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Abstract—Carrier diverse radars, known as dual frequency radars, employ two different frequencies, and 

can be effective in determining the moving target range in urban sensing and through-the-wall radar 

applications. In this paper, we derive the maximum likelihood (ML) estimator for the micro-Doppler 

motion parameters from the dual frequency radar returns. Micro-Doppler signatures, which are commonly 

associated with vibrating, oscillating, and rotating objects, have emerged to be an important tool in target 

detection and classification. Unlike linear models, the respective ML estimator does not assume a closed 

form expression. We solve the ML estimator for dual-frequency radar operations by applying an 

iteratively reweighted nonlinear least squares algorithm (IRNLS), which is initiated using suboptimal 

solutions.  The ML-IRNLS algorithm is applied to both simulated and experimental radar returns for 

estimating the range and the motion parameters of indoor targets. 

Keywords- Doppler radar, carrier diversity, urban sensing, micro-Doppler, maximum likelihood.  
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I. INTRODUCTION 

Urban sensing and through-the-wall radar imaging address the desire to detect, locate, and classify both 

animate and inanimate targets [1]-[4]. Range estimation is typically performed by linear frequency 

modulated radars, pulse compression radars, or pulse Doppler radars [5]. Such radar systems are wideband 

so as to meet the range resolution requirements. However, the operational logistics and system 

requirements for urban sensing, such as cost, hardware complexity, and portability, may impede or prohibit 

the use of such radar systems. Further, bandwidth allocation issues may arise since radio frequency (RF) 

penetration through the walls follows a lowpass filtering model with typical cutoff in the low GHz range, 

where much of the RF spectrum may be jammed or taken over, in part or fully by adversaries or other 

emitters. On the other hand, a dual-frequency approach for target range estimation, combined with wide 

array aperture, can meet the requirements of different system operation modes, and is likely to emerge as 

the preferred approach in most urban sensing and rescue missions [1],[6]. The dual frequency or carrier 

diversity is induced by using two different carrier frequencies which are selected to achieve a desirable 

maximum unambiguous range. The latter is important to allow a unique range estimate of a target, and 

should be based on the a priori knowledge (possible through aerial mapping or ground access) of the 

spatial extent of the urban structure under surveillance. The technique of employing two frequencies to 

estimate range has been used in many other radar applications [7], [8].   

In this paper, we apply a dual frequency radar for target range and parameter estimation. We consider 

the micro-Doppler (MD) target motion profile [9]. Micro-Doppler analysis has been used in many 

applications for human gait analysis, multistatic radar applications, etc., such works can be seen for 

example in [10], [11], and references therein. RF signatures of indoor inanimate objects, such as fans, 

vibrating machineries, and clock pendulums, and animate objects, like the limbs in human gait are 

characterized by MD motion. Translational motions, producing constant velocity or accelerating velocity, 

respectively produce complex sinusoids and linear frequency modulation to the incident waveform.  The 

ML techniques for parameter estimation of such returns has been treated in [12], [13], and references 
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therein. However, the ML for micro Doppler, which gives rise to sinusoidal FM signals, has not yet been 

examined and is the subject of this paper. We derive the maximum likelihood optimal estimator for MD 

motion parameters. The results are compared with the Cramér-Rao lower bounds (CRBs) for MD motion 

parameters which were recently derived in [14] for dual-frequency operations.  

We consider a single moving target whose MD motion profile can be modeled by a finite number of 

parameters. The MD is further classified as rotational or vibrational MD based on radar cross section 

(RCS) fluctuations. Maximum likelihood (ML) technique for motion parameter estimation is then 

formulated and solved using step wise concentration to obtain an iteratively reweighted least squares 

algorithm. The iterative algorithm is initialized using suboptimal estimates and applied to real radar returns 

to obtain ML estimates of the MD parameters. It is noted that the focus of this paper is on single antenna 

operation. For a multiple target scene, assuming that the targets are separable in cross-range and spatial 

processing (beamforming) is used in conjunction with the dual-frequency radar, the ML analysis presented 

in this paper is applicable to each individual separated target return. 

A brief outline of the paper is as follows. Section II describes the signal model. In Sections III and IV, 

we discuss, respectively, the ML and suboptimal estimation schemes for the micro-Doppler motions. 

Section V contains the simulation and experimental results, followed by the conclusions in Section VI. 

II. SIGNAL MODEL 

The signal returns for the dual frequency Doppler radar after down conversion to baseband and using N  

samples are given by, 
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where ,  1,2if i =  are the carrier frequencies, c  is the speed of light in free space, and the superscript ‘ ∗ ’ 

denotes the complex conjugate operation. The target range, ( ; )R n ψ , is parameterized by a vector 

1P×∈ℜψ  of P desired parameters. The amplitude ( ; )ih n ′ψ , measured at the i-th frequency, captures the 
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time variations in the target RCS, and is a function of a subset  ψ′  of the parameter vector .ψ   The noise, 

1 2( ) and ( ),v v⋅ ⋅  at the two carrier frequencies, are assumed to be complex circular AWGN and 

uncorrelated. Further, the noise sequences are i.i.d for each carrier frequency. Note that the model in (1) 

corresponds to the discrete-time equivalent of the continuous-time signals, i.e., ( ) ( ),i i sx n x nT=  where sT  

is the sampling period and has been suppressed in the notations for convenience. The returns in (1) can be 

statistically characterized by a multivariate complex Gaussian probability density function (pdf), ( ; ),p x s  

                                                        1
2

1( ; ) exp( ( ) ( ))
det( )

H
Np

π
−= − − −x s x μ C x μ

C
                                  (2) 

where the received signals at the two frequencies are appended to form a long vector,  
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The mean { }E=μ x equals [ ]T
1 2s s and the covariance matrix C is Hermitian with the following diagonal 

structure, 

                              
2
1
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0 I
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where I  is an identity matrix of dimensions .N N×  

III. MAXIMUM LIKELIHOOD ESTIMATION 

We consider the noise free return ,s  which is a function of ( ; ),  ( ; ),iR n h n ′ψ ψ  and ,  1,2,if i =  to be 

parameterized by the vector ψ of P  desired parameters. Hereafter, for notational succinctness, we denote 

( )=s s ψ . The ML estimator for 1 2 3[ ,  ,  ..... ]T
Pψ ψ ψ ψ=ψ   is defined as [15], 

                            ˆ arg max ( ; ( )) arg max  ln( ( ; ( )))p s p s= =
ψ ψ

ψ x ψ x ψ                                     (5) 
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If the elements of the covariance matrix, i.e., 2 ,  1,  2,i iσ =  are unknown, then using (2) and ignoring the 

constant terms, the ML estimator of the complete parameter vector, 2 2
1 2[ , ,  ]T Tσ σ=θ ψ can be expressed as, 

                               
2 2

1 1 2 22 2
1 2 2 2

1 2

( ) ( )ˆ arg max ln( ) ln( )N Nσ σ
σ σ

⎛ ⎞− −
⎜ ⎟= − − − −
⎜ ⎟
⎝ ⎠θ

x s ψ x s ψ
θ                       (6) 

Computing the log likelihood (LL) score with respect to the noise nuisance parameters 2 ,   1,  2,i iσ =  and 

equating it to zero, we obtain 

                                                     
2

2 ( )
,     for  1,  2i i

i i
N

σ
−

= =
x s ψ

                                                (7) 

Concentrating the LL with respect to 2
iσ , i.e., substituting (7) in (6), yields 

22 2 2
1 1 2 2

1
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2
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ˆ i i

i N
σ

−
=

x s ψ
                                                             (8b) 

The ML estimator for the noise nuisance parameters is provided in (8b), and is the same as the expression 

in (7) with ψ  replaced by ˆ .ψ  Notice that the noise estimate at one frequency only depends on the data 

measured at the same frequency. However, it also depends on the ML parameter estimates obtained from 

the combined frequency information, and as such, the problem cannot be decoupled into two separate ML 

parts, each corresponding to a single frequency. Equation 8(a, b) constitutes the ML estimator for the dual 

frequency radar, and due to the involvement of the two terms, it does not have a closed form solution. If 

the elements of the covariance matrix C  are known, the ML estimator for ψ takes the form 

                   
2 2

1 1 2 21
2 2
1

( ) ( )
ˆ arg min  ( ( )) ( ( )) arg min   

2

H

σ σ
−

⎛ ⎞− −
⎜ ⎟= − − = +
⎜ ⎟
⎝ ⎠ψ ψ

x s ψ x s ψ
ψ x s ψ C x s ψ               (9) 

The step wise concentration approach can be applied using (9) to provide an iterative solution to 8(a,b). 

The iterative ML algorithm is formulated as follows. 
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1. Initialize with 0 =C I , where I  is an identity matrix of the same dimension as 0.C  

2. Using (9), find the estimate 0ψ̂  of .ψ  

3. Use  0ψ̂  in (8b) to obtain the noise variance estimates 22
1 0ˆˆ ( ) / ,i i i Nσ = −x s ψ and construct the 

covariance matrix 2 2
1 11 21ˆ ˆ [ , ],   Diag σ σ= × ×C 1 1  where  the operator [ ]Diag ⋅  transforms a vector 

into a diagonal matrix and 1[1,1,1..1] .N×=1  

4. Recursively solve at the thk  iteration ( 1)k > ,  

1
1ˆ ˆarg min  ( ( )) ( ( )),    initialized  with  H

k k ks s−
−= − −

ψ
ψ x ψ C x ψ ψ  

                        22 2 2
( 1) ( 1) 1( 1) 2( 1)ˆˆ ˆ ˆ( ) / ,  1,2 ;  : [ , ]i k i i k k k kN i Diagσ σ σ+ + + += − ∀ = = × ×x s ψ C 1 1                    (10)  

5. Stop at convergence, or when an appropriate terminating criterion is satisfied. 

 The solution of step 4 depends on the underlying motion model, as delineated next. We note that the 

estimate 0ψ̂  is the non-linear least squares (NLS) estimate. Further, in step 4, the covariance matrix kC  is 

not stressed to be an estimate for reasons to follow shortly. As evident from the above iterative ML 

implementation, the step-wise concentration approach does not treat the noise variances as of known or 

estimated values, but rather alternates between the two assumed hypotheses. In other words, for every 

iteration, a quasi-ML objective is optimized. The step-wise algorithm has been used in generalized linear 

models in statistical literature [16] and in robust statistics for M-estimation [17]. It is often described as the 

iteratively reweighted least squares (IRLS).  The “reweighting” at each iteration occurs in the estimation of  

ˆ kψ  through a known ,kC  as seen in (10). However, for the problem at hand, as shown in the following 

section, ( )s ψ  is nonlinear, and hence a more appropriate name for the algorithm would be the iteratively 

reweighted nonlinear least squares (IRNLS). Henceforth, we will refer to the iterative ML algorithm as 

IRNLS. Proof of convergence of the IRNLS estimates is provided in the Appendix. 

Three terminating criteria may be considered for the IRNLS algorithm. Denoting the negative LL cost 

by ( )ψ , an appropriate criterion is when 1ˆ ˆ( ) ( ) ,k k ε−− ≤ψ ψ  where ε  is an arbitrarily small user-
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defined positive constant, in which case ˆ kψ  will be the final ML estimate. Another terminating criterion 

could be 1ˆ ˆ ,k k ε−− ≤ψ ψ  where ε  is the available machine precision or can be user-defined. The third 

terminating criterion is simply constraining the maximum number of iterations, i.e., iterate (10) until 

maxk k= . We use this criterion in the simulations.  A general flowchart of the ML algorithm is shown in 

Fig. 1. 

In the following, we associate ( )s ψ  to different MD motion profiles, and use the IRNLS to derive the 

respective optimal ML solution. 

A. Micro-Doppler  

The MD returns can be classified as a) vibrational MD and b) rotational MD. Although the phase of the 

returns is identical in both cases, a difference between the two exists in terms of the amplitude or RCS 

fluctuations.  

A.1  Vibrational MD 

The vibrational MD arises due to vibrations of the scatterers on the target or of the target itself, example 

being a target moving back and forth or undergoing a simple harmonic motion (SHM). The vibrational MD 

is characterized by a sinusoidal instantaneous frequency. It is parameterized by [ , , , ],o o oR d ω ϕ=ψ   where 

oR  is the range of the target at rest or simply the mean range, d is the maximum radial displacement, oω  is 

the vibrational frequency, and oϕ  is a constant phase. The time-varying range profile for this motion is 

given by,  

                                                             ( ; ) cos( )o o oR n R d nω ϕ= + −ψ                                                      (11) 

Typical indoor vibrating targets have small displacements relative to the target range, especially for longer 

radar standoff distances from the wall that are normally used for through-the-wall radar operations. 

Accordingly, the target aspect angle and hence the RCS is considered constant, thereby yielding a constant 

amplitude, i.e., ( ; ) ,  1,2i ih n iρ′ = =ψ . Substituting the expressions for ( ; )ih n ′ψ  and ( ; )R n ψ  in (1), we 

obtain the signal returns as, 
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The radar returns in (12) represent sinusoidal FM signals. Using the data vector ,x  comprised of the 

returns of (12), in (10) defines the IRNLS-ML estimator for the vibrational MD motion profile. The noise-

free signal vector s  can be decomposed into two multiplicative terms, one containing oR  and the other 

being a function of the remaining parameters in .ψ  Accordingly, we express the IRNLS-iterations as 

                             

1
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In (13), îkb  denotes the estimate îb  at the k-th iteration. We proceed by minimizing (13) with respect to ,b  

in which case one obtains the well known weighted least squares solution, substituting this into (13) we 

obtain the final estimates of the parameters as,  
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f f
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                               (14) 

In (14), ˆ
kA  and ˆ ,kb  respectively, denote the estimates of A  and b  in the k-th iteration, defined in (13). 

Similar notational convention follows for the other parameters. The function maximizations in (14) are 

solved numerically. It is noted in (14) that the range estimate ˆ
okR  is obtained by subtracting the mean 
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phase estimates at the two carriers and dividing it by the difference of the carrier frequencies. This estimate 

corresponds to the standard dual-frequency range estimate to avoid the many ambiguous range solutions 

see [7, pg. 140]. In other words, we are assuming 2 1[0, / 2( )].oR c f f∈ −  

A.2 Rotational MD 

As the name suggests, targets which are rotating with respect to a fixed location radar follow this model. 

Unlike the vibration model, the signal returns due to rotation have RCS fluctuations. This is because the 

radar observes different elevation aspects of the target, thereby inducing a cyclic amplitude modulation in 

the radar returns. In general, the RCS fluctuations are geometry dependent. For example, the RCS 

fluctuations are non-existent for a rotating sphere since the sphere is aspect independent, whereas for other 

complex targets, the RCS fluctuates cyclically. In this paper, we consider the sinc type fluctuation, which 

corresponds well to a rotating fan blade [18-20]. It must be noted that most of the typical indoor rotating 

targets are fans, which may either be ceiling mounted, pedestal or table-top. This is primarily the reason for 

using the sinc model in the underlying application area. As such, the baseband returns at the two carrier 

frequencies, for a single blade, can be readily shown to be 

                               

4 ( cos( ))( ) ( ; )exp ( ),  1,2

4 cos( )( ; ) : ( ; )= sinc ,  : [ , , ]

i o o o
i i i

Ti o o
i i i i o o

f R d nx n h n j v n i
c

f d nh n n d
c

π ω ϕ

π ω ϕ
ρ γ ρ ω ϕ

+ −⎛ ⎞′= + =⎜ ⎟
⎝ ⎠

−⎛ ⎞′ ′ ′= =⎜ ⎟
⎝ ⎠

ψ

ψ ψ ψ
                     (15) 

The sinc function in (15) is defined as sinc( ) : sin( ) / .x x x=   From (15), it is noted that the sinc function 

has a cyclic behavior which depends on the rotational frequency. The rotational frequency, in turn, is also 

a function of the sampling frequency, and hence the data in (15) must span at least one cycle for any type 

of processing to be successfully applied to it. Extending the model in (15) to Q  blades, the return at the i-

th frequency is given by, 

                                     
1

4 ( cos( ))
( ) ( ; )exp ( ),  1,2

4 cos( )
( ; ) : ( ; ) sinc

Q
i o o q

i iq i
q

i o q
iq iq iq iq
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c

f d n
h n n

c

π ω ϕ

π ω ϕ
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+ −⎛ ⎞
′= + =⎜ ⎟

⎝ ⎠
−⎛ ⎞

′ ′= = ⎜ ⎟
⎝ ⎠

∑ ψ

ψ ψ
               (16) 
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The model in (16) is general, in the sense that it assumes the Q blades are different, and thus iqρ  is 

indexed by q. If the blades possess identical geometry, and no have manufacturing defects, then as a 

special case ,  .iq i qρ ρ= ∀  Further, assuming that the blades are placed symmetrically around the main 

rotor, we can express qϕ  as 

                                                        ( 1)2 / ,      q 1,2, ,q o q Q Qϕ ϕ π= + − = …                                              (17) 

In this case, the radar return from the rotating object has a harmonic structure with harmonic frequencies 

at ∞±= ,,1,0 , …mmQ oω  [18-20]. We must note that the RCS, which is strictly positive and real, is 

determined from the magnitude squared of the noise free returns in (15) and (16). The returns in (16) can 

be rewritten in a compact vector notation as 

    

1 2

11
1 2

22

1 2 1 2
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T
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′= =

′⎡ ⎤′ = =⎢ ⎥′⎣ ⎦
′ ′ ′ ′⎡ ⎤= = = =⎣ ⎦
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…
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N q Q

e e eπ ϕ π ω ϕ π ω ϕ− − −

′− =

′ =

ψ

g ψ

…

…

        (18) 

In (18), the symbol ‘ ’ denotes the Hadamard product or element-wise product. Following the analysis 

for vibrational MD case, it can be readily shown that the IRNLS ML for rotational MD at the thk  iteration 

is given by  

                                           

1
1

1 1 1

1 1 1
1 2

*
1 2

2 1
2

2
( 1)

ˆ ˆarg max ( ) ,      

( ) : ( )
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i k i i k ik iq

initialized with
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Q f f

b N i

π
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−
−

′
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= ∠ ×
−
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ψ
ψ x P ψ C x ψ

P ψ A A C A A C

b A C A A C x b b

1 b b

x a ψ ˆ ,  iqb q= ∀

                                     (19) 

where 1  is column vector of dimensions Q x 1 whose elements are comprised of all ones, and ( )′A ψ  and 

b  are defined in (18). In (19), ˆ ˆ: ( )k k′=A A ψ  is the estimate of the matrix .kA  The function 
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maximizations in (19), as before is carried out numerically. A special arises when the blades are all 

identical. I.e., ,  ,iq i qρ ρ= ∀ then the IRNLS ML derived thus far still applies, for example in (19),  we 

simply use  ˆˆ /T
i i Qρ = 1 b , where the absolute value is taken element-wise. For a single blade return, we 

can substitute 1q =  in (18-19) and proceed with the analysis.  

We use the CRBs to compare the mean squared error (MSE) of the ML estimates for both vibrational 

and rotational MD motions. The elements of the Fisher Information Matrix (FIM) for rotational MD 

assuming the sinc model are derived in Section. III. The expressions can then be used to numerically 

evaluate the inverted FIM. The FIM for vibrational MD, derived in [14], is a special case of the rotational 

MD FIM.  

IV. SUBOPTIMAL ESTIMATORS 

Iterative non-linear schemes, ML or otherwise, require proper initial estimates for achieving convergence.  

The non-linear cost functions of  (8a) and (9) have multiple local extrema. Therefore, in order to obtain 1ψ̂  

in step 2 of the IRNLS-ML algorithm, initial estimates, obtained from suboptimal estimators which depend 

on the noise free returns, ( ),  1,2,i i =s ψ  can be used. Below, we discuss the suboptimal estimation 

schemes for both vibrational and rotational MD. 

A. Vibrational MD 

Ignoring the contribution of noise for the time being, we note that the Fourier spectrum of the return, 

( ),  1,2ix n i =  in (12) is not analytic, and consists of infinitely many harmonics weighted by Bessel 

functions of the first kind [21],  

( ) 2 exp( 4 / ) (4 / ) ( )exp( ),   1,2
m

m
i i i o m i o o

m

X j f R c j J f d c m jm iω πρ π π δ ω ω ϕ
=∞

=−∞

= − − ∀ =∑       (20) 

where ( )mJ ⋅  is the thm  order Bessel function of the first kind. Since the Bessel functions rapidly decrease 

in magnitude for increasing ,m  the Fourier transform (20) of the returns in (12) has at the most m K=  

significant harmonics. The value of K  is readily inferred from the spectrum. With this in mind, we 
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describe below the suboptimal estimation procedure. Since the noise variances are neither required for 

estimating the parameters suboptimally nor are they essential to start the IRLS iterations, their suboptimal 

estimates are omitted. 

To obtain initial estimates of oω , we choose 2K+1 peaks of ( ),  1,2iX iω =  and form the vector 

1 1[ ( ), ( ), , (0), , ( ), ( )] .T
i i K i K i i K i KX X X X Xω ω ω ω− − + −=y … …  The frequencies corresponding to these peaks 

are stored in a vector .iω  Since the noise is different for each carrier frequency, different perturbations in 

the peak frequency locations can occur. Hence, in general, 1 2.≠ω ω  The DC value in the Fourier 

transform is important, since it serves a reference for automatic peak-picking, and therefore it must be 

included in the vector .iy  The suboptimal estimates , ,  1,2,oi subopt iω = for oω  can be obtained as, 

        ,ˆ ,  1,  2,   : [ , 1, ,0, , ]
( )

T
Ti

oi subopt T i K K Kω = ∀ = = − − +
K ω K
K K

… …                                  (21) 

Equation (21) is similar to the least squares estimator proposed in [22, eq. (35)], with subtle differences due 

to the model choice.  

In order to estimate the remaining parameters, albeit suboptimally, one first needs to estimate the 

amplitude iρ . For this purpose, we employ a computationally efficient technique using higher order 

statistics which was proposed in [22, eq. (50-52)],  

                              
21 1

2 4
4,

0 0

1 1ˆ 2 ( ) ( ) ,  1,2
N N

i subopt i i
n n

x n x n i
N N

ρ
− −

= =

⎛ ⎞
= − ∀ =⎜ ⎟

⎝ ⎠
∑ ∑                                               (22) 

 The above equation relies on the higher order moments of the Gaussian random variable, and may not be 

valid for other types of distributions. The estimation of id  depends on classifying the signal returns as 

wideband or narrowband. We consider the wideband case1. The suboptimal estimator proposed in [23], and 

also used in, [22, eq. (38), eq. (40)], and [24] can be applied to obtain the estimate of ,  1,2id i = , as 

                                                 
1 Narrowband case is treated in [22] and is much simpler than the wideband case. 
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                                                2
2( ) ( )ˆ ,  1,2

( )

T
i i

i H
i i i

d i
ρ

∗

= ∀ =
y y K K

y y
                                                         (23) 

The estimate for oR  is given by, 

                                                        , 2 1 2 1
ˆ ( (0) (0)) 4 ( ))o suboptR X X c f fπ∗= ∠ −                                            (24) 

Indeed, other techniques, based on (20), can be considered for estimating .oR  However, the suboptimal 

estimates of (24) were found to perform reasonably well in terms of the mean square error. For ,oϕ  we use 

the LS estimator proposed in [22] after appropriately demodulating the phase estimates for .oR  

                                ,
, 2

ˆarg( exp( 4 / ))
ˆ ,  1,2

T
i i o subopt

oi subopt
j f R c

i
π

ϕ
− −

= ∀ =
K y

K
                          (25) 

In (25), arg( )⋅  is the unwrapped phase operator, which operates element-wise on a vector. We note that the 

suboptimal techniques for vibrational MD rely heavily on peak picking in the discrete Fourier transform of 

the returns and could suffer considerably for low signal-to-noise ratios (SNRs).  

It is important to note that there are two sets of suboptimal estimates for , ,  and  o odω ϕ corresponding 

to the two carrier frequencies, whereas only one suboptimal estimate for .oR  In step 2 of the IRNLS, we 

only need a single suboptimal estimate of oω  for initialization. In the absence of any a priori information 

on the operating conditions, for example, the SNR at the two carriers, one can simply average the 

suboptimal estimates to obtain a single value as  1, 2,( ) / 2.osubopt o subopt o suboptω ω ω= +  However, more 

sophisticated strategies, such as 1 1, 2 2, 1 2,  1osubopt o subopt o suboptw w w wω ω ω= + + = can be used if prior 

knowledge of the operating conditions is available. Likewise for and  .od ϕ  It is further noted that the 

suboptimal estimates for oR  and iρ  are not required to launch the IRNLS, as these parameters are not 

involved in step 2 maximizations in the IRNLS.  

B. Rotational MD 

Consider the single blade returns of (15). Ignoring the noise for the time being, the Fourier transform of  
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(15), denoted as ( ),iX ω  is given by  

                                   4 /( ) ( ; ) ( ) ( )i o oj f R c jmm
i i m o

m
X H e j J d e mπ ϕω ω δ ω ω

∞
−

=−∞

′= ∗ −∑ψ                               (26) 

where ' '∗  denotes the convolution operator, and  ( ; )iH ω ′ψ  is the Fourier transform of ( ; ).ih n ′ψ  The sinc 

fluctuation in ( ; )ih n ′ψ can be expressed in terms of the spherical Bessel function of  zero order, denoted 

by ( ),oj ⋅  leading to [21] 

                                                        4 cos( )( ; ) i o o
i i o

f d nh n j
c

π ω ϕ
ρ

−⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

ψ                                               (27) 

Expressing ( )oj ⋅  in terms of the Bessel function of the first kind, and using its integral equivalent, we 

obtain  

                                      

1/2

1

0

4 cos( )( ; )
4 cos( )2

4 cos( )cos
(1) (1 / 2)

i o o
i i

i o o

i i o o

f d nh n J
f d n c

c

f d n y dy
c

π ω ϕπρ
π ω ϕ

ρ π π ω ϕ

−⎛ ⎞′ = ⎜ ⎟−⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

−⎛ ⎞= ⎜ ⎟Γ Γ ⎝ ⎠∫

ψ

                   (28)                         

where ( )Γ ⋅  denotes the gamma function. The integrand in (28) can be simplified further using the Jacobi-

Anger series [21], 

            2
1

4 cos( ) 4 4cos 2 ( 1) cos( (2 2 ))mi o o i i
o m o o

m

f d n f d f dy J y J y m n
c c c

π ω ϕ π π
ω ϕ

∞

=

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑      (29) 

Using (29) in (28), and then applying the Fourier transform, we obtain  

       
( )1

2 20
2

1

4 0
2( ; )
(1) (1 / 2) 4( 1) ( ( 2 ) ( 2 ) )o o

i
o

i
i

mj mjm i
m o o

m

f dJ y
c

H dy
f dJ y m e m e

c
ϕ ϕ

π
δ

πρ π
ω

π
δ ω ω δ ω ω

∞
−

=

⎡ ⎤⎛ ⎞ +⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥′ =

⎢ ⎥Γ Γ ⎛ ⎞− − + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫
∑

ψ     (30)   

Using the identity 2 1
10

( ) 2 ( ),
a

v v r
r

J x dx J a
∞

+ +
=

= ∑∫  in (30), we obtain  
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( )0 2 1
1

2

2 2 12
1 1

4( ) 0

( ; )
( 2 )(1) (1 / 2) 4( 1) ( )

( 2 )

o

o

i
r

r
i

mji
omi i

m rmj
m ro

f dJ
ccH

m ef d f dJ
cm e

ϕ

ϕ

π
δ

ρ π
ω

δ ω ω π
δ ω ω

∞

+ +
=

−∞ ∞

+ +
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥′ = × ⎢ ⎥⎛ ⎞−Γ Γ
⎢ ⎥+ − ⎜ ⎟⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑ ∑
ψ         (31) 

Interestingly, the function in (31) has harmonics at  0, 2 , 4 , ,o oω ω± ± …  where amplitudes are scaled by a 

complex combination of Bessel functions. From (26) and using the result in (31), it can be readily seen 

that the resulting expression after convolution retains the original harmonic structure, i.e., the spectrum 

( )iX ω  has peaks at 0, , 2 , ,o oω ω± ± ∞…  akin to the vibrational MD spectrum. Likewise, it can be shown 

that, for Q identical blades, the Fourier spectrum of has harmonics at 0, , 2 , .o oQ Qω ω± ± ∞…  In practice, 

similar to the vibrational MD case, there exist only a finite number of dominant harmonics for rotational 

MD. In essence, the suboptimal estimator, designed for the vibrational MD, can be also used for rotational 

MD to estimate ,oQω  from which the suboptimal estimate of the rotational frequency denoted as 

,ˆ , 1,2oi subopt iω =  is readily obtained. 

Unlike the vibrational MD case, it is not straightforward to use the amplitude of the peaks in the return 

signal spectrum to obtain suboptimal estimates of and od ϕ  for rotational MD. This is due to the 

complicated structure of (31) and (26) involving Bessel functions and convolution. Instead, we use the grid 

search technique for estimating  and .od ϕ  The suboptimal estimates for and od ϕ  at each of the carrier 

frequencies are readily obtained as, 

                                                   

, , ,
,

21
4 cos( )/

0
1

2

0

ˆ ˆ ˆ( , ) arg max  G ( , , )

( )
G ( , )

( ; )

o

i o o

i subopt oi subopt i oi subopt o
d

N
j f d n c

i
n

i o o N

i
n

d d

x n e
d

n

ϕ

π ω ϕ

ϕ ω ϕ

ω ϕ
γ

−
− −

=
−

=

=

=
∑

∑ ψ

                                       (32) 

The cost function G ( , )i o odω ϕ  is easily recognized as the ML cost function operating individually on the 

returns at the carrier .if  Although (32) is designed for a single blade, it can be used directly when 
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multiple blades are present. In fact, the presence of Q blades will reveal itself as Q dominant peaks in the 

cost function (32), provided that Q is finite. 

The grid search on (32) is appealing because of two main reasons. Firstly, as opposed to traditional 

targets, rotating fans do not assume very high displacements. Thus, we can safely assume (0,1 ]d m∈ . 

Further, [0,2 ).oϕ π∈  The entire parameter space can then be evaluated using a small and finite grid. For 

example, we can evaluate (32) for every 0.01m in the d-domain, and similarly for every 0.01π in the oϕ - 

domain, which makes the grid search extremely feasible. Secondly, the visualization of the cost function 

using the grid search would indicate the global optimum corresponding to one blade, or several maxima 

corresponding to multiple blades in the radar returns. In other words, knowledge of the number of blades 

can be readily obtained, if it is not known a priori. For a reasonable SNR, the cost function in (32) will 

fail to reveal multiple peaks when ,Q →∞  which is quite unlikely for fans, or when the grid size is too 

large to accommodate the support of all the peaks in the ( , )od ϕ  plane, in which case a single continuous 

peak is seen along the oϕ -axis. 

Note that the suboptimal techniques for vibrational and to some extent rotational MD use the discrete 

Fourier transform, and thus, can be implemented using the FFT efficiently. It is now assumed that these 

suboptimal techniques give rise to estimates close to the true parameters so that the IRNLS-ML iterations 

converge to the optimal ML estimate.  

V. CRAMÉR-RAO BOUNDS 

The vibrational MD CRBs were derived in [14]. In this section, we derive the multi-component rotational 

MD CRBs. Let F  be the Fisher information matrix and 2 2
1 2[ , , ]T Tσ σ=θ ψ  be the complete parameter 

vector, where the MD parameter vector is defined as 1 2[ , , , , , ]T
o o oR dω ϕ ρ ρ=ψ . The FIM elements can be 

derived in a compact manner for the complex Gaussian pdf due to the Slepian-Bangs formula, which is 

given by [15],[25], 
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                            1 1 12Re ,  ( , ) (1,2, ,8)
r s

H

r s r s

F Tr r sθ θ θ θ θ θ
− − −⎧ ⎫⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪= + ∈⎨ ⎬ ⎨ ⎬
∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭ ⎩ ⎭

C C μ μC C C …                         (33) 

where  and μ C  are the mean and the covariance matrix of the PDF, respectively. For the problem at hand, 

and using (33), it can be readily shown that 

                                       

{ }

( )

1

1, 2
, 1 2

2,

4 /

2Re ,( , ) (1,2, ,6)

,  , , ,

: ( ) ( ) ( )

r s r s

r r r r

r r

r

i or

T H

N Q
i i i iQ

j f R c
iq iq i iq iq

r r

F r s

e

ψ ψ ψ ψ

ψ ψ ψ ψ
ψ ψ

ψ

πψ ρ
ψ ψ

−

×

= ∈

⎡ ⎤
⎡ ⎤= ∈ℑ =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

∂ ∂ ′ ′= = ×
∂ ∂

1 E C E 1

E
E E e e e

E

e β ψ γ ψ g ψ

…

…                                     (34) 

where ( )iq ′γ ψ  and ( )iq ′g ψ  have been defined in (18). The derivatives with respect to the parameters are 

required. The partial derivatives of ( )iqβ ψ  with respect to , 1,2, ,6r rψ = …  are given by, 

                             14( ) ( ),  ( ) ( )i
iq iq iq i iq

o i

j f
R c

π
ρ

ρ
−∂ ∂

= =
∂ ∂

β ψ β ψ β ψ β ψ                                                      (35) 

          

4 /

2 ( 1)

( ) 4( ) ( ) ( ) ( ) Im{ }

: [1, , , , ] , : [0,1,2 , 1]

4 4Re{ ( )} Im{ } Re{ }( )
:

Im{ ( )

i o

qo o o

iqj f R c i
iq i iq iq iq q

o o

jj j j N T T
q

i i
iq q q

iq

o
iq

j f de
c

e e e e N

f d f d
c c

π

ϕω ω ω

π
ρ

ω ω

π π

ω

−−

′∂⎛ ⎞−∂ ′ ′ ′= + ×⎜ ⎟∂ ∂⎝ ⎠

= × = −

−′′∂
=

∂ ′−

γ ψ
β ψ g ψ γ ψ g ψ n ξ

ξ n

g ψ n ξ ξγ ψ

g ψ

… …

2( )
4} Im{ }

4: Re{ }

i
q

i
q

f d
c

f d
c

π

π

−

⎛ ⎞
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

=

ν
n ξ

ν ξ

          (36) 

where we define ( ) k−⋅  as the element-wise division of a vector or a matrix raised to k-th power, i.e., if 

1 2 1 2[ , , , ] , [1 / ,1 / , ,1 / ] .T k k k k T
N Nx x x x x x−= =x x… …  Using the same convention, the other derivatives which 

are required for evaluating the FIM are provided below. 
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                  (38) 

From (33), two important observations are in order. First, the cross FIM elements with respect to iρ  and 

the parameter oR are zero for a single fan blade, and are in general non-zero when multiple blades are 

present, i.e, 

                                                          0,  1,  2,  1
i oRF i Qρ = = =                                                                    (39) 

This is because the amplitude, ,  1,2i iρ =  is not embedded in the phase of the signal, and similarly the 

range parameter oR is not a function of ( ; ).ih n ′ψ  The more important second observation arises from the 

fact that since the covariance matrix is not a function of the parameters in ,ψ  the cross FIM elements 

with respect to 2
iσ  and all the parameters in ψ  are zero, i.e., 

                                                2 0,  (1, ,6),  1,2,  
i r

F r i Q
σ ψ

= ∈ = ∀…                                                             (40) 

Eq. (40) implies that, regardless of the knowledge (or no knowledge) of the parameters, 2 ,iσ the CRBs 

depend only on the inverted FIM of the MD parameters, including the range. Further simplifications of 

the FIM elements are tedious to derive. The above equations can be used to numerically evaluate the FIM 

and the CRBs. 
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VI. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulations 

The carrier frequencies for the dual frequency operation are set to 1 903f = MHz  and 2 921f = MHz. Also, 

 we average the suboptimal estimates of parameters, such as , ,  and  ,o odω ϕ  corresponding to the two 

carrier frequencies, and use the averaged values for IRNLS initialization. 

We first consider the vibrational MD. For simplicity we assume .iρ ρ= The SNRs for this case are 

defined as 2 2/ , 1,2.i i iSNR N iσ= ∀ =s  We force 1 10SNR = dB and vary 2SNR  from -10dB onwards, in 

increments of 5 dB. Figures 2(a)-(d) demonstrate the MSE for the IRNLS and the suboptimal estimation 

schemes. The number of Monte Carlo trials was 250 and the maximum number of allowed iterations, max ,k  

was chosen as 10. The number of data samples 1024,N =  and the parameters of the MD signal used were 

[ 1.3 , 0.07 , 0.123 , / 3] .T
o o oR m d m ω π ϕ π= = = = =ψ  The received signal is wideband for the 

aforementioned carrier frequencies. In the suboptimal estimation scheme, we forced 1m K= = which 

makes [ 1,0,1]T= −K  in eqs. (21), (23), and (25). This choice of  K  provides satisfactory results, and 

amounts to using the first harmonic and DC for estimation, i.e., the suboptimal scheme operates in a 

narrowband framework. The estimates after the first iteration of the IRNLS correspond to optimizing the 

NLS cost function 
2

2

1

( ) / ,i i
i

N
=

−∑ x s ψ and are also provided in Fig. 2 for comparison. It is clear from Fig. 

2(a)-(d) that the IRNLS gives better MSE than the NLS and of course the suboptimal schemes. The 

corresponding CRBs for single frequency and dual frequency operations are also shown. It is clear that the 

single frequency CRBs guide the ML behavior for the dual frequency operations. The estimates are clearly 

above the dual-frequency CRBs. The IRNLS offers superior performance than the NLS for all parameters 

except oR  for which both the NLS and IRNLS give similar MSE. It is noted that when 
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2 2
1 2 1 2 ,SNR SNR σ σ= ⇒ =  the IRNLS and NLS MSE are the same for all parameters. It  is clear that the 

MSE of the parameters decreases with the SNR, specifically 2SNR  as predicted by the CRBs. 

Next, we consider a rotating fan with multiple blades. Figs. 3 and 4 shows the corresponding CRBs 

with respect to 2SNR  and the data record length, ,N  respectively. The parameters used in generating these 

figures were [ 1.4 , 0.253 , 0.02 , / 8] .T
o o oR m d m ω π ϕ π= = = = =ψ  The number of blades vary from one to 

four. From Fig. 3, it is evident that multiple blades yield better estimates for all the parameters. However, 

from Fig. 4, we observe that,for a fixed SNR and varying N, the CRBs corresponding to multiple blades 

are more or less similar to those for a single.  In general, for the case of multiple identical blades, greater 

confidence in the estimates can be obtained which implies better estimation of the parameters. Consider, 

for example, the time-frequency distribution of a four blade return. The instantaneous frequency (IF) for 

the blades is identical in structure but differs in the phase parameter .pϕ  It is clear that, for example, the 

rotational frequency can be estimated with a greater confidence since four different IF curves in the TF 

plane can be used jointly to estimate the rotational frequency, rather than a single IF curve when a  single 

blade  is present, provided that the IF curves are mostly non-overlapping in the TF plane. The performance 

of the NLS and IRNLS and suboptimal estimators for the rotational MD corresponding to a fan with three 

blades is shown in Fig. 5. Parameters identical to those for Figs. 3 and 4 were used in Fig. 5. For 

generating the MSE, the number of Monte Carlo trials was set to 200, and the maximum number of 

allowed iterations, max ,k  was chosen as 10. A coarse grid search was used as in (32) to suboptimally 

estimate the parameters d and .oϕ  In the rotational MD simulations, we used the root-MUSIC algorithm to 

estimate the harmonics instead of peak picking in order to compute the MSE for SNR values less than 0dB. 

In Fig. 6(a), we show the LLcost as given in (8a), as well as the norm of the difference in parameter 

estimates for various iterations in the IRNLS in Fig. 6(b). Parameters identical to the rotational MD 

simulation of Fig. 5 were used to generate Fig. 6, except that we show one Monte Carlo simulation, and 

1 2( ,  ) (10, 5) dB.SNR SNR =  It is clear from Fig. 6(b) that after six iterations of the IRNLS, the norm 
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becomes zero. In essence, there exists a cluster or accumulation point as shown in Fig. (6b). The discussion 

in Appendix-A gives more details on the cluster point with respect to the IRNLS. 

B. Experimental Results 

In this section, we present results of IRNLS applied to various MD signal returns measured using a dual-

frequency radar in a laboratory setting. First, a 12in conducting sphere was tied to the ceiling with a nylon 

string, and excited to oscillate in a simple harmonic fashion. This experiment corresponds to the vibrational 

MD scenario. The approximate range to the target was 16.4ft or 4.99m, the carrier frequencies were chosen 

to be 906.3 and 919.6 MHz, and the sampling frequency was 100Hz. More details on the experiment can 

be found in [26]. We processed only the first seven seconds of data, comprising 700 samples, in order to 

avoid damped oscillations. Figure 7 shows the IRNLS, NLS, and suboptimal instantaneous frequency (IF) 

trajectories overlaid on the spectrogram of the data. Clearly, the IRNLS yields better estimates when 

compared to the NLS, and agrees with the IF of the data for both carrier frequencies. The range estimates 

for IRNLS and NLS were 4.89m and 4.83m, respectively.  

Second, the IRNLS is applied to measured returns from a table-top fan with 4-metallic blades. The 

carrier frequencies are chosen as 903.6 MHz and 921 MHz. The distance from the center of the fan to the 

radar was 3 m, and the sampling frequency was chosen to be 5 kHz to avoid aliasing. Two datasets, one for 

azimuth equal to 0°, and the other for 60° azimuth, were used for the ML analysis. Fig. 8(a) shows the 

spectrogram of the raw data for 0° azimuthal aspect, using a rectangular window of 101 samples which 

corresponds to around 130 % of the period of the rotation.  For subsequent ML analysis, the data was 

decimated by a factor of 5. The 2D grid search cost function, as given in (32) was used, and the cost 

function is shown in Fig. 8(b) for the second carrier. The grid was initialized with the rotational frequency 

estimate obtained from the Fourier spectrum. We can clearly see 4 dominant peaks corresponding to the 4 

blades. The suboptimal estimates were used to initialize the ML algorithm. The range estimates and final 

LL costs are provided in Table I. The results in Table I indicate that both the NLS and IRNLS perform 

exceptionally well for this dataset.  Fig. 9(a) shows the spectrogram of the raw data (not resampled), 
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corresponding to 60o azimuthal aspect, using the same window length as in Fig. 8(a).  The 2D grid search 

cost function corresponding to the second carrier frequency is shown in Fig. 9(b). Similar to Fig. 8(b), the 

2D grid in Fig. 9(b) clearly shows 4 dominant peaks. The corresponding ML estimates for the range are 

shown in Table II, which shows that the IRNLS performs better than the NLS. 

VII. CONCLUSIONS 

In this paper, we considered dual frequency Doppler radars for range estimation of moving targets with 

application to urban sensing. The ML estimator was derived for the micro-Doppler motion profile, which is 

commonly exhibited by indoor moving targets. It was shown that the ML estimator, although not solvable 

in closed form, can be provided using a step-wise iterative algorithm termed as the IRNLS. The algorithms 

solution and procedure depends on the motion profile model. The initial conditions are provided using 

suboptimal values which rely on the harmonic nature of the radar returns. For simulated data, the algorithm 

was shown to be superior in terms of the MSE when compared to suboptimal estimators. The iterative ML 

was also applied to data measurements corresponding to indoor moving targets, yielding superior IF 

estimates and good estimates of the range.  

Appendix 

Convergence of IRNLS 

In this appendix, we do not assume any specific motion profile. The results are general and applicable to  

T
p

TT ]..... , ,[,] , ,[ 321
2
2

2
1 ψψψψσσ == ψψθ  for the IRNLS.  

Proposition 1: The FIM for the dual frequency radar can be expressed as 
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Proof: The proof of the above proposition is standard and can be easily obtained using the Slepian-Bangs 

formula [15],[25]. 
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Proposition 2: If the minimization in (10) is carried out using the method of Fisher scoring, with step size 

equal to unity, then the IRNLS algorithm becomes the Fisher scoring technique for the ML problem. 

Proof:  We first note that for a fixed arbitrary covariance matrix, the gradient vector with respect to the 

desired parameter vector ψ  of the negative LL is identical to the gradient vector of the cost function in 

(10). Hence, the Fisher scoring technique for the thk  iteration for estimating kψ  is then given as [27] 

                                                    ))ˆ()(ˆ(ˆˆ 11
1

1 −−
−

− −∇−= kkkkk ψJψFψψ λ                                                 (A.2) 

where )ˆ( 1
1

−
−

kψF  and )ˆ( 1−∇− kψJ  are the FIM, and the gradient vector of the cost function in (10),  

obtained using the previous estimate, and kλ  is the step size parameter. The negative sign in (A.2) 

preceding the second term indicates the minimization of the cost function (10), or equivalently 

minimization of the negative LL2. The Fisher scoring applied to the negative LL for the entire parameter 

vector ,θ  takes the following form. 
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The term 2ln( ( ; )) / ,  1,2ip iσ−∂ ∂ ∀ =x ψ  was an intermediate step in deriving (7). Using this intermediate 

step with ,1=kλ   and multiplying the matrix and the gradient vector in (A.3), we obtain (A.2) with ,1=kλ  

and 

                                                      22
1ˆˆ ( ) / ,  1,2ik i i k N iσ −= − ∀ =x s ψ                                                       (A.4) 

Equation (A.4) is the remaining key equation in the IRNLS for updating in (10). Q. E. D. 

The special case of  1kλ =  is oftentimes used in the literature (see [15], and also [27]).The above 

proposition implies that the IRNLS is a special case of Fisher scoring algorithm. However, as well known, 

the Fisher scoring converges if the suboptimal estimates used to initialize it are close to the optimal ML 

solution. In [27, remark 4.1 and remark 4.2],  under certain conditions it was shown that  the Fisher scoring 

                                                 
2 The sign is flipped for the conventional Fisher scoring technique which is applied to the maximizing the LL [27]. 
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method converges to at least a local minimum of the negative LL as ∞→N ,  i.e., asymptotically. The 

same follows from proposition 2 for the IRNLS, more details can be seen in [27]. If the negative LL 

objective is convex, which is a standard assumption for ML techniques, then the Fisher scoring converges 

surely to the global minimum [28]. Convergence is also attained if the initialization is contained within a 

set including the optimal solution, where the objective is locally convex [28]. For step-wise iterative ML 

schemes, an interesting result is provided in [29, lemma-1], where the authors prove the existence of a 

cluster point or an accumulation point, denoted as ,′θ   for the sequence of parameter iterates  given by 

{ }kθ  if the negative LL is bounded below, which is definitely satisfied by the Gaussian pdf. We can, thus, 

deduce that the IRNLS iterates also exhibit similar behavior. Essentially, if there exists a unique cluster 

point θ′  for any sequence { },kθ then ′θ  is the ML solution ).(ˆ xθ  This directly implies that 

.0lim 1 =−+∞→ kkk θθ  The existence of the cluster point was also proven in [28] for the constrained 

Fisher scoring technique. We now prove that the Fisher scoring and hence the IRNLS increases the LL for 

every iteration monotonically. 

Proposition 3: Under certain assumptions, the Fisher scoring and hence the IRNLS increases the LL for 

every ,k  until convergence  as .∞→N  

Proof: It is required to prove  1ln( ( ; )) ln( ( ; )) 0.k kp p+ − >x θ x θ  Expanding the pdf about the arbitrary point 

)()(1
kkk θJθF ∇−λ , where  )( kθJ∇  is the gradient of the LL evaluated at the previous ,kθ  using the 

Taylor series expansion. 
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where  ))](([ k
T θJ∇∇  is the Hessian matrix evaluated at .kθ  Now using the results in [30], i.e.,  as 

∞→N  the negative Hessian matrix converges to the FIM with probability 1, we can replace the negative 
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Hessian matrix with the FIM, )( kθF  in (A.5), further assuming that the LL can be approximated as a 

quadratic, i.e., ignoring the higher order terms, we get  
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             (A.6) 

Since the FIM is nonsingular and positive definite ,kθ∀  with (0,1],kλ ∈  we have (A.6) is always positive, 

and becomes zero at the local optimum solution. This proves the proposition for the Fisher scoring 

approach. Likewise, substituting kk ∀= ,1λ  it is readily seen that (A.6) is always positive. This proves the 

proposition for the IRNLS. Q. E.D. 

In this Appendix, we have proved that the IRNLS is a special case of Fisher scoring. Therefore, some of 

the results for Fisher scoring directly follow through to the IRNLS. In the simulations, we demonstrate the 

existence of the cluster point and the monotonic increase in the LL objective for every iteration. 
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Fig. 1. Flowchart of IRNLS ML algorithm 
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Fig. 2. MSE of vibrational MD parameters. IRNLS Comparsion wrt CRBs and NLS. 
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Fig.3 CRBs for multiple blades, N=512, SNR1=15dB, x-axis SNR2 dBs, y-axis CRBs, blue ( 1blade), red (2 

blades), black (3 blades), magenta (4 blades). 
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Fig.4 CRBs for multiple blades, SNR1=15dB, SNR2 =-10dB, x-axis N, data record length, y-axis CRBs, blue ( 

1blade), red (2 blades), black (3 blades), magenta (4 blades). 
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Fig. 5. MSE performance of rotational MD parameters, SNR1=5dB, SNR2 is varied.  

 



 31

1 2 3 4 5 6 7 8 9 10 11
−4.3391

−4.3391

−4.3391

−4.3391

−4.3391

−4.3391

Iterations, k
(a)

L
L

co
st

1 2 3 4 5 6 7 8 9 10
−300

−200

−100

0

100

Iterations, k
(b)

||ψ
k−ψ

k+
1||,

 in
 d

B

||ψ
k
−ψ

k+1
||

Cluster point=Lim
k→∞||ψ

k
−ψ

k+1
||

 
Fig. 6. Figures showing the (a) LL cost, (b) cluster point. 

 
Fig. 7. Spectrogram of measured radar returns for vibrational MD, along with the final IF fits.  
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Fig. 8(a). Spectrograms of the measured returns at 0o azimuth at the two carriers. 
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Fig. 8(b). LL grid  (0o azimuth ) using single blade cost function, for carrier 2 .f  Four blades are clearly seen. 

Number of samples used is 1200. 
 

Table I. Range estimates at 0o azimuth. True range is 3m. 

Data chunks 
comprising of 500 

samples. 

Minimized LLcost 
(NLS) from 8(a) 

Minimized LLcost 
(IRNLS) from 8(a) 

Range estimate 
(NLS) in meters 

Range estimate 
(IRNLS) in 

meters 
100th sample 

onwards 
-28.7104 -28.9614 3.0046 2.9977  

700th Sample 
onwards 

-28.5853 -28.9000 3.0052 2.9985 

1400th Sample 
onwards 

-29.6069 -30.0953 3.0132 3.0051 

 

Table II. Range estimates at 60o azimuth. True range is 3m. 

Data chunks 
comprising of 500 

samples. 

Minimized LLcost 
(NLS) from (8a) 

Minimized LLcost 
(IRNLS) from 8(a) 

Range estimate 
(NLS) in meters 

Range estimate 
(IRNLS) in 

meters 
100th sample 

onwards 
-31.8872 -31.9728 3.2449 3.2336 

700th Sample 
onwards 

-31.9589 -32.1712 3.1552 2.9286 

1400th Sample 
onwards 

-31.7151 -31.7550 3.0900 3.087 
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Fig. 9(a). Spectrograms of the measured returns at 60o azimuth at the two carriers. 
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Fig. 9(b). LL grid (60o azimuth) using single blade cost function, for carrier 2 .f  Four blades are clearly seen. 
Number of samples used is 1200. 


