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I. INTRODUCTION

The existence of targets in enclosed structures

comprising walls, floors and ceilings, as in the case of

through-the-wall (TTW) sensing, introduces multipath

returns in the received radar signal. These returns

could be confused for false targets, causing high false

alarms in the conventional TTW localization system

comprising an array of sensor elements. However,

multipath can be exploited for target localization

without the need to employ a physical or synthesized

aperture. Instead, a single antenna radar system may

be used. In essence, multipath returns may be utilized

to provide additional virtual sensors permitting

noncoherent target localization and such an approach

is pursued in this paper. The single-sensor approach

to urban target localization is a viable, cost effective,

and physically smaller, sensing solution for target

localization in TTW radar as well as in urban canyon

situations [1—20].

TTW localization via a synthetic aperture radar

(SAR) based system comprising multiple sensors has

been extensively reported in the literature [5—12].

In [14] multipath was exploited, in the context of

time reversal, to improve the beamformed image

for a TTW scenario, but not for enlarged aperture.

Noncoherent localization using multiple sensors for

a single target in a TTW environment was analyzed

in [12], [13], and references therein, but multipath

was not specifically analyzed or exploited for target

localization. Multipath exploitation techniques have

also been reported in the literature [15—19, 21]. In

[15] a range Doppler map for a single target direct

line-of-sight (LOS) path and its multipath in an urban

canyon is provided; the authors used both the single

bounce as well as the double bounce multipath and

a model for the multipath was assumed. In [16] a

statistical detection technique was advocated for a

single moving target in an urban canyon exploiting

the specular multipath, and an orthogonal frequency

division multiplexing (OFDM) radar model was

proposed for incorporating the multipath Doppler

shifts. The authors in [17] evaluated the potential for

utilizing specular multipath reflections to improve

detection for an airborne system. In [18] it was

demonstrated experimentally that indoor targets, such

as rotating fans and a walking person with a metal

reflector, are detected via their respective multipath

only. In [19] target tracking via multipath exploitation

and waveform selection was developed assuming a 3D

model in an urban canyon. A state space formulation

was derived and a particle filter was used to track the

target. The model assumed either constant Doppler or

turning motions for a single target. In [21] multipath

reflections were fused with the direct paths to achieve

localization for pure reflectors using a passive sensing

system with multiple sensors.
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Our single-sensor-based technique exploits

multipath to provide additional virtual sensors for

localization and is quite different from the methods

discussed above. Localization was neither the

objective nor was it discussed in [15]—[18], whereas

in [19], the authors fuse both the Doppler and the

range information of a single target in a model to

perform tracking. Our method, on the other hand,

does not include any Doppler information, nor is it

model specific. Unlike the multi-sensor approach

taken in [21], we assume an active sensing system,

which utilizes a single sensor for localization. In order

to achieve single-sensor-based target localization,

our approach assumes knowledge of the layout

of surrounding walls and reflecting surfaces. This

assumption is also made in [21] for fusing the

multipath reflections into their weighted least squares

cost function. The knowledge of surrounding walls

may be available either through city and building

blueprints or from prior surveillance operations

[15—17, 19]. While surrounding walls in TTW sensing

consist of side, front, and back walls, only two

adjacent side walls are typically considered in urban

canyon situations. We focus on the localization of

targets using a single sensor by exploiting multipath

returns. As part of the preprocessing required for our

technique, it is necessary to suppress the dominant

nontarget returns from the signal. For slow moving

targets, this may be achieved through basic moving

target indication (MTI) processing, such as pulse

delay line cancellation [5]. While for stationary

targets, the suppression may be achieved by the

subtraction of a prerecorded reference scene from the

data being processed.

In this paper, we cast target-wall multipaths

as emanating from virtual sensors. We initially

demonstrate the principle of target localization for a

single target scene by utilizing the specular reflections

from a single wall. It is then shown that, in the

presence of additional walls, correct associations of

the multipath returns with their respective walls must

be performed. To this end, we derive an algorithm

to trace each multipath’s time-of-arrival (TOA)

to its particular wall, and validate this association

through simulation. For multiple targets, localization is

achieved by sequentially grouping the TOAs for each

target. The wall association routine is then applied to

each group separately.

We primarily discuss target localization for

the case of unobstructed LOS, i.e., in free-space.

Since a front wall in TTW scenario encloses the

target inside a rectangular room and separates it

from the sensor, we also derive a nonlinear least

squares (NLS) approach, which compensates for the

wall propagation effects for accurate TTW target

localization. The analysis presented here considers

two-dimensional scenes with point targets, since

this is sufficient to describe the technique. However,

Fig. 1. Simple multipath model from single wall.

extensions to the third dimension, accounting for

multipath reflections from the floor and ceiling, and

to incorporate extended targets are a straightforward

matter. The proposed techniques can be readily

extended following the methodology in [9], [20].

The remainder of the paper is organized as

follows. In Section II the principle of localization

via multipath is examined analytically, and a model

incorporating the surrounding walls, namely two

side walls and a back wall, is derived. We present an

algorithm which allows the respective multipath TOAs

to be associated correctly to their respective walls.

In Section III multiple targets are considered and a

TOA clustering technique is derived through which

target localizations are achieved. In Section IV the

devised techniques are tailored to address TTW target

localization. Simulation and experimental results are

provided in Section V, and conclusions are presented

in Section VI.

II. MOTIVATION & MODEL

A. Motivation

Consider Fig. 1 which shows the sensor-target

geometry. There is a single sensor (monostatic radar)

at point R and a target at point A, which is adjacent

to a smooth reflecting wall (wall 1). The position

vectors of the radar and the target are, respectively,

given by R= [¡Dx,0]T and xt = [¡xt,yt]T in the
Cartesian coordinate system. We assume that the

radar waveform is sufficiently wideband so that the

multipath and direct path returns are resolved.

The direct path return corresponds to the signal

that propagates to and from the target along the direct

path RA. In addition to the direct path, there is an

indirect path RBA by which the signal may reach

the target. This indirect path involves a reflection

on the wall at point B. There are two types of

multipath returns, which arise because of the different

permutations of the round trip the signal may take

to the target when path RBA is considered. The first

type corresponds to the first-order multipath, in which

the signal round trip consists of a leg along path RA,
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Fig. 2. Principle of localization.

and a leg along path RBA. The order in which the

signal propagates along the two paths is not important.

Traveling out along RA and returning along RBA

has the same TOA as traveling out along RBA and

returning along RA; both permutations, therefore, lead

to a single return. The second type is the second-order

multipath, which travels to and from the target along

path RBA. Depending on the context, both the first-

and second-order multipath returns are referred to

generally as multipath in the rest of the paper.

The smoothness assumption of wall 1 implies

specular reflections at point B. As a result we observe

from Fig. 1 that reflecting the indirect path about

wall 1 yields an alternative radar-target geometry. The

point R1 is defined as the virtual radar and R1B = RB.

Additionally, we obtain the virtual target denoted

as A1 and A1B = AB. It is readily seen from the

geometry that the virtual target and the virtual radar

position vectors are given by [xt,yt]
T and [Dx,0]

T,

respectively. Considering Fig. 2, we observe that the

first-order multipath has the same time delay as a

bistatic configuration, comprising the radar and the

virtual radar. That is, in terms of the range, we have

RA+AB+BR = RA+RA1 = RA+R1A (1)

where RA+R1A represents the bistatic configuration,

i.e., the signal propagates from the radar to the

target, and is received by the virtual radar. The

constant range contour corresponding to the first-order

multipath, represented by the dashed line in the figure,

is thus an ellipse, which has foci at the radar and

the virtual radar and passes through the target and

the virtual target locations. On the other hand, the

round trip along the direct path and the second-order

multipath, being monostatic measurements, have

circular constant range contours (the solid black

and dotted gray lines), centered, respectively, at

the radar and the virtual radar, with both passing

through the target location. Both the circles and the

ellipse, therefore, intersect at the true target location

xt. Mathematically, we seek a common intersection

point of

x2

a21
+

y2

a21¡ c21
= 1

a1 :=

p
(xt+Dx)

2 + y2t +
p
(xt¡Dx)2 + y2t

2

c1 :=Dx

(x+Dx)
2 + y2 = (xt¡Dx)2 + y2t

(x¡Dx)2 + y2 = (xt+Dx)2 + y2t

(2)

where the first expression is the equation for the

ellipse, and the remaining two expressions in (2) are

the equations for the circles. There exist two solutions

to this system of equations; the first is the true target

location xt, and the other is at [¡xt,¡yt]T, which is
behind the radar.

B. Free-Space Model

In practice when considering multiple walls

such as those shown in Fig. 3, additional processing

must be performed, which is not applicable in the

single-wall scenario. In essence, the TOAs will

need to be associated to the sources of multipath,

1998 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 3 JULY 2012



Fig. 3. Free-space model and scene.

namely walls 1, 2, and 3. Without correct associations,

the ellipses and circles may not all intersect at

the true target coordinates. Figure 3 represents an

urban canyon type geometry in which the target

is located at xt. Specular multipath is considered.

The location and the extent Di, i= 1,2, of the side

and back walls are assumed known. The rest of the

target and radar parameters are identical to those in

Figs. 1 and 2. For clarity, the direct path is denoted

as path A, whereas the multipath from walls 1, 2,

3 is, respectively, denoted as paths B, C, and D.

Higher order multipaths, which incorporate multiple

reflections at the walls, are ignored as they suffer

from severe fading and may be too weak to be

observed [19]. Nonetheless, such higher order paths,

if sufficiently pronounced, can be incorporated in a

straightforward manner as demonstrated in [20].

The radar transmits a pulsed waveform s(t),

where “t” indexes the time within the pulse, and

measures the received signal. The received signal is

a superposition of the direct path and the multipath

returns, given by

z(t) =
X

p2fA,B,C,Dg
¡ 2p s(t¡ ¿p)

+2
X

q2fB,C,Dg
¡A¡qs(t¡ (¿p+ ¿q)=2)+n(t) (3)

where ¿p and ¡p are, respectively, the TOA and the

complex amplitude associated with reflection and

transmission coefficients for one-way propagation

along path p, and n(t) is the system noise. The

amplitude ¡p can be readily derived, provided the

material properties of the walls are known [20, 22].

Without loss of generality, we assume that ¡p = 1,

8p, p 2 fA,B,C,Dg. From the geometry, it is clear

that (3) includes a total of seven signal returns, and

the TOA of each return can found by a conventional

matched filtering process followed by peak detection.

In the event of the TOAs being close together, or the

signal-to-noise ratio (SNR) being poor, alternative

techniques, such as the super resolution MUSIC or

the inverse correlation method, may be used [23, 24].

For the remainder of the algorithm description, we

assume the TOAs are accurately detected. By virtue of

propagation and reflections, the TOAs are naturally

ordered in an ascending fashion, which may be

represented in vector form as

¿ = [¿1,¿2, : : : ,¿7]
T,

¿1 = ¿A, ¿i < ¿i+1, i= 1,2 : : : ,7:
(4)

In (4) the first TOA always corresponds to the

direct path. The rest of the TOAs are unascertained.

For example, it is not known if ¿4 is a first-order

or a second-order multipath TOA, nor which

particular wall is responsible for it. Therefore, two

fundamental problems arise in multipath analyses;

first, determining which TOAs are first order and
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which are second order, and how to pair the multipath

returns that originate from the same wall; and second,

determining which wall caused a particular pair of

TOAs.

First, the problem of pairing the multipath returns

is considered. Initially, we observe that the first

TOA in ¿ , ¿1 = ¿A, is known to be the direct path

and that the last TOA, ¿7, must be a second-order

multipath. Next we note that if ¿p, when 2· p < 7,
is considered to be a first-order multipath, only

those ¿q, where p < q· 7, could be the second-order
multipath TOA caused by the same wall. Using the

knowledge that TOA of a first-order multipath is one

half of the sum of the TOAs of the direct path and

the matching second-order multipath, e.g., for wall 1

in Fig. 3, ¿AB = (¿A+ ¿B)=2, a cost function may be

developed for the possible valid pairings of first- and

second-order multipath. If a TOA ¿p, where 2· p < 7,
is a candidate for being a first-order multipath, then

for a second-order multipath candidate ¿q, where

p < q· 7, from the same wall, we may write

j(¿1 + ¿q)=2¡ ¿pj

=

½
0 if ¿q is the second order to ¿p

a where a > 0, if ¿q is not the second order to ¿p

(4a)

assuming there is no error in the TOA measurements.

By considering all valid pairs of ¿p and ¿q for p=

2, : : : ,7, an ordered cost vector can be formed as

¿cos t = sortf[j¿A=2+ ¿3=2¡ ¿2j, j¿A=2+ ¿4=2¡ ¿2j, : : : ,
j¿A=2+ ¿7=2¡ ¿2j, : : : ,
j¿A=2+ ¿6=2¡ ¿7j]Tg (5)

where the operator sortf¢g arranges the elements
in increasing order. The vector in (5) is comprises

15 elements when three walls are considered. For

three walls, the first three elements in (5) indicate the

correct pairing of the first- and second-order multipath

returns. From the first three elements of ¿cost, we

can extract “pair vectors,” ¿ (k), k = 1,2,3, to store

the associated multipath return TOAs. The structure

of each ¿ (k) will be a two-element vector defined as

¿ (k) = [¿ (k)q ,¿
(k)
p ]

T, where ¿ (k)p and ¿ (k)q are the multipath

TOAs from the kth element of ¿cost. Before moving

on, it is important to realize that the index k of ¿ (k)

does not indicate which wall the TOAs are associated

with.

Second, the problem of wall association is

addressed. Ideally, when the TOAs are correctly

associated, we have, for wall 1, the bistatic ellipse,

corresponding to the first-order multipath return, and

monostatic circular contour centered at the virtual

radar, corresponding to the second-order multipath.

These can be arranged in a vector format as

¯1(¿AB) =
4x2

¿2ABc
2
+

4y2

(¿2ABc
2¡ 4D2x )

¡ 1 = 0

¯2(¿B) = (x¡Dx)2 + y2¡ ¿2Bc2=4 = 0
¯w1 := [¯1(¿AB),¯2(¿B)]

T

(6)

where c is the speed of light in free space. Similarly,

for wall 2 we have

¯3(¿AC) =
4(x+Dx)

2

(¿2ACc
2¡ 4D22)

+
4(y¡D2)2
¿2ACc

2
¡ 1 = 0

¯4(¿B) = (x+D2)
2 + (y+2D2)

2¡ ¿2Cc2=4 = 0
¯w2 := [¯3(¿AC),¯4(¿C)]

T:

(7)

Likewise, for wall 3,

¯5(¿AD) =
4(x¡D1 +Dx)2

¿2ADc
2

+
4y2

(¿2ADc
2 +4D2x ¡4D21)

¡ 1

= 0
(8)

¯6(¿D) = (x+2D1¡Dx)2 + y2¡ ¿2Dc2=4 = 0
¯w3 := [¯5(¿AD),¯6(¿D)]

T:

Lastly, for the monostatic direct path, we have the

circular constant range contour,

¯7(¿A) = (x+Dx)
2 + y2¡ ¿2Ac2=4 = 0: (9)

The expressions defined in (6)—(9) can be

concatenated into a single vector ¯ defined as

¯ := [¯Tw1 ,¯
T
w2
,¯Tw3 ,¯7(¿A)]

T:

This vector is a function of the coordinates x and y,

combined into a vector x, the three pairs of first- and

second-order multipath TOAs ¿ (k), k = 1,2,3, and
the direct path TOA ¿A. In full, the vector-function

would be written as ¯(x, [¿ (1)T,¿ (2)T,¿ (3)T],¿A) but this
full description has been omitted above for clarity.

Clearly, when the wall associations are correct and the

TOAs estimates are perfect,1 the circles and ellipses in

(6)—(9) all intersect at one location and,

k¯k2 = 0: (10)

However, for imperfect TOA measurements, we

seek the vector x and the set of pairs of first- and

second-order multipath TOAs that will minimize k¯k2.
The possible sets of pairs of first- and

second-order multipath TOAs are limited. Consider

the matrix, comprising all permutations of ¿ (k)T,

1Measured TOAs after matched filtering are quantized to belong to

range gates, and adjacent range gates are separated by the system

range resolution. Hence, in practice, the ellipses and circles do not

all intersect at one common point but approximately intersect in a

region.
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k = 1,2,3,

wall 1 wall 2 wall 3

Eperm :=

266664
¿ (1)T ¿ (2)T ¿ (3)T

¿ (1)T ¿ (3)T ¿ (2)T

...
...

...

¿ (3)T ¿ (1)T ¿ (2)T

377775 :=
266664
e1

e2

...

e6

377775 2 <3!£3!:
(11)

In (11) for example, the second row third column

implies that ¿ (2) was assigned to wall 3. Likewise,
similar implications may be seen from (11). The

elements of the row vectors ej now contain the

possible sets of pairs of first- and second-order

multipath TOAs. In the spirit of (10), the NLS error

is minimum for the correct permutation in (11), i.e.,

x̂t = min
x:=[x,y]T ,j

fk¯(x,ej ,¿A)k2g, j = 1,2 : : : ,6

(12)

where the minimum is taken over all j. Equations (10)

and (12) can be solved using numerical optimization.

We implemented this minimization using the

“lsqnonlin” function in the Matlab Optimization

Toolbox, initialized with coordinates of the center of

the room. Note that the function to be minimized in

(12) is overdetermined consisting of two unknowns

and seven equations. Hence, target localization could

still be achieved using the multipath returns alone

even if the direct path was completely ignored.

III. MULTIPLE TARGETS

Increasing the number of targets in the scene also

increases the number of TOAs that need pairing and

associating to walls. Fortunately, an approach similar

to the single-target case for identifying the first- and

second-order multipath and associating the pairs to

the walls can be applied. Consider K targets. As in

(4), the TOAs stored in the vector ¿ have a naturally
increasing order, but now there are 7K elements, i.e.,

¿ = [¿1,¿2, : : : ,¿7K]
T, ¿i < ¿i+1, i= 1,2 : : : ,7K:

(13)

The first TOA ¿1 corresponds to the direct path return

of the target closest in range to the radar. The rest of

the TOAs are unascertained. Our approach is to first

cluster the TOAs corresponding to the nearest target,

and identify its first- and second-order multipath

TOAs, and their association with the walls. This

procedure is then continued for the second nearest

target, then the third, and so on until all K targets

have been exhausted. This sequential process is

depicted below.

1) Initialize: Let target count K1 = 0 and set a

temporary time delay vector, Ä¿ = ¿ .

2) Loop: Repeat until K1 =K. For index k =

2, : : : ,7(K ¡K1) calculate and store the minimum cost

of the set

f¿kcostg=minf(¿1=2+ ¿k1=2¡ ¿k)g,
k1 6= k, k1 2 f2,3, : : : ,7(K ¡K1)g: (14)

3) Search: Find and store the TOAs

corresponding to the k1-indices of the first three

minima in the set f¿kcostg, as well as the TOAs
associated with indices (ks). The k1 indices represent

the second-order multipaths, and the ks are locations

of the associated first-order multipaths in Ä¿ .
4) Store: Save the first TOA in Ä¿ , and the TOAs

corresponding to the k1-indices of the first three

minima in the set f¿kcostg, and the corresponding TOAs
indexed by the three ks of step 3 in a vector denoted

by Ä¿K1 .
5) Associate and Localize: Using the wall

association procedure as described in Section II,

compute the coordinates for the K1th target.

6) Modify: Increment target counter as K1 =K1
+1, since we have clustered the direct and multipath

TOAs corresponding to the K1th target in Ä¿K1 . Using
a set difference operator, f¡g, remove the elements in
Ä¿K1 from Ä¿ by

Ä¿ =Ä¿f¡gÄ¿K1 : (15)

7) Check: Sort the elements in ascending order in

the new vector, Ä¿ . Go back to step 2.

It is noted that in step 2 of the algorithm and

especially in (14), we considered only the minimum

cost for every k. The algorithm performs as desired

when all the direct paths and all the multipaths

corresponding to the K targets are resolved and

detected. However, the algorithm as described above

has two shortcomings. First, when target-target or

target-clutter interactions create spurious peaks in

the range profile with TOAs that satisfy the rule in

(4a) when combined with other genuine TOAs, the

algorithm will fail to localize the targets. Second, a

reduced number of TOAs will be detected if 1) two

or more of the direct paths and first- or second-order

multipaths are the same length, resulting in unresolved

peaks in the range profile, and 2) some of the

direct paths and multipaths fall below the noise and

fail detection. While the minimization of (12) is

overdetermined, and thus can still find the target

location with unresolved/undetected TOAs, the wall

association and target clustering algorithms are not

robust to this situation. In essence, while the presented

algorithm would fail if some peaks in the range profile

are unresolved or undetected, this failure is a result

of the simple association and clustering schemes

presented here and not the underlying concept of

single-sensor target localization achieved through the

minimization in (12). We further note that when the
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targets of interest are moving, it is unlikely that the

range profiles will contain spurious/unresolved peaks

all of the time. Occasional failure of the routine to

provide an update could then be overcome by using

a robust tracker, which is beyond the scope of this

work.

Rather than relying on a tracker, the robustness

of the association and clustering routines can be

improved at the expense of computational complexity.

Consider a scene comprising two targets and assume

that the number of detected TOAs is 16, which is

two more than the 14 TOAs expected from two

genuine targets. We may choose a combinatorial

approach to resolve this issue. That is, we select,

say, the first 14 TOAs from the set of 16 detected

TOAs, and use the algorithm described above in

steps 1—7 to provide target location estimates and

record the corresponding NLS cost. We then choose

another set of 14 TOAs from the 16 detected TOAs,

and obtain the corresponding location estimates and

associated NLS cost. We repeat this process for all
16C14 = 16!=14!£ 2! = 120 combinations of choosing
14 TOAs from the 16 detected TOAs. Finally,

the recorded NLS costs for all 120 combinations

are compared and the target location estimates

corresponding to the combination which yields the

minimum NLS cost are chosen as the solution to

the target localization problem. In general, for N

detected TOAs with K targets (N >K), the number

of combinations to be evaluated is NCK . The inherent
problem with this approach is that a small increase in

the number of targets or the number of detected TOAs

results in an exponential increase in the total number

of combinations. However, we note that for the case

of undetected TOA, the combinatorial approach

may cause some of the targets to be either wrongly

localized or completely missed. Simulation examples

involving the combinatorial solution are relegated to

Section V.

IV. THROUGH-THE-WALL OPERATION

When operating through the wall, the free-space

approach taken above is unsuitable. The localization

technique outlined in Section II depends on the

knowledge of the shape of the constant range

contours. Even when the wall parameters are

known, the constant range contours for a given TOA

under TTW operation would not have closed-form

expressions. This prevents formulation of an NLS

approach in a manner outlined above. Fortunately,

as we demonstrate in this section, an alternative NLS

solution is possible that allows for incorporation of

the effects of the wall. However, the TTW solution

requires an iterative root finding operation to solve for

angles of refraction associated with TTW propagation

[20] for every candidate target location, which

significantly increases the computational burden, and

makes it sensitive to initial conditions. To circumvent

these difficulties, good quality initial estimates of the

target locations are required. These estimates can be

obtained by treating the TTW measurements as if it

were free-space propagation and using the free-space

algorithm described in Section III. The free-space

target location estimates have been demonstrated

to provide reasonable initialization for iterative

techniques [12].

For TTW operation, the signal returns are

non-LOS and the propagation inside the wall must

be taken into account for accurate localization.

Consider Fig. 4 which shows the model for a target

in an enclosed structure. There is a front wall and

walls 1, 2, 3. The front wall has known thickness and

dielectric constant given by d1 and "1, respectively.

Similar to the free-space case, we consider the direct

path, referred to as path A, and three additional paths,

namely, paths B, C, and D, which correspond to

the multipaths. Note, however, that the TOAs are

not identical to the free-space propagation and now

depend on the slowing of the wave within the front

wall and the reflection and refraction that occurs at the

wall boundaries [9, 12, 20].

For target localization, an NLS procedure can be

initialized with the free-space solutions. Consider

the vector ¿k, k = 1,2 : : : ,K, which consists of the
TOAs corresponding to the direct path, and the first-

and second-order multipath returns for the kth target.

Specifically,

¿k = [¿1k,¿2k, : : : ,¿7k]
T,

¿1k = ¿Ak, ¿5k =
¿Ak + ¿2k

2
,

¿6k =
¿Ak + ¿3k

2
, ¿7k =

¿Ak + ¿4k
2

:

(16)

The vector ¿k is obtained by the clustering algorithm
outlined in Section III. In (16) the first time delay

corresponds to the direct path of the kth target,

and is denoted likewise. The TOAs ¿2k, ¿3k, and ¿4k
correspond to the second-order multipath, whereas

the remaining TOAs in (16) are their first-order

multipaths. For multipath-wall association, we resort

to (12) and apply NLS solutions for each target k.

Initialization is performed by solving a similar

free-space equation separately for each one of the six

possible associations (permutations), i.e.,

xFSkj := minx
f¯(x,ekj ,¿k1)g, j = 1, : : : ,6 (17)

where ekj , j = 1, : : : ,6, is the permutation vector for

the kth target. The difference between (11) and (17)

is that in the former, minimization is performed

over all j, whereas in the latter, minimization is

performed for a particular j. In other words, (11)

gives a single free-space solution, whereas (17)
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Fig. 4. TTW model for single target.

provides six free-space solutions of the target position.

The proposed algorithm is described below.

1) Cluster: Cluster the kth TTW target’s direct

path, first- and second-order multipath TOAs and

store them in a vector ¿k. The clustering is performed
using the algorithm for multiple targets, and also

identifies whether particular TOA is either a first-order

or second-order multipath.

2) Compute: Assuming a free-space model,

compute the various free-space solutions xFSkj as

in (17) for all possible wall permutations. These

free-space solutions are used to initialize the actual

TTW NLS localization estimator.

3) NLS: For a particular j, consider the

optimization, initialized with the free-space

solution, xFSkj

xTTWk =min
x0,j
ke0kj ¡ ¿ 0k2, initialized with xFSkj ,

j = 1,2 : : : ,6

e0kj := [¿1k,e
T
kj]

T, x0 := [x0,y0]T (18)

¿ := [¿ 0A(Ã
0
iA),¿

0
B(Ã

0
iB), : : : ,¿

0
D(Ã

0
iD),¿

0
A(Ã

0
iA)=2

+ ¿ 0B(Ã
0
iB)=2, : : : ,¿

0
A(Ã

0
iA)=2+ ¿

0
D(Ã

0
iD)=2]

T

with xFSkj , for which the vector ¿
0 can be found by

computing the angles, Ã0sip, p 2 fA,B,C,Dg. The
angles can be computed by solving the equations

numerically,

d1 tan(Ã
0
rA)+ (y

0 ¡ d1) tan(Ã0iA)¡Dx+ x0 = 0
d1 tan(Ã

0
rB) + (y

0
B ¡ d1) tan(Ã0iA)¡Dx = 0

(2D2¡ y0) tan(Ã0iC)
+d1(tan(Ã

0
rC)¡ tan(Ã0iC))¡Dx+ x0 = 0

d1 tan(Ã
0
rD)+ (y

0
D ¡ d1) tan(Ã0iD)¡D1 +Dx = 0

Ã0rp = sin
¡1
μ
sin(Ã0ip)p

"1

¶
, p 2 fA,B,C,Dg

(19)

where y0B and y
0
D can be substituted by

y0B = y
0 ¡ x0 cot(Ã0iB)

y0D = y
0 ¡ (D1¡ x0)cot(Ã0iD):

(20)

Repeat the procedure 8j. The TTW kth target location

estimate xTTWk is obtained as one which yields the

minimum cost in (18) 8j.
4) Check: Stop if all the k targets have been

localized, otherwise go to step 1 and repeat.

In step 4, without invoking unnecessary

mathematical operators, and for meaningful

interpretation of the NLS cost, it is assumed that the

elements in e0kj are ordered in an identical fashion
as in ¿ 0. In other words, in line with the current
permutation, the first element in e0kj is the direct path,
the next three elements are the second-order multipath
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TOAs, corresponding to paths B, C, D, while the

remaining elements are their associated first-order

multipath TOAs. Furthermore, in (18) the elements

of ¿ 0 depend on the angles Ã0ip, p 2 fA,B,C,Dg. These
angles are highly nonlinear functions of x0. The angles
are obtained by solving the equations in (19) using

(20). We note that obtaining the angles includes an

inherent optimization, albeit in a single variable for

each path. In essence, (18) consists of an explicit NLS

stage, and an implicit root finding stage to obtain the

angles [20], necessary to construct the TOAs in ¿ 0.
For the correct wall association, it is readily seen that

the minimum is obtained.

In the above algorithm, the free-space solutions

are essential to estimate the TTW target locations.

It is noted that the above formulation involves wall

association along with the NLS and the root finding

to compute the precise through-wall angles. If one is

confident that, for each of the k targets, the free-space

wall associations are correct when applied to the TTW

scenario, then (17) may be circumvented, and the

free-space approach may be used directly to obtain

the final free-space solution. That is, one can use

(11)—(12) to obtain xFSk . Our formulation for the TTW
problem, however, is more general, and does not place

complete confidence in the approach of using the

free-space wall association for the TTW TOAs.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Free-Space: Single-Target Scenarios

The target locations and dimensions of the
walls, etc., are all in meters unless noted otherwise.
Consider a single target at xt = [¡16:7,8:6]T in
the scene identical to Fig. 3. The parameters D1 =
20 and D2 = 15 and the radar’s coordinates are
given by R = [¡12,0]T. Figure 5 shows the various
constant range ellipses and circles with respect to the
walls 1,2,3 for the considered scene. In particular,
the six subfigures, namely, Fig. 5(a)—(f), show the
intersection of the various ellipses and circles for all
possible permutations of the first- and second-order
multipath TOAs as given in (11). The TOAs (hence
ranges) used in Fig. 5(a)—(f) are exact and are derived
from simple geometry. In these figures, the true target
location is indicated by “ ”, the actual radar and the
virtual radar locations are all marked by “ * ”, and the
origin is indicated by “O”. The walls are depicted
as black dashed lines in the figures. The monostatic
circular constant range contour centered at the actual
radar, i.e., corresponding to the direct path TOA is
always shown by a solid black line. By the convention
adopted in the rest of this section, the virtual radars
are in gray, and the actual radar is in black. Likewise,
the elliptical bistatic constant range contours and the
circular monostatic constant range contours centered
at the virtual radars are plotted in gray and black,
respectively. In particular for the ellipses, they are
depicted as solid lines for wall 1, dashed lines for

wall 2, and dashed-dotted lines for wall 3. Similarly
the monostatic circles centered at the virtual radars
are shown as dashed lines for wall 1, dotted lines for
wall 2, and dashed-dotted lines for wall 3. The six
different permutations (or wall associations) can be
inferred from the figure titles. For example, consider
Fig. 5(a)’s title, which states that the respective TOAs
of wall 1 have been assigned correctly to wall 1,
whereas TOAs arising from reflections at wall 2 are
assigned to wall 3 while wall 3’s TOAs are assigned
to wall 2. The last permutation, shown in Fig. 5(f),
corresponds to the correct wall associations. The NLS
costs in (12) for each of the permutations in Fig. 5 are
provided in the first row of Table I. From this table, it
is evident that the NLS of (12) would choose the last
permutation to be the correct wall association yielding
the estimated target coordinates, x̂t = [¡16:69,8:6]T.
In several parts of Fig. 5, one of the bistatic

ellipses has collapsed to a line between the sensor
and the virtual sensor. The collapse arises when the
solution to the ellipse equation is purely imaginary
for one axis; in the figure, only the real part is
plotted. In practice, the solutions to the ellipse and
circle equations must be real. If complex solutions
are obtained, then the related permutations can be
discounted as invalid without presentation to the
NLS optimizer. This yields a computational saving.
We note, however, that NLS optimizer still achieves
localization even if these invalid permutations are
presented.
Figure 6 shows the results for the same scene

as for Fig. 5, but with the target at position xt =
[¡4:7,7:6]T. The result for the correct wall association
is presented in Fig. 6. The corresponding NLS costs
for all 6 permutations are provided in the second row
of Table I, where the cost of the correct solution is
observed to be several orders of magnitude less than
the other possibilities.

B. Free-Space: Multiple Targets with Noise

Next, consider two targets at coordinates x(1)t =

[¡15:4,8]T and x(2)t = [¡4:6,5:6]T in a scene similar
to Fig. 3 with an SNR of 15 dB assuming the noise
is additive, white, and complex Gaussian. The radar
transmits a rectangular pulse with bandwidth equal
to 1.2 GHz, and carrier frequency set at 2 GHz. The
rest of the parameters are identical to the single-target
scenarios corresponding to Figs. 5 and 6. In Fig. 7(a),
peaks of the range profile after matched filtering are
shown. There are several peaks corresponding to
the direct path and first- and second-order multipath
returns for the two targets. It is noted that some of the
peaks, although resolvable, are close to each other.
Application of the processing from Section III leads
to Fig. 7(b), which confirms that both targets have
been localized correctly. The NLS estimates for the
locations are given by x̂(1)t = [¡15:398,8:007]T and
x̂(2)t = [¡4:58,5:679]T. The errors in these solutions
are in the second decimal place.
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Fig. 5. Wall permutations and associations. (Direct path: black solid line, multipaths w.r.t. wall 1: solid gray and dashed black lines,

multipaths w.r.t. wall 2: dashed gray and dotted black lines, multipaths w.r.t. wall 3: gray and black, dashed-dotted lines).

C. Free-Space: Multiple Targets within a Structurce
Composed of Oblique Walls

So far, we have considered cases when the walls

are perpendicular to one another. The theory as it

applies in the paper, may be used when walls are not

necessarily at right angles. The slight difference is that
the virtual radars will lie on the normals to the walls.
The ellipses will then have to be rotated accordingly
using Given’s rotation matrices. Since the circles are
rotation invariant, no additional rotation is required.
For example, consider a scene with oblique walls and
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Fig. 6. Example of correct localization after wall associations for single target. (Direct path: black solid line, multipaths w.r.t.

wall 1: solid gray and dashed black lines, multipaths w.r.t. wall 2: dashed gray and dotted black lines, multipaths w.r.t. wall 3: gray and

black, dashed-dotted lines).

TABLE I

NLS Costs for a Single Target for Associating the TOAs to the Respective Walls

Permutation 1 2 3 4 5 6

NLS Cost in (12) for Fig. 5 1.99e04 1.29e04 2.68e05 1.89e04 5.41e04 0.1227

NLS Cost in (12) for Fig. 6 5.61e02 4.12e03 4.59e03 5.02e03 5.9e03 0.0229

two targets at x(1)t = [¡9,7:5]T and x(2)t = [¡4:6,5:6]T.
The angle between walls 1 and 2 is 93:4±, while the
angle between walls 2 and 3 is 113:6±. The lengths
of the walls 1, 2, 3 are 13.45 m, 14.9 m, and 9.2 m,
respectively. The rest of the parameters are identical to
the scenarios corresponding to Figs. 5 and 6. Consider

Fig. 8, which shows the final results after applying the
algorithm in Section III. We observe that the virtual
radars are located on the normals to the walls, and

the ellipses are rotated such that their minor axes are
along the respective walls. It is clear from Fig. 8 that
the localization is performed correctly. The errors in

the NLS estimates are in the second decimal place.

D. Free-Space: Spurious TOAs

We consider the case when spurious TOAs are
present in the range profile and are detected. Consider
two targets located at x(1)t = [¡15:4,10]T, and x(2)t =

[¡4:6,5:6]T along with two false TOAs at ranges
11.33 m and 15.21 m. Both false TOAs were chosen
such that they are confusable in accordance with (4a),

i.e., each lies half-way between the corresponding
direct path and first-order multipath of the two targets.
We solved this target localization problem using the

combinatorial approach, which evaluated the algorithm
for all 120 combinations of selecting 14 TOAs out
of the set of 16 detected TOAs. The corresponding

NLS cost (normalized by the maximum) versus
the combinations is shown in Fig. 9. The target
coordinates corresponding to the combination
corresponding to the minimum NLS cost are the
correct estimates, given by x̂(1)t = [¡15:40,9:99]T and
x̂(2)t = [¡4:67,5:56]T.
E. Through-the-Wall: Multiple targets

For the TTW scene shown in Fig. 4, consider two
targets at locations x(1)t = [¡15:4,7:6]T and x(2)t =
[¡4:6,14:6]T. The parameters D1 and D2 are chosen
as 20 and 25, respectively, whereas the standoff
distance Dy = 4. The front wall has a thickness

of 0.2 m and dielectric constant of 7.6, and was
assumed to be lossless. In order to increase realism,
the associated (parallel polarization) reflection and
transmission coefficients were incorporated in the

simulation to mimic the losses due to reflections and
transmission through and at the walls. These reflection
and transmission coefficients have standard derivations
[22]. The rest of the parameters are identical to
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Fig. 7. (a) Correlation peaks (two target case) in 15 dB SNR. (b) Two target localization after clustering and wall associations in

15 dB SNR. (Direct path: black solid line, multipaths w.r.t. wall 1: solid gray and dashed black lines, multipaths w.r.t. wall 2: dashed

gray and dotted black lines, multipaths w.r.t. wall 3: gray and black, dashed-dotted lines).

those of the free-space simulation in Fig. 7, no noise
was added. The range profile peaks are shown in
Fig. 10(a), and as in Fig. 7(a), some of the peaks are
again close to each other. Figure 10(b) was obtained
by applying the free-space processing of Section II
to the TOAs extracted from the range profile. In

the figure, we can see that the free-space solution is
close to the true solution but does not coincide with
it. Specifically, the free-space solution for the first
target is given by [¡15:75,7:37]T and that for the
second target is [¡4:30,14:58]T; both have errors
in the first decimal place. Note that these free-space
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Fig. 8. Scenario where walls are not at right angles, (zoomed in to show detail). (Direct path: black solid line, multipaths w.r.t. wall 1:

solid gray and dashed black lines, multipaths w.r.t. wall 2: dashed gray and dotted black lines, multipaths w.r.t. wall 3: gray and black,

dashed-dotted lines).

Fig. 9. NLS costs for combinatorial approach to achieve correct localization. Target cordinates at minima are true cordinates.

solutions are obtained from the NLS using (17) for

the correct wall association. Continuing the processing

to include the TTW specific NLS as described in the

algorithm consisting of (18, 19), we obtain the final

TTW solutions as [¡15:39,7:60]T and [¡4:59,14:61]T.
The errors are now in the second decimal place.

F. Experimental Results

As a final stage of the investigation, target

localization was undertaken using experimental data.

The scene shown in Fig. 11 consists of two targets
adjacent to a cement board wall. A metal sphere and
a dihedral were used as targets and were centered
at (0.6 m, 3 m) and (1.9 m, 4.58 m), respectively.
The radar coordinates are given by (2.7 m, 0 m).
A stepped frequency signal covering the 1—4 GHz
frequency band was used. The frequency step-size
was chosen to be 15 MHz, giving rise to a maximum
unambiguous range of 10 m.
The range profile, obtained after background

subtraction and application of frequency domain
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Fig. 10. (a) Correlation peaks (two-target TTW case). (b) Example of a TTW two-target case after using free-space localization.

(Direct path: black solid line, multipaths w.r.t. wall 1: solid gray and dashed black lines, multipaths w.r.t. wall 2: dashed gray and dotted

black lines, multipaths w.r.t. wall 3: gray and black, dashed-dotted lines).

Kaiser window with parameter set to unity and

matched filtering, is shown in Fig. 12(a). As seen

in the figure, there exist several peaks between 3 m

and 7 m. To increase the accuracy of the estimated

target and multipath return TOAs, zero padding

was used to interpolate the range profile, and the

results are shown in Fig. 12(b). In this figure, the

strongest peak is approximately ¡55 dB; hence, a

hard detection threshold of approximately ¡80 dB
was selected, which is ¡25 dB below the maximum,
and is indicated as a dashed-dotted horizontal line in

Fig. 12(b). There are now 8 detected peaks, including

the creeping wave from the sphere, indicated by

an arrow in Fig. 12(b). The creeping wave return

occurs (2+¼)r m after the target return, where

r is the radius of the sphere [25]. For the sphere
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Fig. 11. Experimental setup.

used, the creeping wave return would appear at
approximately 4.53 m, which is in agreement with
the results in Fig. 12(b). Ideally, we should have
six peaks, comprising the direct path and the two
multipaths for each target. Ignoring the creeping
wave return, we have 7 detected peaks; the spurious
peak is attributed to the target-target interaction. The
signal SNR varied between 16 dB for the sphere’s
second-order multipath and 36 dB for the dihedral’s
direct path.
Since a single wall was used, TOA associations

are unnecessary. However, TOA clustering is
employed. Ignoring the creeping wave TOA, the target
localization results using the combinatorial approach

Fig. 12. Range profiles of expeiment. (a) After using kaiser window. (b) After interpolation and windowing.

are depicted in Fig. 13. The NLS location estimate for

the sphere is (0.544 m, 2.91 m) and for the dihedral

is (1.98 m, 4.69 m). The sum of squared error for

the sphere and the dihedral is 0:01 m2 and 0:02 m2,

respectively.

G. Computational Time

For all the simulation and experimental results in

this paper, the computational time from clustering and

wall associations to the NLS estimation is provided

in Table II. These times are based on a workstation

with an Intel Xeon 3.72 MHz processor having

4GB memory and running Matlab® version 2007a.

The matlab code was not optimized to reduce the

computational time. From Table II we find that the

computational times for the basic algorithm is less

than 2 s. This amounts to target locations being

updated 30 times per minute, which is appropriate for

slow-moving persons inside buildings. For stationary

targets, computational time is not an issue.

VI. CONCLUSIONS

In this paper we have demonstrated that by

utilizing the multipath reflections, target localization

may be achieved with a single sensor. We showed

that by exploiting the multipath returns arising from

a single wall to create an additional virtual sensor,

the target could be considered part of a monostatic

and a bistatic geometry. When the two geometries

apply, an analytical solution for the target location

was obtained. To localize a target correctly in the
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Fig. 13. Noncoherent localization results for experiment, estimated NLS ( ) and true (¦) solutions are shown. Direct path cricles
(black solid lines), ellipses (gray solid lines), and monostatic circles centerted at VR (black dashed-dotted) intersect in region close to

true solutions.

TABLE II

Matlab® Computational Time from Clustering to Final NLS Localization

Figure Number 5 6 7(b) 8 9 10 13

Computational Time 0.65 s 0.67 s 1.19 s 1.31 s 65 s 1.4 s 1.9 s

presence of multiple walls, as may arise in a TTW

or in an urban canyon situation, the multipath TOAs

must be correctly associated to their respective walls.

An algorithm to perform such an association was

devised. Furthermore, it was shown that in the case

of multiple targets, localization is achievable provided

the multipaths and direct paths are all resolved.

Extension of these noncoherent localization

techniques to TTW radar was demonstrated. An

NLS approach was developed which provides correct

location estimates by allowing for the change in

propagation velocity and the refraction that occur as

the wave interacts with the front wall. Simulation and

experimental results were presented which validated

the proposed techniques.
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