLUSION

In this paper, we proposed a novel optimization method to design transmit waveforms based

on arbitrary cross-spectral density matrix (CSDM) for wideband multiple-input multiple-output

(MIMO) radars. In particular, the proposed waveform design methods yield waveforms that

satisfy low peak-to-average ratio (PAR) constraints while meeting the specified CSDM. The

proposed techniques were successfully applied to handle both single-rank and multi-rank cases,

and to support multiple frequency subband and single-side beampattern syntheses. Simulation
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Fig. 8. Comparison of beampatterns with respect to spatial angle and frequency: (a) synthesized by optimized CSDM, (b)

synthesized by actual waveforms with ρ=2.

results verified the effectiveness of the proposed algorithm for designing low PAR waveforms

that synthesize the desired beampatterns.
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