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This paper provides statistical analysis for efficient detection of signal components when
missing data samples are present. This analysis is important for both the areas of L-
statistics and compressive sensing. In both cases, few samples are available due to either
noisy sample elimination or random undersampling signal strategies. The analysis enables
the determination of the sufficient number of observation and as such the minimum
number of missing samples which still allow proper signal detection. Both single
component and multicomponent signals are considered. The results are verified by
computer simulations using different component frequencies and under various
missing-available samples scenarios.
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1. Introduction

Robust transforms have been introduced to deal with
signals affected by impulsive noise [1–18]. These trans-
forms, which use robust statistics and Huber's estimation
theory, were originally applied to the Fourier transform
and then extended to the time–frequency analysis [1,2].
One of the most effective robust methods is the
L-estimation form, obtained by using the L-statistics. The
main idea is to remove samples corrupted by impulsive
noise (by using trimming procedure) and to compute
the transform using the remaining incomplete set of
samples. Thus, the L-estimation can lead to significantly
reduced number of signal samples or observations. Having
in mind random positions of these observations, the
problem can be cast as compressive sensing (CS) if the
underlying signal is sparse in a particular domain. In this
All rights reserved.

: +38 220244921.
c.me (L. Stankovic),
va.edu (M. Amin).
respect the task becomes sparse signal reconstruction with
a large number of missing samples [7–17]. Although there
are numerous papers on the L-estimation, the appropriate
number of samples that should be omitted remained
unclear [2]. As a consequence, we might end up throwing
much more samples than needed to ensure noise elimina-
tion. The missing samples effect as a source of generation
of undesirable sidelobes in the spectral analysis of non-
uniformly sampled data sequences has been considered in
[19]. In this paper, analysis of the effects of missing samples
on transform values is performed from a noise perspective.
It is shown that the missing samples, when using the
discrete Fourier transform (DFT), could be described by a
new type of noise which deteriorates signal representation
[20]. Increasing the number of missing samples increases
the corresponding noise level, rendering signal component
detection more difficult. The expression which relates the
number of missing samples to the statistics of this noise is
derived. This relation is also crucial for the analysis of the
initial steps (transforms) in the sparse signal reconstruction
algorithms [7–13].
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The paper is structured as follows. After Introduction,
the variance of induced noise, generated by missing
samples, is derived. This analysis is further extended to
general sparse signals. Theoretical results are illustrated by
numerical examples.

2. Theory

Both the L-estimation based robust signal analysis and
the CS deal with an incomplete set of randomly selected
samples. Unlike in the L-estimation where the reduced
observations are the consequence of omitting corrupted
noisy samples, in the CS the missing observations are the
result of the sampling strategy. In both cases, the signal
is assumed sparse in the transformation domain.

Consider a set of M signal values:

Θ¼ fsð1Þ; sð2Þ;…; sðMÞg:
Without loss of generality, assume that the signal samples
are zero-mean. Furthermore, consider the DFT domain, as
an example of a sparse signal transform and a study case in
this paper. A signal which is sparse in the DFT domain can
be written as

sðnÞ ¼ ∑
K

i ¼ 1
Aiej2πk0in=M ; ð1Þ

where the level of sparsity is K5M, while Ai and k0i
denote amplitudes and frequencies of the signal compo-
nents, respectively. The DFT of this signal is

SðkÞ ¼ ∑
M

n ¼ 1
∑
K

i ¼ 1
Aie�j2πðk�k0iÞn=M ¼ ∑

M

n ¼ 1
∑
K

i ¼ 1
AixðnÞ: ð2Þ

Normalized signal components expðj2πnk0i=MÞ are multi-
plied by the basis function expð�j2πnk=MÞ to produce
xðnÞ ¼ expð�j2πnli=MÞ, where li ¼ k�k0i is assumed to be
an integer. Values of x(n) are from the set

Φ¼ fe�j2πnli=M ; n¼ 1;2;…;Mg: ð3Þ
Note that k≠k0i implies li≠0.

Relation among the members of set Φ is

xð1Þ þ xð2Þ þ⋯þ xðMÞ ¼ 0: ð4Þ
This is evident for any li≠0. Cases when li ¼ 0 will be
analyzed separately.

Consider a subset of MA≤M randomly positioned avail-
able samples from Φ:

Ψ ¼ fyð1Þ; yð2Þ;…; yðMAÞg⊂Φ:
This set corresponds to a compressed signal. The same
holds after applying the L-statistics to x(n) to remove the
corrupted samples. In both cases, MQ ¼M�MA signal
samples are unavailable though for different reasons.

In linear discrete signal transforms, where the inner
products are performed between the signal values and
the basis functions, omitting some of the signal samples
produces the same result as if these samples assume
zero values. Thus, the basic idea is to model missing
samples with zero values, since any sum over all values
in the subset Ψ ¼ fyð1Þ; yð2Þ;…; yðMAÞg will be the same
as the sum over all values within the complete set
Φ¼ fxð1Þ; xð2Þ;…; xðMÞg with removed/unavailable sam-
ples, belonging to ϒ ¼Φ�Ψ , being set to zero.

A transform with a reduced number of signal samples
can be considered as transform of complete set of samples,
affected by disturbance (noise). For K¼1 and A1 ¼ 1,
k01 ¼ k0, l¼ k�k0,

εðnÞ ¼
0 for remaining signal samples
�xðnÞ ¼�ej2πnl=N for removed ðunavailableÞ signal samples:

(

The DFT over the available set of samples from Ψ will be

XðkÞ ¼ Xl ¼ ∑
MA

n ¼ 1
yðnÞ ¼ ∑

M

n ¼ 1
½xðnÞ þ εðnÞ�:

It is a random variable formed as a sum of MA randomly
positioned samples

yðnÞ∈Ψ⊂Φ¼ fxð1Þ; xð2Þ;…; xðMÞg:
In our example, this random variable corresponds to the
DFT of a CS signal or to the L-estimation based DFT
calculation. Samples x(n) depend on k. The same holds
for y(n). Note that due to (4), the statistics is the same for
the sum of complementary samples (disturbance εðnÞ)
from the set ϒ ¼Φ�Ψ containing MQ ¼M�MA missing
values.

Obviously, for l≠0,

EfXl≠0g ¼ 0

since EfyðnÞg ¼ 0 and EfxðmÞg ¼ 0. For l¼0 (k¼ k0)

EfXl ¼ 0g ¼MA

holds, since for this value of l all xðnÞ ¼ 1. Thus, X is a zero
mean random variable for l≠0 and deterministic for l¼0.
Therefore, removing/omitting samples in the L-estimation
or in the initial transform of the CS algorithm corresponds
to a new additive noise. The resulting noise depends on
the signal, the total number of samples, and the number of
missing samples.

Let us now calculate the variance of this noise in Xl for
l≠0. It is defined by

varfXg ¼ Ef½yð1Þ þ yð2Þ þ⋯þ yðMAÞ�½yð1Þ þ yð2Þ þ⋯þ yðMAÞ�ng
¼ Efjyð1Þj2g þ Efjyð2Þj2g þ⋯þ EfjyðMAÞj2g
þEfyð1Þynð2Þg þ Efyð1Þynð3Þg þ⋯þ Efyð1ÞynðMAÞg
þEfyð2Þynð1Þg þ Efyð2Þynð3Þg þ⋯þ Efyð2ÞynðMAÞg
⋮

þEfyðMAÞynð1Þg þ EfyðMAÞynð2Þg
þ⋯þ EfyðMAÞynðMA�1Þg ð5Þ

Obviously,

Efjyð1Þj2g þ Efjyð2Þj2g þ⋯þ EfjyðMAÞj2g ¼MA:

According to the assumption, all signal samples are not
statistically independent for l≠0. They satisfy (4). By multi-
plying (4) with x(i) we obtain

xðiÞ½xð1Þ þ xð2Þ þ⋯þ xðMÞ�n ¼ 0

with expectation

∑
M

j ¼ 1
EfxðiÞxnðjÞg ¼ 0: ð6Þ
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Since all variables x(n) are equally distributed we may write

EfxðiÞxnðjÞg ¼ B for i≠j;
EfxðiÞxnðiÞg ¼ 1:

From (6) we obtain

B¼ Efx ið Þxn jð Þg ¼ Efy ið Þyn jð Þg ¼ � 1
M�1

for i≠j:

Nowwe can easily calculate terms in (5), for example, the first
line (with mixed terms) produces

Efy 1ð Þyn 2ð Þg þ Efy 1ð Þyn 3ð Þg þ⋯

þEfy 1ð Þyn MAð Þg ¼ MA�1ð Þ � 1
M�1

� �
:

The same result holds for all other lines with mixed terms in
(5). Finally, the variance of Xl, for l≠0, is

varfXl≠0g ¼MA þ MA�1ð Þ � 1
M�1

� �
MA ¼MA

M�MA

M�1
: ð7Þ

For MA5M a rough approximation varfXl≠0g≈MA fol-
lows. It corresponds to the assumption of statistically
independent values x(n).

3. Amplitude analysis of the signal and CS noise
in the DFT

It is easy to find the ratio of the DFT value at the signal
position l¼0 and the DFT value at any other position l≠0.
This ratio may be used as a measure of the wrong signal
detection event. The DFT value at the signal position is
Xl ¼ 0 ¼MA since all terms are added in phase for the signal
component. Variable Xl≠0 is complex-valued, zero-mean,
with variance (7). If the number of missing or available
samples is not too small, then according to the central
limit theorem the real and imaginary parts of variable Xl≠0
behave as Gaussian variables with variance

s2

2
¼ varfXl≠0g

2
¼MA

M�MA

M�1
=2:

Absolute value of Xl≠0 is therefore Rayleigh distributed. In
the Rayleigh distribution, a random variable jXl≠0j is below
T95 ¼

ffiffiffi
3

p
s with probability 0.9508. Thus, the ratio����� Xl≠0

Xl ¼ 0

�����o
ffiffiffi
3

p
s

MA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðM�MAÞ
MAðM�1Þ

s
¼ R95 ð8Þ
20 40 60 80 100 120
10-2

10-1

100

M=128

M
Q

R
95

10

10

1

Fig. 1. The DFT amplitude ratio at the signal position and outside the signal posit
MQ ¼ 256, 384, 448, and 496 are indicated by dashed red lines. (For interpretatio
the web version of this article.)
holds with probability 0.95. For example, for M¼256 and
MA ¼ 32; the value of jXl≠0j is greater than 0:27jXl ¼ 0j with
probability 5%. Threshold for any other probability can be
easily calculated.

This ratio can be used to find the range of MA that
the initial CS and the L-estimate algorithm will be able
to detect signal component. It is especially important
in multicomponent signal cases, whose detailed analysis
follows. Then, all components, for a given MQ ¼M�MA;

below the noise level will be lost in the DFT. The ratio R95
as a function of MQ is presented in Fig. 1. For small number
of missing samples MQ (large number of available samples
MA), this ratio is very small. It means that the values Xl≠0,
caused by missing samples, are very small compared to the
signal value Xl ¼ 0. On the other side, just a few available
samples MA ¼M�MQ are enough to make this ratio lower
than 1 and as such enable detection of a sinusoid in one-
component signal. This is in accordance with the fact
that a real sinusoidal signal is determined by only three
independent signal samples [21].

Before we proceed with multicomponent signals, the
theoretical results from this section are statistically
verified. Two quantities are calculated and checked. The
variance is calculated according to relation (7) for various
M and MA. Then, the statistical results are obtained for the
same variance and various M and MA based on 100 000
realizations with randomly positioned samples. The results
for variance produced by the theory are given in Table 1,
in the column denoted by Var(T). The statistical results for
the same variance are presented as Var(E) in the same
table. It is obvious that the results matching is very high.

The level R95 is also calculated using (8) for various M
and MA. Then the DFT with removed/unavailable samples
is calculated. The DFT values at l≠0 above R95jXl ¼ 0j are
detected and their percent (with respect to the total
number of DFT value) is calculated. It should be just below
5%. The statistically obtained percent for various M and MA

is given in the column denoted by P5% of Table 1. Matching
with the true value (4.98%) is also high.

Case1: For M¼128 samples and various numbers of
randomly positioned missing samples, the variance rela-
tion (7) and the level of 0.95 are calculated. The results are
given in Table 1 (left). Note that the variance values (Var)
for MQ 4M=2 are the same as for M�MQ . This is obvious
100 200 300 400 500
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00

M=512

M
Q
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95

ion for M¼128 (left) and M¼512 (right). The values of R95 for M¼512 and
n of the references to color in this figure caption, the reader is referred to
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from (7). It is statistically verified and presented in Table 1
(for MQ ¼M�32¼ 96 and MQ ¼M�16¼ 112).

Case2: The same results are presented for M¼512 and
MQ up toM/2. ForMQ 4M=2 the results are the same as for
M�MQ , Table 1 (right).

The illustration of the DFT for a single signal realization,
with various number of available samples, is presented in
Fig. 2. The reference level of R95jXl ¼ 0j, calculated accord-
ing to (8), is presented by a horizontal dashed line.
In multicomponent signals, a similar reference level will
play a role of a detection threshold. Note also that if the
noise-alone values of X(k) satisfy the condition that they
are approximately zero-mean Gaussian, then it can be
checked that they are also uncorrelated and approximately
jointly Gaussian for various values of k.

If a window is used in the DFT calculation, then for some
common window forms the windowed DFT values can be
easily related to the ones calculated without a window. For
Table 1
Statistical variance (denoted by (E)) with theory obtained one (denoted
by (T)) for M¼128 (left) and M¼512 (right) and various number of
missing samples. The probability level of 4:98%≈5% is statistically
checked.

MQ P5% Var(E) Var(T) MQ P5% Var(E) Var(T)

8 4.64 7.60 7.56 16 4.87 15.55 15.53
16 4.81 14.16 14.11 32 4.80 29.85 30.06
24 4.76 19.64 19.65 48 4.90 43.71 43.59
32 4.79 24.15 24.19 64 4.95 56.04 56.11
40 4.89 27.65 27.72 96 5.01 78.29 78.15
48 4.97 30.26 30.24 128 4.89 95.96 96.19
56 4.91 31.71 31.74 160 5.01 110.14 110.22
64 4.93 32.15 32.25 192 4.95 120.17 120.23
96(32) 4.77 24.13 24.19 224 4.91 126.12 126.25
112(16) 4.80 14.19 14.11 256 4.93 127.69 128.25
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Fig. 2. Illustration of the DFT of one signal component for different number o
samples obtained by theory. Threshold level R95MA is plotted by a horizontal da
example, for the Hann(ing) window over the whole data
set the windowed DFT is XHðkÞ ¼ 0:25Xðk�1Þ þ 0:5XðkÞþ
0:25Xðkþ 1Þ. The variance of XH(k) with the Hann(ing)
window is s2H ¼ 3s2=8. Similar relations can be written for
the Hamming or the Blackman window.

4. Multicomponent signal analysis

The analysis will be extended to a variable xðnÞ∈Φ
of the form

xðnÞ ¼ A1 expð�j2πnl1=MÞ þ A2 expð�j2πnl2=MÞ
þ⋯þ AK expð�j2πnlK=MÞ;

corresponding to a K-component signal, defined by (1) and
(2), where l1 ¼ k�k01, l2 ¼ k�k02, …, lK ¼ k�k0K in the
study case of DFT analysis. Values of x(n) depend on k as
well. The mean value of a subset Ψ of MA≤M randomly
positioned values yðnÞ∈Ψ⊂Φ¼ fxð1Þ; xð2Þ;…; xðMÞg is
EfXlg ¼ A1MAδðl1Þ þ A2MAδðl2Þ þ⋯þ AKMAδðlK Þ:
The DFT variance at the points where there are no signal
components (i.e., l1≠0, l2≠0, … lK≠0) is

s2N ¼ varfXli≠0g ¼ ∑
K

j ¼ 1
A2
j MA

M�MA

M�1
; ð9Þ

since the signal components are uncorrelated zero-
mean. At a frequency point of a signal component, for
li ¼ 0, we get

s2Si ¼ varfXli ¼ 0g ¼ ∑
K

j ¼ 1;j≠i
A2
j MA

M�MA

M�1
ð10Þ

for the DFT variance. It means that a DFT of the signal
sample Xli ¼ 0 will be a random variable disturbed by an
additive noise so that the resulting variance is s2Si ; while
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shed line.
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the noise only DFT values will be random variables with
variance s2N .

Next, we will find a probability that a DFT value of noise
at any l1≠0, l2≠0, … lK≠0 is higher than a signal DFT value,
for example, at l1≠0, …, li�1≠0, li ¼ 0, liþ1≠0,…, lK≠0.
This case corresponds to a false signal detection of the
ith component.

Real and imaginary parts of noise-alone DFT value can
be described by Gaussian distribution, according to the
central limit theorem:

N ð0; s2N=2Þ
with zero mean and variance s2N defined by (9). Real and
imaginary parts of the signal DFT value can be described
by Gaussian distribution

N ðMAAi;s
2
Si
=2Þ; N ð0; s2Si=2Þ; ð11Þ

respectively, where MAAi is the mean and variance s2Si
is defined by (10). A real-valued Ai is assumed without any
loss of generality.

The probability density function (pdf) for the absolute
DFT values at the position of the ith signal component,
li ¼ 0 (whose real and imaginary parts are described by
(11)) is Rice-distributed:

p ξð Þ ¼ 2ξ
s2Si

e�ðξ2þA2
i M

2
AÞ=s2Si I0 AiMA2ξ=s2Si

� �
; ξ≥0 ð12Þ

where I0 is the zero-order modified Bessel function.
The probability density function for the absolute

DFT values outside the signal components is Rayleigh-
distributed (Rice-distribution with AiMA ¼ 0 and I0ð0Þ ¼ 1)

q ξð Þ ¼ 2ξ
s2N

e�ξ2=s2N ; ξ≥0:

The DFT at a noise-alone position takes a value greater
than Ξ, with probability

Q Ξð Þ ¼
Z 1

Ξ

2ξ
s2N

e�ξ2=s2N dξ¼ exp �Ξ2

s2N

 !
: ð13Þ

The probability that a DFT of noise-alone is lower than Ξ
is ½1�Q ðΞÞ�. The total number of noise-alone points is
MK ¼M�K , where K is the number of signal points. The
probability that MK independent DFT noise-alone values
are lower than Ξ is ½1�Q ðΞÞ�MK . Probability that at least
one of MK DFT noise-alone values is greater than Ξ is

GðΞÞ ¼ 1�½1�Q ðΞÞ�MK : ð14Þ
When a noise-alone DFT value surpasses the DFT signal
value, then an error in the considered methods occurs.
To calculate this probability, consider the absolute DFT
value of a signal component at and around ξ. The DFT
value at the signal position is within ξ and ξþ dξ with the
probability pðξÞdξ , where pðξÞ is defined by (12). The
probability that at least one of MK DFT noise-alone values
is above ξ in amplitude is GðξÞ ¼ 1�½1�Q ðξÞ�MK . Thus, the
probability that the absolute DFT signal component value
is within ξ and ξþ dξ and that at least one of the absolute
DFT noise-alone values outside the DFT signal value
exceeds the DFT signal value is GðξÞpðξÞdξ. Considering all
possible values of ξ, from (13) and (14), it follows that the
probability of the wrong detection of the ith signal
component is

PE ¼
Z 1

0
G ξð Þp ξð Þ dξ

¼
Z 1

0
1� 1�exp � ξ2

s2N

 !" #MK
0
@

1
A 2ξ

s2Si
e�ðξ2þA2

i M
2
AÞ=s2Si I0

�ðAiMA2ξ=s2Si Þ dξ: ð15Þ

4.1. Approximative error expression

Approximation of this expression can be calculated by
assuming that the DFT of the ith signal component is not
random and that it is equal to MAAi (positioned at the
mean value of the signals DFT). This approximation
assumes that the influence of noise to amplitude is
symmetric and equally increases and decreases the DFT
signal value. The form of error probability is then very
simple

PE≅1� 1�exp �M2
AA

2
i

s2N

 !" #MK

: ð16Þ

This expression can be used for simple rough approxima-
tive analysis.

The mean of a Rice-distributed variable described by
(12) is

MRice ¼ sSi
ffiffiffi
π

p
L1=2ð�M2

AA
2
i =s

2
Si Þ=2≅MAAi;

where L1=2ðxÞ ¼ ex=2½ð1�xÞI0ð�x=2Þ�xI1ð�x=2Þ�, and I1ðxÞ is
the modified first-order Bessel function. The variance of
the Rice-distributed variable is

varRice ¼ s2Si þM2
AA

2
i �M2

Rice≅s
2
Si :

From numerical analysis, we concluded that a closer
approximation than (16) is achieved if the Rice distribution
mean is slightly corrected, for one standard deviation, as
MRice�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varRice

p
. The explanation lies in the fact that the DFT

amplitudes lower than the mean value contribute more to
the error than those above the mean value. Then,

PE≅1� 1�exp �ðMAAi�sSi Þ2
s2N

 !" #MK

: ð17Þ

It will be shown that this simple expression is a good
approximation. It predicts almost exactly 1% error level as
the very complex integral form in (15). The variances
s2N and s2Si are defined by (9) and (10). Note that as far as
M is large and the signal is sparse (K5M) the exponent in
(16) and (17) is large. Then, the exponent variations from
M�K to M will have small influence to the expression
value. Thus, for M and K satisfying the above conditions we
may use M instead of MK in the approximative error
expressions.

The approximations will be checked on an example
with a sparse signal. Probabilities of detection error for
a four component signal of amplitudes A1 ¼ 1, A2 ¼ 0:5,
A3 ¼ 0:25, and A4 ¼ 0:1 are shown in Fig. 3. Probabilities
are calculated for each signal component, according to (15)
and (17). Results obtained by the exact integral (15) are
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shown by a dashed line, while the ones calculated using
the simple approximation (17) are given by a solid line.
We can see that the strongest component is detectable
with a very small number of available samples, as
expected. The number of required available samples
increases as the amplitude of a component decreases. A
level of error probability of 1% is presented by a thick
horizontal line in this figure. Both results are highly
consistent at this important level, which defines the
number of samples required to detect a component with
99% probability.

Now we will discuss the results on a single realization
of the considered sparse signal, for M¼512 and various
number of available samples, Fig. 4.

Based on the theoretically calculated level, it is easy to
conclude that: (1) The strongest signal component with
A1 ¼ 1 will be detectable with a quite small number of
random samples. From Fig. 3 (M¼512, upper subplot) we
see that MA415 random samples are sufficient. (2) From
the same figure we see that the next component with
A2 ¼ 0:5 will be detected with MA475. (3) The component
with A3 ¼ 0:25, in this case, requires MA4220 random
samples, while (4) for the weakest component with
A4 ¼ 0:1 we need MA4420 samples in order to detect it.
This is in accordance with the single DFT realization shown
in Fig. 4 for different number of the available samples MA.
For the first two subplots (MA ¼ 16 and MA ¼ 32) only the
strongest component is detectable in the L-estimation
or in the initial transform in the CS. For MA ¼ 128 two
components are detected in this stage, while MA ¼ 384
clearly indicates existence of three components in the
analyzed signal with missing MQ ¼M�MA ¼ 128 samples.
The 5% level is defined by the threshold T95 ¼

ffiffiffi
3

p
sN with

s2N ¼ A2
eMAðM�MAÞ=ðM�1Þ. The effective signal value Ae

can be estimated using MA available signal samples s(n)
as A2

e ¼∑K
j ¼ 1A

2
j ¼∑njsðnÞj2=MA. In addition to the 5% level

here we have also drawn the 0.1% level, calculated using
T99:9 ¼ 1:5T95.

The results presented in this paper can be used to
improve performance and to reduce calculation complex-
ity of the standard CS algorithms. Research in this direc-
tion is under the way. Recently, significant efforts have
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Fig. 4. Illustration of four component signal for different number of available samples, along with the threshold calculated by theory. Detection threshold
T95 for 5% level is presented by a dash line, while the threshold T99 for 0.1% level is given by a dash-dot line.
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been done to extend the notion of sparsity and to apply
the CS algorithms to the signals that are not sparse in any
common discrete transformation domain. Such an exam-
ple is the spectral analysis of close sinusoids with frequen-
cies outside the frequency grid. They are not sparse in the
DFT, but could be processed using a combination of the
spectral domain interpolation (to improve sparsity) and
the high-resolution methods, like the MUSIC with the CS
algorithms [22]. Extension of the presented theory beyond
the standard sparse signals framework to the results that
could be obtained by combinations of several methods and
algorithms is a significant challenge for future research.
5. Conclusion

We provided analysis for the determination of the
number of missing samples allowed for accurate detection
of sinusoidal signals. This analysis proves useful when
applying L-statistics and when using sparse signal recon-
struction techniques with Fourier basis. The latter is clearly
the case in orthogonal matching pursuit. The analytical
expressions derived are validated by computer simulations
for a single and multiple components and under different
numbers of missing and available samples. The proposed
approach can be generalized for all existing L-estimate
based signal transforms and L-estimation based time–
frequency distributions.
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