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Abstract 

Single frequency Doppler radars are effective in distinguishing moving targets from stationary 

targets, but suffer from inherent range ambiguity. With a dual-frequency operation, a second 

carrier frequency is utilized to overcome the range ambiguity problem. In urban sensing 

applications, the dual-frequency approach offers the benefit of reduced complexity, fast 

computation time, and real time target tracking. We consider a single moving target with three 

commonly exhibited indoor motion profiles, namely, constant velocity motion, accelerating target 

motion, and micro-Doppler motion. RF signatures of indoor inanimate objects, such as fans, 

vibrating machineries, and clock pendulums, are characterized by micro-Doppler motion, whereas 

animate translation movements produce linear FM Doppler. In this paper, we derive Cramér-Rao 

bounds (CRB) for the parameters defining indoor target motions under dual-frequency 

implementations. Experimental data is used to estimate micro-Doppler parameters and to validate 

the CRBs. 

Keywords: Doppler, Cramér-Rao bounds, micro-Doppler, and through-the-wall radar. 

I. Introduction 

The emerging area of through-the-wall sensing addresses the desire to see inside enclosed structures and 

behind walls in order to determine building layouts, scene contents, and occupant locations. This 

capability has merits in a variety of civilian and military applications, as it provides vision into otherwise 

obscured areas, thereby, facilitating information-gathering and intelligent decision-making [1-4]. 
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Motion detection is a highly desirable feature in many through-the-wall applications, such as 

firefighters searching for survivors or law-enforcement officers involved in hostage rescue missions. 

Doppler discrimination of movement from stationary background clutter can be readily used in these 

applications. Such systems can be classified into zero, one, two, or three dimensional systems [1]. A 0-D 

system simply provides a go/no-go motion detection capability and, as such, can employ single frequency 

continuous wave (CW) waveforms for scene interrogation. A 1-D system can provide range to moving 

targets by employing modulated or pulsed signals. A 2-D system provides both target range and azimuth 

information, whereas a 3-D system adds the dimension of height to the offerings of a 2-D system. 

However, the higher level of situational awareness offered by 2-D and 3-D systems is obtained at the 

expense of increased hardware and software complexity and higher computational load. A 1-D system 

provides a good compromise between level of situational awareness and cost versus size and weight. This 

is specifically the case when localizing moving targets is of primary interest. 

In this paper, we consider a 1-D system for range-to-motion estimation based on Doppler radars. 

Single frequency CW radars suffer from range ambiguity [5]. This problem is more pronounced for 

through-the-wall applications since the carrier frequencies are in the few GHz range due to antenna size 

and frequency allocation management issues. An additional carrier frequency can be introduced to resolve 

the uncertainty in range. The two carrier frequencies can be chosen such that the maximum unambiguous 

range is either equal to or greater than the spatial extent of the urban structure. In this case, the true 

solution is the one which corresponds to the target inside the enclosed structure. It is noted that other 

radar techniques, such as the swept frequency, pulse compression etc., can be used to reduce the 

uncertainty in range [5]. However, the operational logistics and system requirements for through-the-wall 

operations, such as cost, hardware complexity, and portability, may prohibit the use of such techniques. 

The dual-frequency approach, although not new, meets all of the above requirements and is likely to 

emerge as a leading forerunner in modern urban sensing systems [6-9].  

We focus on three target motion and range profiles, namely, linear translation, acceleration, and the 

micro-Doppler (MD) motions that are commonly encountered in urban sensing applications. For example, 
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the swinging of the arms and the legs of a person during walking can be modeled as micro-Doppler, 

whereas the gross motion of the torso can be represented by translation. We develop Cramér-Rao bounds 

(CRBs) for the parameters corresponding to the aforementioned three indoor motion profiles. We provide 

the CRB for the range estimate in addition to motion speed, harmonic frequency, and chirp parameters. 

Specifically, we show that the dual frequency approach increases the Fisher information compared to a 

single frequency operation and, therefore, lowers the CRBs [10]. In the analysis, the radar aspect angle θ  

is incorporated into the general CRB derivations. When the aspect angle is assumed unknown, the FIM 

becomes singular, rendering the parameters non-identifiable. It is noted that the main contribution of the 

paper is the derivation of the CRBs, and no estimation technique is advocated here. For MD motion, we 

use experimental data to estimate micro-Doppler parameters and to validate the CRBs. We employ 

suboptimal techniques that make use of the inherent impulsive structure of the spectrum of the returns to 

estimate some of the parameters in the MD model [10]. Maximum Likelihood optimal estimator for MD 

motion profile is presented in [10]. 

A brief outline of the paper is as follows.  In Section II, the signal model is introduced along with the 

governing range equations for the three motion profiles. In Section III, a generic derivation of the CRB is 

presented, incorporating the nuisance parameters, and subsequently the CRBs of the three motion profiles 

are derived. Supporting simulation and experimental results are provided in Section IV. Section V 

contains the conclusions. 

II. General Signal Model 

Below, we briefly discuss the range ambiguity problem, and introduce the motivation for adopting carrier 

frequency diversity in CW radar for range estimation. 

A. Range Ambiguity in Dual-frequency Radar 

For a dual frequency radar employing two known carrier frequencies 1f  and 2 ,f  the baseband signal 

returns due to a single moving target are expressed as, 

                                   1 1( ) 4 ( ) /s snT f R nT cϕ π= , 2 2( ) 4 ( ) /snT f R nT csϕ π=                                                (1) 
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 where sT  is the sampling period, ( )sR nT  is the range of the target at sample  and  is the speed of 

light in free space. Dropping  

,n c

sT  in the phase and range notations for convenience, and without 

considering phase wrapping, the range of the target is given by [6]  

                                                                2 1

2 1

( ( ) ( ))( )
4 ( )

c n nR n
f f

ϕ ϕ
π

−
=

−
                                                               (2) 

In reality, however, phase observations are wrapped within the [0, )2π  range. Therefore, the true phase 

can be expressed as 

                                        (3a) 

where

  ,2)()( )( 12
)( πφφφ mnnntrue +−=

 m is an unknown integer. Accordingly, the range estimate is subject to range ambiguity [7], i.e,  

                                                              .
)(2)(4

)]()([
)( 12 cmnnc

nR +
1212 ffff −−

−
=

π
φφ                                           (3b) 

The second term in the above equation induces ambiguity in range. For the same phase difference, the 

range can assume infinite values separated by  

                                                                       uR 2 1/ (2( ))c f f= −                                                              (3c) 

biguous range. Fwhich is referred to as the maximum unam rom the above equation, uR  is inversely 

proportional to the difference of the carrier frequencies. Consider a single frequency Doppler radar 

operating at 1 1f =  GHz. In this case, 1/ 2 15uR c f= = cm. For dual frequency operation at 1 1f = GHz, 

and 2 1.01f = , 15uR = m, accordin crease in u GHz g to (3a). The in R  from 15 cm to 15 m is sufficient for 

targe  in roo  small buildings. The other multiple range solutions given by (2), and (3b) are 

simply rejected since they do not fall within the spatial extent of the urban structure. In the following 

sections, we, therefore, assume ,0=m for simplicity. By choosing closely separated carrier frequencies, 

any maximum unambiguous ra an be achieved. Coherent phase estimation may, however, be 

compromised if the frequency difference is too small to overcome noise effects and frequency drifts in 

down conversions [11]. Performance analysis of the dual-frequency radar in the presence of noise and 

t location ms and

nge c

frequency drifts is provided in [12]-[13].          
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It is noted that in the presence of multiple moving targets, the phase extracted from the radar returns 

cannot be used for range estimation of each target separately. This is because the phase terms 

corr

                        

 

esponding to different targets are superimposed and cannot be separated in the time domain. This 

drawback of the dual-frequency scheme can be overcome provided that the target Doppler signatures are 

separable in the frequency or the time-frequency (TF) domain [14]. With the extraction of the phase of the 

individual targets in the Doppler domain, (2) can then be used to obtain the corresponding target range. 

Likewise for multipath which is similar to multiple targets the same procedure can be applied, provided 

they are separable in the frequency or time-frequency domain.                                                                        

B. Signal Model for CRB Derivation 

For a dual frequency radar employing two known carrier frequencies 1f  and 2 ,f  the baseband signal 

returns due to a single moving target are expressed as, 

                                 

{ }

1
1 1 1 1 1 1 1

2
2 2 2 2 2 2 2

4 ( )f R nx ( ) ( ) ( ( ; ))exp ( ) ( ) ( )

4 ( )( ) ( ) ( ( ; ))exp ( ) ( ) ( )

| , 0,1,2,3... 1

s

s

n x nT h n j v n s n v n
c
f R nx n x nT h n j v n s n v n
c

n n n N

ρ

πρ

+

= = + + = +⎜ ⎟
⎝ ⎠
⎛ ⎞= = + + = +⎜ ⎟
⎝ ⎠

∈Ζ = −

ψ

ψ               (4)                       

π⎛ ⎞

 .2,1 , =if i  

rame

where iρ  is the amplitude of the return at frequency The scalar function 

on bo  the sample index and a vector of desired pa ters, is added to clic 

( ; )ih n ψ

 represent possible cy

er and 

, dependent 

th n  

;

ψ

amplitude fluctuations for the MD model. It is noted that for the case of constant Doppl accelerating 

target motion profiles, ( ) 0,ih n =ψ  since for these targets the radar cross section (RCS) can be assumed 

constant for a relatively small time on target. Z +  is the domain of positive integers. The two noise 

sequences, correspondi wo frequencies of operation, over the observation period ,ng the t to N  are 

complex additive white Gaussian noise (AWGN) and uncorrelated, i.e., 2( ) ( ) 0 ,v n v nT CN( ,σ )= ~  

2 ∗

1 1 s 1

2 2= 20( ,σ  { (E v( ) ( ) ~sv n v nT CN ,) 1 2) ( 0n v )}n ,=  where 2
1σ  and 2

2σ  represent the noise variance for the 

two frequencies, respectively and ‘∗ ’ is the complex conjugate operator. To aid in the derivation, we 
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vectorize the observations an describe the signa nt 

              
T=

=

s

v
        

The mean and covariance matrix of  are given by 

                                   

d l returns by a joi probability density function (pdf). The 

received signals at the two frequencies are appended to form a long vector,  

               [ ]1 1 1 1 2 2 2(0), (1), (2).... ( 1), (0), (1)..... ( 1) [ ]T Tx x x x N x x x N= + = − − = 1 2x s v x x                         (5) 

where  

                             (6) 1 1 1 1 2 2 2

1 1 1 1 2 2 2

[ (0), (1), (2).... ( 1), (0), (1)..... ( 1)] [ ]

[ (0), (1), (2).... ( 1), (0), (1)... ( 1)] [ ]

T

T T

s s s s N s s s N

v v v v N v v v N

= − −

= − −
1 2

1 2

s s

v v

x

2
1

2
2

{ } [ ] ,    {( )( ) } N NT H

N N

E E
σ

σ
×

×

⎡ ⎤
= = − − = = ⎢ ⎥

⎢ ⎥⎣ ⎦
1 2

I 0
x μ s s x μ x μ C

0 I
                            (7)                         

The joint pdf of the data, assuming a multivariate complex Gaussian distribution, is 

                                                    1
2

1( ; ) exp( ( ) ( ))
det( )

H
Np

π
−= − −x s x μ C x μ

C
 −                                       (8) 

1) Constant Doppler Frequency 

cy model, the target range is parameterized as

        

For the constant Doppler frequen , 

                                    ( ) oR n R cos( ) ,     ( , )2 2v n π πθ θ+ ∈ −                                                          (9) =

where oR  is the initial range of the target at time 0.n =  The discrete velocity v  of the target is its actual 

mpling period. The parameter θ  is the viewing, or aspect, angle of the radar velocity multiplied by the sa

with respect to the target. In other words, the com t cos( )vponen θ  is the identifiable Doppler component 

registered by the radar system. Inserting (9) into (4), it is clear that the constant Doppler model is 

analogous to the sinusoidal parameter estimation [15, 1 nce, the identifiability criteria of the 

parameters are similar to the traditional single frequency estimation problem. However, some details must 

be added. The identifiability criteria are developed by putting 0

6]. He

θ =  in (9) because for any other value of 

θ  in the defined range, the criteria are valid. The terms  12 f v c  and 22 f v c  in the phase of the signal 

returns are the Doppler frequencies, analogous to the frequencies (radian/s) in the sinusoidal parameter 

timation problem. Hence, for v  to be identifiable, es 10.5 0c2 f v .5− ≤ <  and 20.5 2 0.5f v c− ≤ <  [15]. 
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Since we have assumed 2 1f f>  implicitly, 2 24 4c f v c f− ≤ <  represents the bounds on the positive and 

negative Doppler, respectively. For example, if 2 1f =  G ete ve d to a 

maximum of 0.075, assum nominal sam f 100Hz and the analog velocity is 7.5 m/s. 

It is noted that indoor animate moving targets  as humans and pets, do not assume such high 

velocities. Typically, in indoor settings, we expect analog velocities below 1m/s which allows the 

sampling frequency to be reduced to approximately 15 Hz. The terms 

Hz, then the discr locity is constraine

p y oing a ling frequenc

 such

14 of R cπ  and 24 of R cπ  represent 

the phase in the sinusoidal parameter estimation model. Clearly, oR  can be uniquely estimated if the 

maximum unambiguous range is larger than the building extent, as determine  For t  

profile, as mentioned earlier, we use ( ; ) 0,ih n

d by (3c). his motion

=ψ  since the RCS is assumed to be constant. 

2) Micro-Doppler (MD) 

The range for this motion profile is parameter ], ized as [17

                                          (R n) cos( )d cos(o on ),   ( , 0,    ( , )2 2o oR d ) π πϕ θ− ≠ ∈ −                  (10)                        θ ω ω= +

oIn the above equation, the parameter ω  is the discrete version of the rotational or the vibrational 

e oRcos(d  is the maximum displacem m the initial rangent fro  along the frequency. The parameter )θ

radar’s line of sight (LOS). For the specific case of rotation, 2 cos( )d θ  represents the diameter of the 

circular trajectory in the direction of the LOS. The parameter oϕ  denotes the initial phase of the MD 

motion. The MD signal returns represent the traditional sinusoid odel [10, 11], and are obtained 

by substituting (10) in (4).  It is noted that the sinusoidal FM mo el is a good fit for motion profiles of 

indoor inanimate objects, such as fans, vibrating machineries, and clock pendulums. For the more 

complicated human motion, the sinusoidal FM model is a rough approximation to the swinging of the 

arms and the legs during walking. 

The MD model can be further decomposed into vibration and rotation models based on the scalar function 

( ; ).ih n ψ  For typical indoor targets

a

d

 bration (i.e. the target moves back and forth), the 

displacements are small relative to the target rang especially for longer radar standoff distances from the 

l FM m

undergoing pure vi

e, 
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wall, and the RCS is considered to be constant, i.e., ( ; ) 0.ih n =ψ  On the other hand, for a rotating target, a 

ation radar observes different elevation aspects of the target, thereby inducing a cyclic amplitude 

modulation in the radar returns. These amplitude fluctuations are indeed dependent on the target geometry. 

In this case, the scalar function ( ; )ih n ψ  can be mode

                                                                ( ; ) cos( )i i o ih n n

fixed-loc

led as  

ρ ω φ= Δ −ψ                                                          (11) 

where the parameter iρΔ  represents the maximum deviation from the nominal amplitude ,iρ  whereas the 

parameter [0,2 )iφ π∈  represent ase at time 0.ns the ph =  As an 

blade is seen r

mons

example, consider a rotating fan with one 

 tip of the e

ins

cyclic amp

blade, at one extreme instant of time the presenting a near zero RCS, whereas at 

another extreme time tant, the entire length of the blade is seen by the radar representing a maximum 

RCS. The litude modulations will be de trated experimentally in the simulations section 

and are in agreement with the model in (11).  

The identifiability criteria for MD signals are developed by substituting 0θ =  in (10). For the 

variable ,oR  this case is identical to the case of constant Doppler. However, it is not straightforward to 

derive the parameter identifiability criteria for the ameters using the time domain model 

alon

 rest of the par

e, as was the case in the constant Doppler model. We use the Fourier transform to aid in the 

derivation and to shed more light on the identifiability bounds and the discrete parameterization in the 

MD model. The noise free MD returns are given by, 

                             4 4 cos( )( ) ( ( ; ))exp ,  1,2i o i o of R f d ns n h n j j i
c c

π π ω ϕ
ρ

−⎛ ⎞= + + ∀ =
⎝ ⎠

ψ                     (12)  

Let ( )kJ ⋅  be the thk  order Bessel function of the first

i i ⎜ ⎟                      

cordingly [18, 19], 

i

 kind. Ac

4 4f cos( ) ))ki i
o o k

k

                     exp exp( (o o
d f dn J

c c
π π

ω ϕ
∞

=−∞

⎛ ⎞− = − ⎜ ⎟
⎝ ⎠

∑             

 

identifiability, we obtain 

j nω ϕ j jk⎞
⎟

⎛
⎜
⎝ ⎠

                     (13) 

Using (12) and the Fourier representation of (13), and ignoring  ( ; ),ih n ψ   as it does not affect
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           4 4( ) exp ( )exp( ) ,2j ki of R fS e j j k jk Jω π π
ρ δ ω ω ϕ

∞⎛ ⎞ ⎛= − − =
⎝ ⎠

∑                          (14) ,  1i
i i o o k

k

d i
c c=−∞

⎞ ∀⎜ ⎟ ⎜ ⎟
⎝ ⎠

As in traditional multiple sinusoidal parameter estimation, for the frequencies to be identifiable, they must 

lie in the interval [ , ).π π− This condition, which translates in the underlying case to 

,  ,   ,ok k k Zπ ω π− ≤ < ∀ ∈  cannot be imposed, since there is an infinite number of harmonics. Moreover, 

it is clear from (14) that the signal is not analytic due to the presence of harmonics in the negative 

 well known that the Bessel functions decrease rapidly with .k  Therefore, we 

impose the following two assumptions to derive the identifiability constraints: 1) Most of the energy in 

the signal can be represented by a finite number of harmonics; say ,K Z

frequencies. However, it is

∈  2) The Ny ist theorem is 

satisfied. Assumption 1 implies that the Fourier transform in (14) can be replaced by 

           

qu

4( ) exp ( )exp( ) ,  1,2
K

j ki o

k K

f RS e j j k jk J iω π
ρ δ ω ω ϕ

=−

⎛ ⎞ ⎛ ⎞= − − ∀ =
⎝ ⎠ ⎝ ⎠

∑                  (15) 4 i
i i o o k

f d
c c

π
⎜ ⎟ ⎜ ⎟

Assumption 2 then implies that ,  ,   ok k - K k Kπ ω π− ≤ < ∀ ≤ ≤

l and rotational frequencies have 

the above assumptions (0,  o

 in order to avoid aliasing of the 

harmonics. Since negative vibrationa no physical meaning, it

K  

 is 

straightforward to note that from ).ω π∈  Furthermore, since the harmonics 

are symmetric about DC, and knowing a priori that an MD target is present, it is sufficient to identify the 

first harmonic corresponding to 1,k = ±  i.e.,  .oω π< erion 0 2o The crit ϕ π≤ <  is chosen for 

identifying .oϕ  Surprisingly, the identifiability criteria are similar, although not identical, to the case of 

sinusoidal parameter estimation. Ho the bouwever, nds on oω  and oϕ  are car dent, unlike the 

constant Doppler case, where the velocity bound was constrained by the higher carrier frequency, .

rier indepen

2f   

The Bessel functions take arguments 4 .if d cπ  Therefore, a  real argument, excluding zero, is 

valid because (0) 0,  0.J k= ∀ ≠  Since negative values of the maximum displacement, ,d  have 

ny

no 

phys in tradi

k

ical meaning, then 0.d >  Moreover, tional sinusoidal FM, the argument 4 if d cπ  is 

analogous to the x [11], which is strictly real and positive. Therefore, 0 .< < ∞  It is  modulation inde d
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important to note, however it is impractical to constrain the initial range of the target to be the 

maximum unambiguous range, while allowing the maximum displacement to be infinite. T  to be 

consistent, we impose the criterion for d  as 

, that  within 

herefore,

2 10 4( ) 2.ud c f f R< ≤ − =  

 It is noted that typical indoor MD targets, such as rotating fans, pendulums, etc, are essentially 

narrowband FM (NBFM). For example cons, 

n

ider the motion of a human, the maximum displacement of 

eithe

                                                                 (16) 

r the arm or the leg is much less than a meter, and for a carrier in the low GHz range, the bandwidth 

is typically a few Hz. In the case of an indoor rotating fan, the received signal bandwidth is proportional 

to the length of the fan’s blade, and is clearly a few Hz for such carrier frequencies.  

3) Accelerating Target 

The range for this motion profile is given by, 

                   ( ) oR n R= + 2cos( )( ),    ( / 2, / 2)nθ α β θ π π+ ∈ −

where the parameters α and β  represent the initial velocity and half the acceleration (or deceleration) of 

ively. As before, oR  is the initial range of the target and its identifiability is identical to the target, respect

the constant Doppler case. Substituting (16) in (4), we obtain the desired signal returns for the 

accelerating target. It is clear that an accelerating target represents a linear chirp, or a second order 

Polynomial-phase signal (PPS) [20]. The identifiability criteria are developed by putting 0θ =  in (16). 

The model is similar to the chirp parameter estimation model, albeit a few differences in identifiability 

[21]. The terms 4 if cπ α  and 4   ,  1,2if c i iπ β ∀ =  represent the frequency and chirp rate he chirp 

parameter estimation model, respectively. Hence for identifiability, along with the fact that 2 1,

 in t

f f>  we 

must have 2 24 4c f c fα− ≤ <  and  2 28 8 ,c fc f β− ≤ <  which are carrier frequency dependent. It is 

noted that the bounds are for the discretized versions of the parameters.  For this moti ile, 

( ; ) 0ih n =ψ . 

We note that in indoor environments, the above three motion profiles can occur individually or in  

on prof
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com le 

In this section, we derive the CRB for ssed previously. The parameter 

bination. While a rotating fan or a clock pendulum will exhibit purely MD motion, the motion profi

of a human walking can be predominantly modeled as a combination of translational and MD components. 

In this paper, however, we focus on three “stand-alone” motion profiles, namely, translation, MD and 

acceleration individually. Combinations of these motions are not considered. 

III. Cramér Rao Bounds 

 the three motion profiles discu θ  is 

assumed known. In Appendix-A, we show that if θ  is unknown, then the FIM becomes singular. We 

begin with the generalized CRB derivation, taking in  account the effect of the nuisance parameters. The 

parameter vector including the nuisance parameters is denoted by 2 2
1 2 1 2 ( 4) 1[ , , , , ] ,T T

pρ ρ σ σ + ×=η ψ  where 

[ , , ... ] .Tψ ψ ψ ψ=ψ  The parameters ,   1 k p

to

1 2 3 p kψ ≤ ≤  are the p desir ch are 

hase of the signal neral, the range is a function of both n  and ψ , i.e. 

( ) ( ; ).R n R n= ψ    For a complex Gaussian vector x , with a covariance matrix ,C  define  in ( , the 

ion elements are expressed as [22],  

ed parameters, some of whi

d 7

present purely in the p  returns. In ge

)

Fisher informat

                            -1 -1 -1[ ] Tr 2Re ,   1 ( , ) 4
H

qr
q r q r

q r p
η η η η

⎡ ⎤∂ ∂C C ⎧ ⎫∂ ∂⎪ ⎪= + ≤ ≤ +⎢ ⎥ ⎨ ⎬∂ ∂ ∂ ∂⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

s sF C C C                      (17) 

where 1 2
1 1 2 2

4 4[ ] ( ( )) exp ( ) ( ( )) exp ( )
T

T f fj j
c c
π π⎡ ⎤⎛ ⎞ ⎛= = + +⎢ ⎥⎜ ⎟ ⎜

⎝ ⎠ ⎝⎣ ⎦
1 2s s s ρ h ψ R ψ ρ h ψ R ψo o

⎞
⎟
⎠

 with 

 the exponential taken elementwise,  and  are 1 N×( )R ψ ( )i i+ρ h ψ row vectors, whose  elements are 

denotes the

thn

( ; )R n ψ  and ( ; ), 1,2i iρ h n i+ =ψ  resp ly. T depe cy on n  is suppressed. The operator 

ct or element wise multiplication. Following the work of [23], and using 

the vector differential operator, we obtain 

ective hat is, the nden

‘ o ’  Hadamard produ
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2 2
1 2 1 2

1 11

2 1 2 1
2 2 2 32

( ) 4 ( )4 ( )exp

( ) 4 ( )4 ( )exp

T T

T T

N N

T T

fj f
cc

j
fj f

cc

ρ ρ σ σ

ππ

π η ηπ × ×

⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
= ⎢ ⎥⎢ ⎥ ∂ ∂∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤∂ ∂⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞
⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= • + •⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎛ ⎞
⎢ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

1

2

ss
sη ψ

h ψ R ψR ψ
ψ ψ s ss 0 0

h ψ R ψR ψ
ψ ψ

( )2 4

1
11 1

1
2 31 2 2

( ( ))
: ,  :

( ( ))

N p

T
N

T
Nη η

× +

−
×

−
×

⎥
⎥

⎡ ⎤ ⎡ ⎤+∂ ∂
= =⎢ ⎥ ⎢ ⎥∂ ∂ +⎣ ⎦⎣ ⎦

0ρ h ψs ss s
0 ρ h ψ

o

o
o o

      (18)                         

where ‘ • ’ denotes the generalized Hadamard product1, and  ‘ 1( ) −⋅ o

/ ].

’ denotes the Hadamard division of a 

vector or a matrix, i.e. if 1
1, 2 1 2[ ... ],  [1 / ,1 / ...1N Nx x x x x−= =x xo x . In (17), the argument of the trace 

operator is zero except that which corresponds to the Fisher information of the noise nuisance parameters 

namely,  Partitioning the FIM, 2 ,  1  2.i i ,=σ

                                                                           11 12

21 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

F F
F

F F
                                                                (19) 

The desired CRBs reside on the diagonal of the inverse Schur complement of  with respect to , ,F 22F

                                                                                                                (20) 1 1
11 12 22 21( ) [( ) ]qqCRB − −= −ψ F F F F

Using (18)-(20), it can be readily shown that 

                                          

2

11 2
1

222

2 2
1

12 21

2 2 4 4
22 1 2 1 2

( ) ( )12

32 ( ) ( )( ( )) ( ( ))

[ ]

2 / 2 / / /

T
i i

T T
i i

T
i

i i i iT T
i i

T
p p p p

f
c

Diag N N N N

σ

π
σ

σ σ σ σ

=

=

⎛ ⎞∂ ∂
= ⎜ ⎟

∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
+ + • + •⎜ ⎟ ⎜ ⎟

∂⎝ ⎠ ⎝ ⎠
= =

⎡ ⎤= ⎣ ⎦

∑

∑

h ψ h ψF
ψ ψ

R ψ R ψρ h ψ ρ h ψ
ψ ψ

F F 0 0 0 0

F

∂

                                                

                    (21) 

 
1 For a matrix  and vector   ].... [ 21 N

NMC aaaA =∈ × 1×∈ MCx AxxaxaxaxA •==∈• × :]......  [: 21 ooo N
NMC
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where [ ]Diag ⋅   is a diagonal matrix with entries as given in the brackets and the vector  is the row 

vector of size 

1N×1

N  having entries all equal to one. Similarly, the vector  is the column vector of size p0 ,p  

having all zero entries. The CRB of the desired parameters is then expressed in a compact form as 

                                                   1
11([ ] )q qq

CRB −⎡ ⎤= ⎣ ⎦ψ F                                                                              (22) 

From (22), the CRBs for the desired parameters are completely decoupled from those of the nuisance 

parameters. The decoupling in (22) indicates that the variance of the range parameters are insensitive to 

the knowledge, or the information brought in by the estimation of the nuisance parameters, i.e. they are 

unaffected whether the nuisance parameters are known or unknown [22]. From matrix   in (21), we 

observe that the scalar multiplier terms arise as a result of the carrier diversity, implied by the dual 

frequency operation, and therefore have an additive effect on the net Fisher information. It yields lower 

CRBs, when compared to the no diversity (single carrier frequency) case. In fact, the scalar term 

11F

2 2 2 2 2 2
1 1 2 232 ( / ) /f fπ σ σ+ c  indicates that the CRBs are the lowest when 1 2 0,f f= =  in which case, 

 However, this is a trivial case, as diversity ceases to exist. In general, since the FIM elements are 

a function of the squared values of  

.uR = ∞

1f  and 2 ,f  lower CRBs are achieved when higher carrier frequencies 

are chosen. The effect of the SNRs on the CRBs is straightforward to analyze. The addition of Fisher 

information is explored in greater detail in the following subsections. In the ensuing analysis, we derive 

the FIM elements for the desired parameters. 

A. Constant Doppler CRB 

In this case, the parameter vector is [ ] .T
oR v=ψ  Substituting (9) in (21) for the constant Doppler range 

profile, we obtain the corresponding FIM. In order to make the CRB analysis more generic, we introduce 

the parameters, 2 1: / ,f fχ = and 2 2
1 2: / .ψ σ σ=′  It can be readily shown that for a single frequency radar 

employing carrier 1f , the FIM, 
1
,fF  and its inverse are, respectively, given by [10] 
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1

2 2 2
1 1

2 2 2
1

( 1)cos( )
32 2

( 1)cos( ) ( 1)(2 1)cos ( )
2 6

f

N NN
f

c N N N N N

θ
π ρ
σ θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=

− − −⎢ ⎥
⎢ ⎥⎣ ⎦

F                                         (23) 

                                       
1

2 2
1 1

2 2
1 1

2 2

2(2 1) 6
( 1) cos( ) ( 1)

6 12K
cos( ) ( 1) cos ( ) ( 1)

f

N
N N N Nc

f
N N N N

θσ
ρ

θ θ

−

− −⎡ ⎤
⎢ ⎥+ +⎢=

−⎢ ⎥
⎢ ⎥+ −⎣ ⎦

F ⎥                                         (24)                  

where 2K 32π=  is a constant. However, for the proposed dual frequency scheme, the FIM is given by   

                    
2 2

2 2 21
1 22 2 2

1

( 1)cos( )
32 2( )

( 1)cos( ) cos ( ) ( 1)(2 1)
2 6

N NN
f

c N N N N N

θ
π

ρ ρ χ ψ
σ θ θ

−⎡ ⎤
⎢ ⎥

′ ⎢ ⎥= +
− − −⎢ ⎥

⎢ ⎥⎣ ⎦

F                          (25) 

                    
2 2

1 1
2 2 2
1 2

2 2

2(2 1) 6
( 1) cos( ) ( 1)

6 12K( )
cos( ) ( 1) cos ( ) ( 1)

N
N N N Nc

N N N N

θσ
ρ ρ χ ψ

θ θ

−

− −⎡ ⎤
⎢ ⎥+ +⎢ ⎥=

−′ ⎢ ⎥+
⎢ ⎥+ −⎣ ⎦

F                                             (26) 

It is clear from (23) and (25) that the Fisher information for the dual frequency scheme can be written as, 

                                                                    
1 2f f= +F F F                                                                            (27) 

The diagonal elements in (26) represent the CRBs for the initial range and velocity, respectively. It is 

evident from the scalar matrix multiplicative factor in (24) and (26) that the CRBs for both the initial 

range and velocity for the dual frequency case consistently assume smaller values as compared to their 

counterparts in single frequency operation. Hence, carrier frequency diversity lowers the CRBs for the 

range parameters. In (26), the matrix elements containing N  characterize the temporal diversity in the 

Fisher information, whereas the scalar multiplier, containing the SNR terms and carriers, represents the 

carrier diversity in the Fisher information. Hence, the temporal diversity factor is identical for both 

frequencies, whereas the diversity induced by the carriers is different. If 1,  and 1,χ ψ ′≈ =  with 

,2,1 , =≈ ii ρρ  then the carrier frequencies are closely separated and the SNR corresponding to the two 

frequencies are equal. In this case, the net Fisher information is simply
1

2 fF  and the CRB are then 
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1
0.5 ( ) fCRB ψ , where 

1
( ) fCRB ψ  is the CRB of the parameter vector  associated with the single 

frequency 

,ψ

1.f   

B. Micro-Doppler CRB 

The derivation of the CRBs for the MD motion profile is different from that presented in [24], which uses 

a hybrid combination of PPS and MD signals. The results on the FIM elements presented in [24] are a 

special case of those presented here and do not provide closed form expressions of the FIM elements for 

MD signals, neither do they include the aspect angle and range parameters in the employed radar model. 

Since the frequency diversity appends the individual fisher information regardless of the motion profile, 

as shown in (27), we can simplify notation by suppressing the terms involving the carrier frequencies and 

noise variances, i.e.,  and 22 / ,i i iε σ=1 1,2∀ =
2 2

1
22

16 .i i
i

f
c

π εε =  

1) MD Fisher information 

In this case, the parameter vector is [ ] .T
o o oR d ω ϕ ρ φ=ψ Δ

))n

n

  The FIM can be derived from the 

general expression (21) using the range equation (10). It is straightforward to show that 

                                                                                                 (28)                        
2 1

2
1 0

( cos(
o o

N

R R i i i o
i n

F ε ρ ρ ω
−

= =

= + Δ −∑∑ 2
iφ

on                                
2 1

2
2

1 0

( cos( )) cos( )
N

i i i o i o
i n

F cos( )
oR d θ ε ρ ρ ω φ ϕ

−

= =

= + Δ −∑∑ ω

i

−

o odn n

                                  (29)                        

                             
2 1

2
2

1 0

( cos( )) sin( )
N

R i i i o
i n

F nω ε ρ ρ ω φ ϕ
−

= =

+ Δ − −∑∑cos( )
o o

θ                              (30)                         ω

)

= −

2 1

1 0

cos( )
N

i n

                       2
2 ( cos( )) sin(

o oR i i i o iF nϕ o od nθ ε ρ ρ ω φ ω= + Δ − ϕ
−

= =
∑∑

0,  
o i

F FΔ

−                                         (31) 

                                    0,
o iR Rρ φ= = 0,  0

i id dF Fρ φΔ = =                                                                   (32) 

                                           
2 1

2
2

1 0

s ( ) ( cos( )) ( )
N

i i i o i o o
i n

F n 2 2 ncodd cosθ ε ρ ρ ω φ ω ϕ
−

= =

= + Δ −∑∑ −                     (33)                      
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2 1

2 2
2

1 0

cos ( ) ( cos( )) sin( )cos( )
o

N

d i i i o i o o o o
i n

F n dn nω nθ ε ρ ρ ω φ ω ϕ ω ϕ
−

= =

= − + Δ − − −∑∑       (34)                        

                          
2 1

2 2
2

1 0

cos ( ) ( cos( )) sin( )cos( )
o

N

d i i i o i o o o o
i n

F n d nϕ nθ ε ρ ρ ω φ ω ϕ ω ϕ
−

= =

= + Δ − −∑∑ −

2 2

              (35)  

                                  

2 1
2 2 2

1
1 0

2 1
2 2 2

2
1 0

sin ( )

cos ( ) ( cos( )) sin ( )

o o

N

i i o i
i n

N

i i i o i o o
i n

F n n

n d n n

ω ω ε ρ ω φ

θ ε ρ ρ ω φ ω ϕ

−

= =

−

= =

= Δ −

+ + Δ −

∑∑

∑∑ −

2 2d n n

                             (36) 

                       
2 1

2 2
2

1 0

cos ( ) ( cos( )) sin ( )
o o

N

i i i o i o o
i n

F nω ϕ θ ε ρ ρ ω φ ω ϕ
−

= =

= − + Δ − −∑∑                              (37) 

                       
1

1
0

sin( )cos( ),
o i

N

i i o i o i
n

F n nω ρ nε ρ ω φ ω φ
−

Δ
=

= − Δ − −∑  0,  0
o i o i

F Fϕ ρ ϕ φΔ = =                                 (38) 

                         
1

2 2
1

0

sin ( ),
o i

N

i i o i
n

F nω φ nε ρ ω
−

=

= − Δ −∑ φ n   
1

1
0

cos( )sin( )
i i

N

i i o i o i
n

F nρ φ ε ρ ω φ ω φ
−

Δ
=

= Δ −∑ −

2 2d n

          (39) 

                           
2 1

2 2
2

1 0

cos ( ) ( cos( )) sin ( )
o o

N

i i i o i o o
i n

F nϕ ϕ θ ε ρ ρ ω φ ω ϕ
−

= =

= + Δ −∑∑ −                               (40) 

                 
1

2
1

0

cos ( ),
i i

N

i o
n

F nρ ρ iε ω φ
−

Δ Δ
=

= −∑   
1

2 2
1

0

sin ( )
i i

N

i i o i
n

Fφ φ nε ρ ω
−

=

= Δ −∑ φ                                               (41)                         

Since   depends only on ( ; )ih n ψ oω  and not on , ,  and ,oR d oϕ  the FIM elements in (32) are zero. In fact 

the FIM elements for iρΔ  and iφ  depend on oω  only and not on the rest of the parameters. The effect of 

 and hence ( ;ih n )ψ iρΔ

0,i i

 is explained in the simulations section. Further simplifications of the FIM 

elements in eqs. (28-41) are shown in Appendix-B. For the special case of  

( ;h n ) 0,i 1,2ρ= ⇒ψ

,

Δ == ∀  corresponding to a vibrating target, the FIM is a function of the aspect 

angle θ  and the desired parameters are   In order to simplify notation, the terms 

with 

[= ]o oR d ω ϕ .T
oψ

θ  are separated. We, therefore, obtain the final FIM as a Hadamard product of two matrices, the 

matrix  containing the terms in A θ  and the FIM,  corresponding to ,F 0.θ =  

 16



                                                ( ) Tθ
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

1 3

3 2

F F
F A F

F F
o                                                                            (42) 

where 
 

                                      (43) 
2 2 2

2 2 2

2 2 2

1 cos( ) cos( ) cos( )

cos( ) cos ( ) cos ( ) cos ( )
,   

cos( ) cos ( ) cos ( ) cos ( )

cos( ) cos ( ) cos ( ) cos ( )

o o o o o o o

o o

o o o o o o o

o o o o o o o

R R R d R R

dR dd d d

R d

R d

F F F F

F F F F

F F F F

F F F F

ω ϕ

ω ϕ

ω ω ω ω ω ϕ

ϕ ϕ ϕ ω ϕ ϕ

θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

⎡⎡ ⎤
⎢⎢ ⎥
⎢⎢ ⎥= = ⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥⎣ ⎦ ⎣

A F

⎤
⎥
⎥
⎥
⎥
⎥
⎦

o

Using numerical inversion it can be verified that F  is positive definite (PD). However, from (43),  is 

rank one with one positive eigenvalue, 

A

21 3cos .( )θ+  Thus,  is positive semi-definite (PSD).  Indeed, 

the Hadamard product of a PSD and a PD matrix is a cause for alarm, and prompts us to verify the non- 

singularity of 

A

( ),θF  without which the CRBs are unobtainable. Moreover, since ( )θF  represents a Fisher 

information matrix, it must at least be PSD, in which case the CRBs are infinite.  The positive 

definiteness of  ( )θF  can be proven using Lemma-1, implying non-singularity of the FIM [25]. In 

Lemma-1, the matrices are assumed complex, however the results can be generalized to real matrices. In 

[25], the authors have provided the complete definiteness characteristics of the Hadamard product of two 

matrices. However, in our case, it is sufficient to prove that ( )θF  is PD.  

Lemma 1: Consider matrices ,A B N NC ×∈ , where A  is Hermitian PSD and B  is Hermitian PD. Then, 

 is PD if all the diagonal elements of  are not equal to zero. A Bo A

Proof : This lemma is proved in [25, pg. 309, theorem 5.2.1]. The proof uses the Sylvester’s law of inertia 

extensively. 

The CRBs are present along the diagonal of 1( ) .θ −F  From Lemma-1, ( )θF  is invertible, we can 

simplify 1( )θ −F  as 

        
2 2 2

1
2 2 2

2 2 2

1 1 / cos( ) 1 / cos( ) 1 / cos( )

1 / cos( ) 1 / cos ( ) 1 / cos ( ) 1 / cos ( )
( )

1 / cos( ) 1 / cos ( ) 1 / cos ( ) 1 / cos ( )

1 / cos( ) 1 / cos ( ) 1 / cos ( ) 1 / cos ( )

o o o o o o o

o o

o o o o o

R R R d R R

dR dd d d

R d

F F F F

F F F F

F F F

ω ϕ

ω ϕ

ω ω ω ω

θ θ θ

θ θ θ θ
θ

θ θ θ θ

θ θ θ θ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F o

1

o o

o o o o o o oR d

F

F F F F
ω ϕ

ϕ ϕ ϕ ω ϕ ϕ

−

o

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

          (44) 

 17



For deriving (44), the theorem in Appendix-C was used. The inverse of the second matrix in (44) is 

tedious and, therefore, is computed using numerical techniques. It is evident from (44) that the parameter 

oR  is insensitive to ,θ  whereas the other parameters are sensitive to ,θ   depending on 2cos ( ).θ   

C. Accelerating target CRB 

In this case, the parameter vector is defined by  The FIM can be derived from the 

general expression (21) using the range equation (16). Proceeding in the same fashion as before, i.e., 

using the Hadamard product approach, we obtain  

[ .T
oR α β=ψ ]

                                             2 2

2 2

1 cos( ) cos( )

( ) cos( ) cos ( ) cos ( )

cos( ) cos ( ) cos ( )

o o o o

o

o

R R R R

R

R

F F F

F F F

F F F

α β

α αα αβ

β βα ββ

θ θ

θ θ θ θ

θ θ θ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦

F o                              (45) 

where 

                                   
2

2
2

1

,
o oR R i i

i

F Nρ ε
=

=∑
2 1 2

2
2

1 0 1

( 1)
2o

N

R i i
i n i

N NF nα
2

2i iρ ε
−

= = =

−
= =∑∑ ∑ρ ε                               (46a) 

                                   
2 1 2

2 2 2
2

1 0 1

( 1)(2 1)
6o

N

R i i
i n i

N N NF nβ 2i iρ ε
−

= = =

− −
= =∑∑ ∑ρ ε                                               (46b) 

                                                   
2 1 2

2 2 2
2 2

1 0 1

( 1)(2 1)
6

N

i i i i
i n i

N N NF nαα ρ ε
−

= = =

− −
= =∑∑ ∑ρ ε                                (47a) 

                                                  
2 1 22 2

2 3 2
2

1 0 1

( 1)
4

N

i i i i
i n i

N NF nαβ 2ρ ε
−

= = =

−
= =∑∑ ∑ρ ε                                           (47b) 

                                  

2 1 25 4 3
2 4 2

2 2
1 0 15 2 3 30

N

i i i i
i n i

N N N NF nββ ρ ε
−

= = =

⎛ ⎞
= = − + −⎜ ⎟

⎝ ⎠
∑∑ ∑ρ ε                                          (48) 

The CRB’s after inverting the FIM, are given by 

                                         
2

2 2 2
1 21 2 22

3 3 3( )
( ) ( 3o

N NCRB R
N N Nρ ε ρ ε

− +
= ×

2
2)+ + +

                                                (49) 

                               
2

2 2 2 4 2
1 21 2 22

12 16 30 11( )
cos ( )( ) ( 5 4)

N NCRB
N N N

α
θ ρ ε ρ ε

− +
= ×

+ − +
                                              (50) 
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                              2 2 2 4 2
1 21 2 22

1 18( )
cos ( )( ) ( 5 4)

CRB
N N N

β
θ ρ ε ρ ε

= ×
0

+ − +
                                              (51) 

where 2iε  is defined before and includes both carrier frequency and noise variance terms. 

IV. Simulation and Quasi-Experimental Results 

A. Numerical Simulations 

We begin by examining the effect of θ  on the CRBs. The term  21 / cos ( )θ  in the CRBs will simply 

increase the CRBs for increased value of .θ  The CRB’s become infinite when 2
πθ = ± . Moreover, 

2
πθ = ±  yields a singular FIM. The minimum CRB is achieved when 0,θ =  i.e., when the target is 

moving along the LOS of the radar system. Without loss of generality, in the simulations we assume, 

,  and ( ; ) ( ; ), 1,2.i ih n h n iρ ρ= =ψ ψ ∀ =  This then implies iρ ρΔ = Δ  and .iφ φ=  The SNR for constant 

Doppler and accelerating target motion profiles, are denoted by   for the two 

carriers respectively. Fig 1 illustrates the sensitivity of the CRBs for the constant Doppler and 

accelerating target motion profiles, the carrier frequencies were chosen to be MHz and 

MHz. Fig. 2 shows the CRBs for the MD motion profile for the vibration model 

2 2/ ,  1,2i i i =

1 90f =

(

SNR ρ σ=

6

2 919f = 0),ρΔ =  and 

the rotation model. We define SNR for MD as SNR . In order to be fair in our 

comparison, the SNR for both the vibration and rotation models was assumed identical in Fig. 2, and the 

parameters for vibration and rotation model are subscripted by ‘v’ and ‘r’ respectively. Fig. 2 clearly 

shows that the CRBs for the rotation model are higher than those of the vibration model for the same 

SNRs. It is well known that the CRBs of the phase parameters increase with the bandwidth of the signal 

amplitude [22, 26]. The bandwidth of the amplitude for the vibration model is zero (DC), whereas, 

bandwidth of the amplitude for the rotation model is 

2 2/ ,  1i iσ =( )i ρ ρ= + Δ

.o

,2

ω  Indeed, the scalar function  in the 

rotation model smears the exponential part of the returns and makes parameter estimation more difficult. 

In Fig. 1 we observe that v  has higher sensitivity than 

(h n; )ψ

oR , since it has a lower CRB for increasing N  
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[22]. Sim arly, from Fig. 1, the chirp, or the accelerating target para ,il meter β  is the most sensitive, 

whereas oR  is the least sensitive. From Fig. 2, fo data record length 50,N >  the parameter or ω  is the 

most sensitive. It is noteworthy that the CRB for oR  is much lower than the CRB for parameter ,d  both 

of which have the same units of measurement and represent a distance and displacement, respectively.  

Sensitivity of the parameters, as evidenced by the CRBs, are an indication of some order of estimation of 

the parameters. For example, we have seen that v  is the most sensitive parameter for the constant 

ppler motion and it represents the frequency in the sinusoidal parameter estimation problem, whereas 

o

Do

R  represents the phase in the sinusoidal parameter estimation model. It is well known that the maximum 

likelihood estimator (MLE) for the sinusoidal parameter model estimates the frequency first, and then the 

phase [15]. Similarly, for the PPS signal model, the highest order PPS coefficient is es mated first, and 

the lower orders are estimated subsequently [23, 26-28]. In our case, this agrees with 

ti

β  being the most 

sensitive for a second order PPS signal, i.e. the accelerating target returns. For the case of MD, we have a 

suboptimal estimator already in place in eqs. (13-14). Clearly, taking the Fourier transform of the MD 

returns, usi thng e DC as a reference, and selecting the two nearest peaks around 0 Hz is the quickest way 

to estimate .oω  

B. Quasi-Experimental results 

In urban sensing applications, the rotational or the vibrational frequency is an important parameter for 

differentiating animate from inanimate targets. An indoor rotating fan with three plastic blades was used 

as the target for the real-data collection experiment. In order to obtain strong single component returns, 

one of the blad rapped in alu il. The carrier frequencies of the dual-frequency radar were 

chosen to be 1 906.3f =  MHz, and 2 919.8f =  MHz, and the sampling frequency was set to 1 kHz. The 

radar returns at the two frequencies were simultaneously collected for a total duration of 1s. The center of 

rotation of the fan was at a distance of 1.22m from the antenna feed point along the LOS. The rotation 

speed of the fan was measured to be 780 rpm, which is in agreement with the technical specifications of 

the fan, and is considered to be the true value of the parameter .o

es was w minum fo

ω  The objective is to estimate the 
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rotational frequency of the fan for varying SNRs, and compute its variance for comparison with the CRB.  

The data is at a high SNR and is virtually noise free. In order to vary the SNR, we add complex white 

Gaussian noise. Hence the term quasi-experimental is used. Since no estimation technique has been 

advocated in this paper, we use the Fourier domain analysis, as given by eqs. (13-14) and extract the 

frequency of the first harmonic. This procedure is definitely suboptimal, the optimal method of maximum 

likelihood is not pursued here due to its associated computational complexity [24]. Extracting the first 

harmonic frequency is sufficient to obtain the estimate of the rotational frequency, since typically indoor 

inanimate targets are NBFM, see [24  details on estimating harmonics of NBFM. The FIM for 

MD is a function of the parameters o and ,d

] for more

ϕ  which are unknown. Furthermore, the amplitudes of the 

returns are also unknown. We employ some suboptimal schemes to estimate these and use these in our 

FIM calculations. The estimation of the unknown parameters is performed using the real data without 

adding artificial noise, these estimates are then considered as the true parameters. In particular, since the 

amplitudes of the returns are unknown, and, in general, are time-varying, the amplitudes can be efficiently 

estimated using the second order cyclic moment, see [28] and references therein. On the other hand, the 

time-frequency (TF) distribution is particularly useful in extracting ter .d  The maximum and 

minimum instantaneous frequencies of the MD signal are given by 2 /i o

the parame

f d cω±  correspon  two 

carrier frequencies, respectively. The bandwidth of the MD signal can then be defined as 4 / .i o

ding to the

f d cω  The 

bandwidth is estimated from the original returns using the spectrogram, and since the rotational frequency 

is known, computation of  d  is straightforward, this va ue is then taken as the true parameter value. The 

return for the first carrier was used for calculating .d  For estimating the phase ,o

 

l

ϕ we use the least 

squares estimator as in [24], with 1K =  using the returns corresponding to the first carrier frequency. For 

this procedure, the returns were zero padded and an 8192 point FFT was computed. These parameters 

were then used in computing the CRBs. Fig. 3(a) shows the spectrogram of the original returns 

corresponding to the carrier 1.f  It also shows the signature using the estimated o and d ϕ , and the true 

rotational frequency oω  as a solid black line, which closely follows the TF signature of the returns. The 
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maximum and minimum of instantaneous frequency are depicted with the dotted black lines. In Fig. 3(b), 

the raw FFT of the returns corresponding to the carrier 1f  is shown, Fig. 3(c) shows the estimated second 

order cyclic moment for the carrier frequency 1,f  and Fig. 3(d) shows the real part of the returns for the 

first carrier. From Fig. 3(c) it is clear that the second order cyclic moment shows harmonics at the 

rotational frequency ,oω  indicating the cyclic RCS changes, and hence validating the cyclic amplitude 

modulation we have assumed for the MD rotational model. We are now in a position to compute the CRB 

and the simulated mean square error (MSE) using Monte Carlo simulations. Fig. 4 shows the CRB for the 

rotational frequency and the MSE of its estimates vs. SNRs, 100 Monte Carlo trials was used in the 

simulations. For each carrier frequency, the initial estimate was derived from a raw FFT search, and 

subsequently the chirp-z transform was used to compute the final estimate of the first harmonic around 

the coarse initial estimate from the FFT, the search span of the chirp-z transform was 8192 points. This 

estimation procedure is identical to that used in [24] with 1.K =  The final estimate of the rotational 

frequency was the average of these estimates for the two carrier frequencies. A strong and consistent bias 

of the order 10-3 was observed in the raw MSE for SNR ≥  20 dB, as shown in Fig. 4, the bias-corrected 

MSE is also shown and comes close to the CRB for the rotational model. The strong bias maybe due to 

the chirp-z transform, necessitating optimization methods to be employed for estimation, for example the 

non-linear least squares. For comparison, the CRB for the vibration model (the single frequency and dual 

frequency) mulated M  the vibration model CRBs.  are also shown, the si SE is far away from

V. Conclusions 

In this paper, we considered dual frequency radar for range estimation with application to urban sensing. 

Three important and commonly encountered indoor range profiles were considered, namely, linear 

translation, micro-Doppler and accelerating target motion profiles. The CRBs were derived for the initial 

range and key target classification parameters, namely, velocity, acceleration and oscillatory frequency of 

targets respectively, encountering linear, accelerating, and simple harmonic motions. A parametric model 

specific to the dual frequency radar technique was developed for the range profiles, incorporating the 
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target aspect angles. It was shown that if the aspect angle is unknown, then the FIM becomes singular, 

leading to unidentifiability of the parameters. Closed form expressions for CRBs were derived for the 

parameters associated with translational motion profiles. However, for the MD case, the CRBs were 

intractable in closed form, and numerical matrix inversion was pursued.  It was also shown that the dual-

frequency approach provides lower bounds a single frequency counterpart.  s compared to the 

APPENDIX-A 

We demonstrate by example, when θ  is unknown and is a desired parameter, the FIM is singular. 

Specifically, the derivation is for the constant Doppler range profile, the derivation can be gen ed to 

any other motion profile. For nd without loss of generality, we assume .i

eraliz
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. 

Moreover, the orientation of the two radars with respect to each other must be known for identifiability. 

re assumed to uniformly 

converge so that the differential and summation operators can be interchanged. 

6⎢ ⎥⎣ ⎦

It can be shown that the FIM is singular, implying non-identifiable parameters for the chosen model [29]. 

This can, however, be overcome if an additional carrier diverse radar system, oriented differently from the 

original radar system, is used. This involves an additional angle diversity term in the Fisher information

APPENDIX-B 

In order to bring the FIM elements for MD in closed form, we need the following which can be derived 

easily using elementary trigonometry, and elementary calculus. The series a
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We are now in a position to express the FIM elements in closed form. The following can be readily shown 
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APPENDIX-C 

Theorem-1: Let  be two complex matrices  The rank of A  is one with non-zero diagonal 

elements and the rank of  is 

,A B .N NC ×∈

B .N  Then ( ) 1 1 1( ) ( )T T1 1,− − − −= =A B A B Ao oo−Bo o  where . 1 1[ ]ija− −=Ao

Proof: Since  is rank one, it can be rewritten as an outer product, given by A

                                              *, ,  with ,  1H T T NC ×= = ∈A xy A y x x y                                                        (C.1) 

The Hadamard product can then be expressed as 

                                                                      H H= = x yA B B xy D BDo o                                                   (C.2) 
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It is also clear from (C.2) that A  is non-singular. At this stage it is instructive to note that if any 

diagonal element of A  is zero, which is tantamount to any element in (C.3) being zero, then the inverse 

Bo
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of   does not exist. This is primarily the reason for imposing the condition, that none of the diagonal 

elements of A  are zero in the statement of the theorem. The proof is straightforward from hereon, from 

(C.2) 

A Bo

 1                                                                       ( 1 1 1) ( )H− − − −= yA B D B Do  x  

atrices in terms of the Had ucts as in (C.2), we get 
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e outer product and rewriting the elements in terms of , we obtain Expanding th  A

                                                          1 1 1 1 1( ) ( ) )T T(− − − − −= =A B B A Bo oo o o           A                               (C. 6) 

 greater than one, then the inverse of 
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Fig.1. Constant Doppler and accelerating target CRB’s for dB. ( 1,  2) (10,20)SNR SNR =
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Fig.2. MD CRBs. 
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Fig. 3. (a) Spectrogram of the returns, (b) FFT of raw returns, (c) Second order cyclic moment. 

(d) Real part of the returns. 
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Fig. 4. Simulation results with respect to SNR. 

 34



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


