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Detection of stationary targets using pixel-wise likelihood

ratio test (LRT) detectors has been recently proposed for

through-the-wall radar imaging (TWRI) applications. We

employ image segmentation techniques, in lieu of LRT, for

target detection in TWRI. More specifically the widely used

between-class variance (BCV) thresholding, maximum entropy

segmentation, and K-means clustering are considered to aid

in removing the clutter, resulting in enhanced radar images

with target regions only. For the case when multiple images of

the same scene are available through diversity in polarization

and/or vantage points around a building structure, we propose

to use image fusion, following the image segmentation step, to

generate an enhanced composite image. In particular, additive,

multiplicative, and fuzzy logic fusion techniques are considered.

The performance of the segmentation and fusion schemes is

evaluated and compared with that of the assumed LRT detector

using both electromagnetic (EM) modeling and real data collected

in a laboratory environment. The results show that, although

the principles of segmentation and detection are different, the

segmentation techniques provide either comparable or improved

performance over the LRT detector. Specifically, in the cases

considered, the maximum entropy segmentation produces the

best results for detection of targets inside building structures. For

fusion of multiple segmented images of the same scene, the fuzzy

logic fusion outperforms the other methods.
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I. INTRODUCTION

Imaging of building interiors has been a subject

of interest in many applications related to rescue

missions, homeland security, and defense [1—7].

Indoor images are typically characterized by the

presence of both spatially extended targets, like

exterior and interior walls, and compact, point-like

targets, such as humans. Also, near-field operations

give rise to point spread functions that vary in range

and cross-range. Accordingly, the same target can

have different spatial distribution, depending on its

position.

Detection of stationary targets in through-the-wall

radar imaging (TWRI) using statistical detectors based

on likelihood ratio tests (LRT) has been discussed

in [8], [9]. Specifically, a Neyman-Pearson (NP)

test was used in [8] to detect targets in indoor radar

images by defining pixel-wise null and alternative

hypotheses, coupled with a user-defined false alarm

rate (FAR). However, in this test, the exact statistics

of the radar images need to be known a priori. As

this information is target and scene dependent, the

NP test was therefore extended in [9] to iteratively

adapt the test parameters to the radar image statistics.

In order to improve and optimize the parameter

estimates, morphological filtering in the image domain

was introduced as a preprocessing stage in [10].

By adapting the target detector’s parameters to the

changing characteristics of the preprocessed radar

images, a more robust detection can be produced.

To date, both NP and Bayesian tests have been

employed for the detection and fusion of multi-view

and multi-polarization through-the-wall radar (TWR)

images [9, 11]. Generally, the statistical detectors

that incorporate the LRT generate a binary mask that

depicts the target locations in the image.

Although the LRT approach has been successfully

applied to some scenes and several scenarios, it

assumes particular probability density functions (pdfs)

for all targets in the scene. The assumed pdfs may

prove unsuitable for complex scenes that are acquired

using real data or data from numerical electromagnetic

(EM) modeling. The need to define appropriate

pdfs for all targets and clutter in the image, and to

specify an appropriate FAR by the operator presents a

shortcoming of the LRT detector, since in most cases,

neither the pdfs nor the FAR is known a priori. In

this paper, we propose the use of image segmentation

methods as an alternative to target detection. In lieu of

the LRT, we apply image segmentation methods that

exploit information obtained from image intensities

and histograms to separate targets from clutter, and

thereby enhance the image quality.

There exist many different types of image

segmentation methods [12], image thresholding

methods and region-based methods, to name a few.

Region-based methods, such as the watershed, are
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not suitable for TWR images as the radar returns are

very sparse and target regions tend to be very small.

One of the most basic thresholding methods is to

set a threshold at the valley of a bimodal intensity

histogram [13]. However, TWR image histograms

generally do not exhibit a traceable valley. There

have been some automatic threshold selection

techniques proposed in order to overcome this

difficulty. Such techniques select an optimal threshold

by a discriminant criterion so as to maximize the

separability of the resultant classes. We propose to

examine the three most commonly used automatic

image thresholding methods, namely, between-class

variance (BCV) thresholding [14], entropy-based

segmentation [15], and K-means clustering [16] for

TWR image segmentation. The segmentation process

associated with these techniques produces threshold

values, thus generating binary masks that are similar

to that of the LRT detector. Using the generated

binary image, the original image is masked, producing

an enhanced image with the target regions only.

For the detection of targets in multiple images, the

proposed image segmentation-based target detector

involves a two-step process that predicates on the

availability of TWR images acquired from different

viewing angles and for different polarizations. Instead

of performing the fusion and detection at the same

time, like in the case of the LRT detector, image

segmentation techniques are first applied to individual

radar images to separate each image into several

regions. The segmented results are then fused using

pixel-wise addition, multiplication, or through the

use of fuzzy logic [17]. The latter has proven to be a

valuable tool since it deals with the fusion problem

at a local level, i.e., different parts of the image

can be fused differently, depending on the relative

presence of the target and clutter. Reversing this

sequence of operation, by applying fusion prior to

segmentation, provides inferior results and does not

fully utilize the potential enhancement of individual

images before combinations. It is noted that image

segmentation methods have been applied for object

detection in synthetic aperture radar (SAR) aerial

images [13, 18, 19, 20] and ground penetrating radar

(GPR) images [21]. They have also been considered a

preprocessing stage for change detection [22, 23] and

object classification [24—26] in radar images. It is also

noted that a similar segmentation-fusion approach has

been proposed in [27] to improve the classification of

SAR images. However, our work differs by applying

the segmentation and fusion methods as an alternative

to the LRT detector for both single and fused images,

in the specific area of TWRI.

In this paper, we investigate the performances

of the LRT detector and the proposed method

for indoor radar imaging, both with and without

image fusion. Both target detection schemes are

evaluated and compared using real two-dimensional

(2D) polarimetric and multi-view images collected

at the Radar Imaging Lab, Center for Advanced

Communications, Villanova University. These methods

are also applied to numerical EM modeling data.

For both real and modeled data, different scenarios

that are representative of a variety of possible indoor

scenes are constructed so as to strengthen our findings

and conclusions. In order to compare methods within

the same framework, the LRT detector is cast as

another form of the image segmentation method with

a corresponding threshold.

The performance is assessed in terms of image

enhancements after the separation of target from

clutter in individual images. The results show

that in most cases considered, the entropy-based

segmentation technique outperforms other image

segmentation techniques, including the LRT method,

by providing higher clutter suppression, while

successfully maintaining the target regions. The

BCV thresholding and K-means clustering methods

provide similar results to those of the entropy-based

segmentation when considering target regions;

however, their respective clutter levels are much

higher. Nevertheless, the proposed segmentation-based

detectors are more advantageous than the LRT

detector since they do not require a predefined pdf

and FAR.

As for multiple image target detection, the

performance of the proposed detection scheme is

compared with that of the LRT detector that jointly

utilizes multi-view and multi-polarization signatures.

The corresponding results show that the entropy-based

segmentation method, coupled with the pixel-wise

fuzzy logic fusion, outperforms the LRT detector by

providing higher clutter suppression, while keeping

the number of missed detections relatively low. In

essence the entropy-based segmentation method

can be generally viewed as most suitable for target

detection in TWRI.

The remainder of the paper is organized as

follows. Section II details the TWR image formation

process, where the wideband delay-and-sum

beamforming is reviewed. Section III describes

the LRT target detection method proposed in [9].

The alternative target detection method based on

image segmentation techniques is then discussed in

Section IV. Section V evaluates the performance

of the LRT detector and image segmentation-based

methods using real and numerical modeling data, and

Section VI concludes the paper.

II. BEAMFORMING

In this section, we present the fundamental

equations describing the delay-and-sum beamformer,

considered in this paper, for imaging through walls.

We consider a 2D SAR system in which a single

antenna at one location transmits the signal and
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Fig. 1. Geometry on transmit for two-dimensional imaging.

receives the radar return, and then moves to the next

location and repeats the same operation in a plane

parallel to the front wall [7, 28].

Consider the scenario where the wall is located in

the xy-plane and has a thickness d and a dielectric

constant ". Assume that there are M monostatic

antenna locations, with a standoff distance zoff from

the wall. The region to be imaged is located beyond

the wall along the positive z-axis, as shown in Fig. 1.

Let the transceiver, placed at the mth location xtm =
(xtm,ytm,¡zoff), illuminate the scene with a wideband
signal s(t). For the case of a single point target located

at xp = (xp,yp,zp), the signal measured by the mth
transceiver is given by a(xp)s(t¡ ¿m,p), where a(xp)
is the complex reflectivity of the point target and ¿m,p
is the propagation delay encountered by the signal as

it travels from the mth transceiver to the target at xp,
and then back to the same transceiver. The delay ¿m,p
is given by

¿m,p =
2lmp,air,1

c
+
2lmp,wall

v
+
2lmp,air,2

c
(1)

where c is the speed of light and v = c=
p
" is the

signal propagation speed through the wall. The

variables lmp,air,1, lmp,wall, and lmp,air,2 represent the

traveling distances of the signal before, through, and

beyond the wall, respectively, from the mth transceiver

to the target at xp. This process is evaluated for each
transceiver location until all M locations have been

exhausted.

Although the corresponding M outputs can be

processed to generate a three-dimensional (3D)

image of the scene, we restrict ourselves to B-scan

(cross-range versus downrange at a fixed height)

images. This is because the images presented in this

paper are either B-scan images or cross-range versus

downrange images obtained with one-dimensional

(1D) antenna arrays. The region of interest at

height ȳ is divided into a finite number of pixels

in downrange and cross-range, represented by the

z- and x-coordinates, respectively. The complex

composite signal corresponding to the image of the

pixel located at xq = (xq, ȳ,zq) is obtained by applying

time delays and weights to the M measurements, and

then summing the results. The output for a single

target case is given by

rq(t) =

MX
m=1

wma(xp)s(t¡ ¿m,p+ ¿m,q): (2)

Here, wm and ¿m,q are, respectively, the weight and

the focusing delay applied to the output of the mth

transceiver. The focusing delay is given by (1) with

the target voxel subscript p replaced by the focusing

pixel subscript q. The complex amplitude image value

for the pixel located at xq is obtained by passing the

signal rq(t) through a filter matched to the transmitted

pulse and sampling the output of the filter at time

t= 0 as follows

I(xq) =

MX
m=1

wma(xp)s(t¡ ¿m,p+ ¿m,q) ¤ h(t)jt=0 (3)

where h(t) = s¤(¡t) is the impulse response of the
matched filter. The process described is performed

for all N pixels in the region of interest at height ȳ

to generate the composite image of the scene. The

general case of multiple targets can be obtained by

the superposition of target reflections.

It is noted that the output of the delay-and-sum

beamformer is a complex valued image. The

magnitude image, corresponding to the complex

amplitude image, is given by

³I(xq) = jI(xq)j: (4)

For target detection in the image domain, we deal with

the magnitude image only.

III. LIKELIHOOD RATIO TESTS DETECTOR

In this section, we review the general image

domain-based framework for statistical target detection

based on the LRT, which utilizes multiple images

corresponding to different viewing angles and/or

polarization. Specifically, we consider the iterative

version of the pixel-wise NP detector introduced in

[9] that adapts the test parameters to the radar image

statistics.

Let ³Ij , j = 1,2, : : : ,J be the set of acquired

magnitude images corresponding to a total of J

viewing angles and/or polarization. The pixel-wise

NP test is given as

JY
j=1

Pr(
³Ij jH1)

Pr(
³Ij jH0)

?° (5)

where H0 and H1 denote, respectively, the null (target

absent) and alternative (target present) hypothesis. The

functions Pr(¢ jH0) and Pr(¢ jH1) are the conditional
pdfs under the null and alternative hypothesis,

respectively, and the parameter ° is the likelihood
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ratio threshold, which can be obtained by specifying

a desired FAR ® as

®=

Z 1

°

P̀ (` jH0)d` (6)

where P̀ (` jH0) denotes the distribution of the
likelihood ratio under the null hypothesis.

Let μ̂0H0 and μ̂0H1 denote the initial estimates of the
parameter vectors μH0 and μH1 describing the pdfs
under H0 and H1, respectively. Given a FAR ®, a

binary image B1NP, where superscript 1 represents the

first iteration, can be obtained by evaluating (5). In

order to enhance and optimize the estimation of the

noise and test pdf parameters, morphological filtering

is employed to obtain the binary image B1MF (see

[10] for details). This image can be used as a mask

on the original set of images in order to obtain the

revised parameter estimates μ̂1H0 and μ̂1H1 . These revised
parameters are then fed back to the NP test to obtain

an improved detection result. The iteration stops when

convergence is achieved. Figure 2 shows the block

diagram of the iterative target detection approach.

It is noted that the final output of the LRT detector

described above is a single binary image that indicates

the presence of the targets. For a more detailed

description of the LRT detector, the reader is referred

to [8]—[11].

IV. IMAGE SEGMENTATION-BASED TARGET
DETECTION

Unlike the LRT detector, which performs

simultaneous detection and fusion of a set of

magnitude images, the proposed method is a two-step

process. First, an image segmentation technique is

applied to the individual input images. Then, the

segmented images are fused to generate an enhanced

single composite intensity image that has high target

intensities and low clutter and noise levels. Figure 3

shows the block diagram of the proposed image

segmentation-based target detector.

It should be noted that when there is only one

input image, only the image segmentation method will

be applied. For the case of multiple input images, both

image segmentation and image fusion methods will be

applied for detection.

A. Image Segmentation

Image segmentation based on intensity and

histogram information is a simple technique that

involves the basic assumption that the objects and

the background in the sensed image have distinct

gray level distributions [29]. Since objects in

remotely sensed imagery are often homogeneous,

threshold values separating two or more regions in

the gray level histogram can be obtained. Threshold

Fig. 2. Block diagram of iterative statistical target detector.

Fig. 3. Block diagram of proposed image segmentation-based

target detector.

selection methods can be classified into two groups,

namely, global methods and local methods. A

global thresholding technique separates the entire

image into target and background regions with a

single threshold value, whereas local thresholding

methods partition the given image into a number

of subimages and determine a threshold for each

of the subimages separately. As global thresholding

methods are computationally less intensive, they

have been more popular for radar image analysis

[30]. In this paper, we consider two of the commonly

applied global thresholding methods, namely, BCV

thresholding [14] and entropy-based segmentation

[15], as candidates for the image segmentation step

of the proposed detection scheme. Since image

segmentation can also be viewed as the partitioning of

the observed intensities into groups, we also consider

the application of K-means clustering [16].

Consider the histogram of an input image as a

discrete pdf ½(i):

½(i) =
fi
N

(7)

with ½(i)¸ 0 and PL¡1
i=0 ½(i) = 1, where fi is the

frequency of intensity level i and N is the total

number of pixels in the image. Each pixel in the

image assumes an intensity level from the set

f0,1, : : : ,L¡ 1g, where L denotes the number of
intensity levels or histogram bins.

1) BCV Thresholding: The BCV thresholding

method segments an image into two regions by

determining a threshold value TBCV that maximizes
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the sum of class variances:

TBCV = argmax
d
fpr1(d)[mr1(d)¡m³I]2 +pr2(d)[mr2(d)¡m³I]2g

(8)

where m³I is the mean image intensity, r1 and r2 are

the two regions of the image histogram relative to the

intensity level d, pr1(d) and pr2(d) are the respective

region probabilities, which are expressed as

pr1(d) =

dX
i=0

½(i) (9)

pr2(d) =

L¡1X
i=d+1

½(i) (10)

and mr1(d) and mr2(d) are the means of the respective

regions, which are given by

mr1(d) =

dX
i=0

i ¢ ½(i)
pr1(d)

(11)

mr2(d) =

L¡1X
i=d+1

i ¢ ½(i)
pr2(d)

: (12)

All values of d = 1,2, : : : ,L¡ 2 are considered and the
corresponding functions (8)—(12) are evaluated. The

intensity value d that produces the maximum sum of

the class variances is chosen as the threshold value

TBCV.

2) Entropy-Based Segmentation: Similar to

the BCV method, the entropy-based segmentation

decides on the threshold value in an iterative fashion.

Instead of maximizing the sum of class variances, the

entropy-based segmentation maximizes the sum of

class entropies. Based on the information derived from

the image histogram, the entropy of two regions is

maximized using the following equation:

TH = argmax
d
fHr1(d) +Hr2(d)g (13)

where Hr1(¢) and Hr2(¢) are the respective region
entropies. Let pi be the probability of intensity level

i and Pd =
Pd
i=0pi be the total probability. The entropy

of each region can be expressed as

Hr1(d) =¡
dX
i=0

pi
Pd
ln
pi
Pd

(14)

Hr2(d) =¡
L¡1X
i=d+1

pi
Pd
ln
pi
Pd
: (15)

Given that the entropy for a region can also be

calculated as

Hd =¡
dX
i=0

½(i) ln½(i) (16)

the total entropy of the image can be expressed as

Htot =¡
L¡1X
i=0

½(i) ln½(i): (17)

Thus, (14—15) can be simplified as follows

Hr1(d) =¡
dX
i=0

pi
Pd
ln
pi
Pd

=¡ 1
Pd

"
dX
i=1

½(i) ln½(i)¡Pd lnPd
#

= ln(Pd) +
Hd
Pd

(18)

Hr2(d) =¡
L¡1X
i=d+1

pi
Pd
ln
pi
Pd

=¡ 1

1¡Pd

£
"
L¡1X
i=d+1

½(i) ln½(i)¡ (1¡Pd) ln(1¡Pd)
#

= ln(1¡Pd)+
Htot¡Hd
1¡Pd

: (19)

Iterating d from 1 to L¡2, the intensity value d
that produces the maximum sum of the distribution

entropies is chosen as the threshold value TH .

3) K-Means Clustering: Clustering methods

partition the observed intensities into classes, and can

also be used for segmenting images. Also known as

unsupervised classification, the classes are generally

unknown and are explored based on the data by using

a similarity measure. Given N pixels the K-means

clustering method partitions the pixels into K clusters

by minimizing the sum of the within-cluster variances

(WCSS) [16]:

WCSS =

KX
k=1

NX
i=1

kvki ¡¹kk2 (20)

where vki is the ith sample of the kth class with

centroid ¹k. The pseudocode for the K-means

clustering is given as follows

1) Initialize the number of classes K and

centroids ¹k.

2) Assign each pixel to the group whose centroid

is the closest.

3) After all the pixels have been assigned,

recalculate the centroids.

4) Repeat steps 2 and 3 until the centroids no

longer change.

Although the K-means is computationally very

efficient, the major disadvantage is the need to specify

the number of classes a priori. In the absence of this
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knowledge, one may resort to measures that could

estimate the number of classes automatically [31].

This approach is not considered here. Instead, we set

the number of classes as two to ensure consistency

with the other image segmentation methods.

For the case of only one input image, the binary

image produced by the image segmentation methods

is masked on the original input image to produce an

enhanced image with the target regions only.

B. Image Fusion

When there are multiple input images, the

segmented images are then fused to produce a single

enhanced image. Here, we consider the commonly

used image fusion techniques in TWRI, such as

the pixel-wise additive fusion [32], multiplicative

fusion [7], and fuzzy logic image fusion [17], as

candidates for the image fusion step of the proposed

detection scheme. The fuzzy logic scheme has proven

valuable, since it adaptively fuses different parts of

the image, depending on the relative presence of

the target and clutter. However, as the fuzzy logic

fusion approach is implemented through a fuzzy

inference system that formulates a mapping from two

inputs to one output, its use is restricted to a set of

no more than two enhanced images. In general the

number of images acquired from different viewing

angles and for different polarizations can, however,

exceed this limit. To overcome this limitation, we

implement the two-stage fuzzy fusion proposed in

[33], which fuses the outputs of the additive and

multiplicative fusion processes. It is noted that, prior

to image fusion, the segmented images are first

normalized to ensure that they all have the same

dynamic range.

In the two-stage image fusion, arithmetic fusion

methods for TWRI proposed in [7], [32] are first

applied. The images are fused through the additive

and multiplicative fusion methods, given as

ÎA(m,n) =

JX
j=1

³Ij(m,n) (21)

ÎM(m,n) =

JY
j=1

³Ij(m,n) (22)

where ³Ij(m,n) is the jth normalized segmented

image and ÎA(m,n) and ÎM(m,n) are the final images

resulting from the additive and multiplicative fusion,

respectively. Then, a second fusion stage that exploits

the capabilities of both additive and multiplicative

fusion is applied, where the fuzzy logic approach is

used to fuse the outputs of the arithmetic fusion. The

readers are referred to [17] for a detailed description

of the fuzzy-logic-based fusion approach.

V. PERFORMANCE EVALUATION

We evaluate both the LRT detector and the

proposed detection method using real 2D polarimetric

and multi-view images collected at the Radar

Imaging Lab, Center for Advanced Communications,

Villanova University. The techniques are also applied

to numerical EM modeling data provided by the

U.S. Army Research Lab. We first compare the

performance of the image segmentation methods in

terms of isolation of target regions in each individual

image. The LRT detector with J = 1 is also applied

as an image segmentation method to each individual

image for comparison. The binary images generated

by both image segmentation and the LRT detector are

used as a mask on the original image to produce a

corresponding enhanced image.

Next, we compare the performance of the various

image fusion techniques to determine their suitability

for the proposed detection method. It is noted that

image fusion is performed only on the images that

were enhanced by the image segmentation techniques

in the previous step. Fusion of the images produced

by the LRT detector is not performed. Instead, the

output of the LRT detector with J > 1 was used for

comparison. In other words the various combinations

of the image segmentation and fusion techniques for

the proposed detection method are compared with the

LRT detector.

We note that the frequency bands of operation

considered in these examples fall within the 0.5

to 3.5 GHz range. This frequency range is most

amenable to signal propagation through various wall

types [1]. Furthermore, all radar images presented in

this section, other than the binary ones, are plotted on

a 35 dB log scale, and the vertical and the horizontal

axes represent the downrange and cross-range,

respectively, with units in meters. The FAR for the

LRT detector is fixed at 2.5%.

A. Experimental Setup

Two real data scenes and one numerical EM

modeling scene are considered. The first real data

scene consists of calibrated targets, with data acquired

from a single viewpoint using multiple polarizations.

The second real data scene is a populated scene with

both calibrated targets and objects typically found in

an office. The data corresponding to the populated

scene are acquired from multiple views with a single

polarization. The numerical EM modeling data consist

of both multi-view and multi-polarization images.

1) Calibrated Scene: Both copolarization (HH

and VV) and cross-polarization (HV and VH)

data sets were collected from a calibrated scene

containing a sphere, a top hat, a vertical dihedral, two

dihedrals rotated at 22.5 and 45 deg, respectively, and

three trihedrals, all placed at different downrange,

cross-range, and elevations, as shown in Fig. 4. For

1874 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 49, NO. 3 JULY 2013



Fig. 4. Calibrated scene showing scene imaged through nonhomogenous plywood and gypsum wall (left), and schematic diagram of

scene (right).

Fig. 5. Images acquired from calibrated scene.

each polarization setting the scene was imaged with a

1 GHz bandwidth stepped-frequency signal centered

at 2.5 GHz. Two horn antennas, model H-1479 by

BAE Systems, were mounted side-by-side on a field

probe scanner, one oriented for horizontal polarization

and the other for vertical polarization. The setup was

used to synthesize a 57-element linear array with an

inter-element spacing of 22 mm. The transmit power

was set to 5 dBm. Data were collected through a

127-mm thick nonhomogeneous plywood and gypsum

board wall, positioned 1.27 cm in downrange from

the front face of the antennas, as shown in Fig. 4.

More detailed information about the experimental

setup is provided in [34], and the electrical properties

of the wall material are described in [35]. The

four polarimetric images acquired from the scene

are shown in Fig. 5. We note that because of the

nonhomogeneous nature of the wall, the correction

for the wall effects in the beamforming process has

not been applied. It can be observed from Fig. 5

that only two targets are detected in the HV and

VH images. This is because the rotated dihedrals

produce a stronger cross-polarization return. Since

the HV and VH images are almost identical, the

performance of the various methods is evaluated only

for the HH, HV, and VV images of the calibrated

scene.

2) Populated Scene: Multi-view vertical

polarization data sets were also collected from a

populated scene, containing a vertical dihedral, a

sphere, a table with metal legs, and a chair, each

placed at different downrange, cross-range, and height,

as shown in Fig. 6. A stepped-frequency signal,

consisting of 801 frequency steps of size 3 MHz,

covering the 0.7—3.1 GHz band, was used for data

collection. The transmit power was set to 5 dBm.

A quad-ridge horn antenna, model ETS-Lindgren

3164-04, was used as the transceiver and was mounted

on a field probe scanner to synthesize a 57-by-57

element planar array with an inter-element spacing of

22 mm. Imaging was performed through a 140-mm

thick solid concrete block wall from two vantage

points, namely the front and the side views. The

reader is referred to [7] for more details of the
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Fig. 6. Populated scene showing scene imaged through homogenous concrete wall from two vantage points (left) and schematic

diagram of scene (right).

Fig. 7. Registered input images obtained from dihedral’s

elevation.

experimental setup and to [35] for a description of

the electrical properties of the wall material. The data

were processed to produce B-scan images of size

117£ 117, corresponding to the front and side views,
at the heights of the dihedral and the table. Since

the wall is homogeneous, the beamforming process

accounted for the wall effects on signal propagation.

Figure 7 shows the registered input images from the

front and side views, at the dihedral’s elevation. The

dihedral elevation represents an example of a scene

with high signal-to-clutter ratio. Figure 8 shows the

images corresponding to the table elevation, which

represent the case of low signal-to-clutter ratio.

Although the metal legs of the table are present in

the images (indicated by white circles), it is difficult

to discern the target presence without any prior

knowledge of the scene.

3) EM Modeling of Complex Scene: A complex

room, constructed using a 200-mm thick exterior

brick wall with glass windows and a wooden door,

and having an interior room, with a 50-mm thick

Fig. 8. Registered input images obtained from table’s elevation.

sheetrock wall and a door, was simulated using

numerical EM modeling software. In addition to

wooden furniture, namely a bed with a generic

fabric mattress, a couch with generic fabric cushions,

a bookshelf, a dresser, and a table with four

chairs, four humans were also present at different

positions in the scene. Both copolarization (VV) and

cross-polarization (HV) data sets were collected from

the left and bottom views. For more details on EM

modeling, the reader is referred to [36]. The schematic

of the complex scene is shown in Fig. 9 and the four

input images corresponding to the scene are provided

in Fig. 10. No correction for the wall effects was

applied during the beamforming process. The complex

scene is an example that consists of targets with both

high and low signal-to-clutter ratio. For instance,

the exterior walls have high returns that overwhelm

the returns from the interior walls and humans.

Hence, the exterior walls have high signal-to-clutter

ratio, while the interior walls and humans have low

signal-to-clutter ratio.
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Fig. 9. Schematic of complex scene.

B. Performance Measure

The resulting images corresponding to the
aforementioned scenes are assessed both qualitatively
and quantitatively. Visual inspection is used to assess
how well the targets are maintained in the image with
respect to the ground truth. The image enhancements,
in terms of clutter suppression, are assessed using
the improvement factor in the target-to-clutter ratio,
denoted as IF. Let PR,³I denote the average power of
region R in image ³I. The IF is given as

IF = 10log10

"PRt ,³Ie £PRc,³Ii
PRt ,³Ii £PRc,³Ie

#
(23)

where ³Ii is the input image and
³Ie is the enhanced

image. PRr ,³Im can be expressed as

PRr ,³Im =
1

NRr

X
xq2Rr

(³Im(xq))
2 (24)

where ³Im(xq) is the qth pixel of region Rr in image
³Im, and NRt and NRc are the number of pixels in the
target region Rt and clutter region Rc, respectively.
The predefined target and clutter regions for each
of the scenes are provided in Figs. 11—14. It should
be noted that the target mask for the EM modeling,
complex scene, as shown in Fig. 14, only includes

Fig. 10. Images of complex scene produced by numerical EM modeling.

the targets of interest, which are the room layout and
human targets. We consider furniture reflections as
unwanted returns, and accordingly, they are treated as
clutter.

C. Image Segmentation

In this section, the performance of the image
segmentation techniques and LRT method with
J = 1 are compared. For each individual image the
respective methods are used to obtain a binary mask
that depicts the target locations. After obtaining an
enhanced image by applying the binary mask to the
original input image, the IF is calculated.
1) Calibrated Scene: The results of applying the

image segmentation methods to the images of the
calibrated scene in Fig. 5 are presented in Fig. 15.
It can be observed that the LRT detection method
applied to the individual images does not yield
image enhancements. While the targets are retained,
the noise and clutter present in the original images
persist even after application of the LRT detector. As
for the BCV thresholding, the clutter is reduced in
comparison with that of the LRT detector. It is also
observed that the K-means clustering method produces
a similar result to that of the BCV thresholding.
Although there are some missed detections, visually,
the entropy-based segmentation outperforms all the
other methods by producing images with low clutter
levels.
The IFs for the results obtained from the calibrated

scene are provided in Table I. With the exception
of the cross-polarization case, where the BCV
thresholding and the K-means clustering removed all
the clutter to obtain the highest IF, it is evident that
the entropy-based segmentation generally outperforms
the other methods by producing enhanced images with
high IF, albeit with some missed detections.
2) Populated Scene: Figs. 16 and 17 show the

results of applying the image segmentation methods
to the populated scene images in Figs. 7 and 8,
respectively. At the dihedral level, it can be observed
from Fig. 16 that the BCV thresholding and K-means
clustering have the best performance in terms of
enhancing the images from the front view. Although
the entropy-based segmentation and LRT detector are
able to detect the dihedral, the clutter levels are higher
in comparison. However, both BCV thresholding
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Fig. 11. Target and clutter mask of calibrated scene.

Fig. 12. Target and clutter mask of populated scene at dihedral’s

elevation.

Fig. 13. Target and clutter mask of populated scene at table’s

elevation.

Fig. 14. Target and clutter mask of complex scene.

TABLE I

Improvement Factor in Target-to-Clutter Ratio of Calibrated Scene

Images after Enhancements through Target Detection

HH HV VV

LRT Detector 2.5% FAR 1.962 2.5124 3.0411

BCV Thresholding 2.5501 17.7063 2.1898

Entropy-Based Segmentation 4.3516 16.2246 6.3979

K-Means Clustering 2.571 17.7063 2.2344

TABLE II

Improvement Factor in Target-to-Clutter Ratio of Populated Scene

Images after Enhancements through Target Detection (Dihedral

Level)

Dihedral Level VV Front View VV Side View

LRT Detector 2.5% FAR 4.4331 8.6943

BCV Thresholding 8.2646 1.4556

Entropy-Based Segmentation 6.7664 11.2706

K-Means Clustering 8.2162 1.5151

TABLE III

Improvement Factor in Target-to-Clutter Ratio of Populated Scene

Images after Enhancements through Target Detection (Table Level)

Table Level VV Front View VV Side View

LRT Detector 2.5% FAR 5.6081 8.5922

BCV Thresholding 1.3736 1.3044

Entropy-Based Segmentation 6.1886 3.0734

K-Means Clustering 1.3682 1.3237

and K-means clustering do not perform well in

enhancing the images acquired from the side view.

Although the LRT detector also does not perform

well, comparatively less clutter is retained. Thus,

the LRT produces an output image with a higher

IF than the BCV and K-means for the side view.

It is observed that the entropy-based segmentation

outperforms all the other methods in the side view

image by successfully detecting the dihedral and

producing an output image with the least amount

of clutter. The corresponding IFs are tabulated in

Table II.

Figure 17 shows the image enhancement results

at the table’s elevation. It can be observed that all the

methods under investigation are able to maintain the

targets, except for the LRT detector that fails to retain

all four legs of the table (depicted in white circles).

While two targets are detected by the LRT detector

in the front view image, it detects only one target in

the side view image. Amongst the image segmentation

techniques that are able to maintain the four targets, it

can be observed from Table III that the entropy-based

segmentation produces enhanced images with the

highest IF. This is because the entropy produces an

image with less false detections than those of the BCV

and K-means.
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Fig. 15. Target detection in calibrated scene: from top to bottom, statistical LRT detector, BCV thresholding, entropy-based

segmentation, and K-means clustering.

3) EM Modeling of Complex Scene: The results

of applying the image segmentation methods to the

complex scene images (Fig. 10) are presented in

Fig. 18. From the image enhancement results shown

in Fig. 18, the LRT detection method produces the

best result in detecting both exterior and interior walls
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Fig. 16. Image enhancement results from populated scene (dihedral level).

in the copolarization (VV) images. However, the

clutter from the original images is also maintained.

The entropy-based segmentation manages to detect the

interior walls with less clutter in the bottom view of

the copolarization image. However, it fails to detect

the interior walls from the left view image. Although

the BCV thresholding and K-means clustering have

higher IFs, as shown in Table IV, both methods also
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Fig. 17. Image enhancement results from populated scene (table level).

remove the interior walls and only the exterior walls

are detected in the copolarization images.

For the cross-polarization (HV) images, the LRT

detector does not perform well as there are missed

detections of the human targets. It is observed that

the LRT detector fails to detect the targets in the

left view image, while only one target is detected

in the bottom view image. On the other hand the
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Fig. 18. Image enhancement results from complex scene.

TABLE IV

Improvement Factor in Target-to-Clutter Ratio of Complex Scene Images after Enhancements through Target Detection

VV Left VV Bottom HV Left HV Bottom

LRT Detector 2.5% FAR 0.2198 0.3726 ¡4:7438 ¡0:5584
BCV Thresholding 18.2787 15.7781 3.3138 2.0929

Entropy-Based Segmentation 17.3476 0.5566 12.2967 5.4013

K-Means Clustering 18.2781 15.7781 3.344 2.1554

BCV thresholding, entropy-based segmentation,

and K-means clustering produce good detection of

the human targets from the bottom view, with the

entropy having the advantage of lower clutter levels.

This is validated from Table IV, which shows that

the entropy-based segmentation has the highest IF.

However, the entropy segmentation has two missed

detections in the left view image.

D. Fusion of Enhanced Images

After segmenting the individual images, the

enhanced images are normalized and fused to compare

the detection results with the LRT detector that

incorporates the multi-view and multi-polarization

information. Here, pixel-wise additive fusion,

multiplicative fusion, and two-stage fuzzy logic fusion

are used to fuse the enhanced images.
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Fig. 19. Image fusion of segmented images from calibrated scene.

Through empirical observations of the three

experimental data sets, the radar images are separated

into four regions for the fuzzy logic fusion. The pixel

intensities, ranging from 0 to 105 for Region 1, 105

to 165 for Region 2, 165 to 225 for Region 3, and the

remaining 225 to 255 for Region 4, are used to form

the membership functions. As for the fuzzy rules, it

is generally observed that target objects tend to have
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TABLE V

Fuzzy Rules

Input 1 Input 2 Output

Region 1 Region 1 Region 1

Region 2 Region 2 Region 2

Region 3 Region 3 Region 3

Region 4 Any Region 4

Region 2 Region 1 Region 2

Region 3 Region 1 Region 2

TABLE VI

Improvement Factor in Target-to-Clutter Ratio of Fused Calibrated

Scene Images

Additive Multiplicative Fuzzy Logic

Fusion Fusion Fusion

BCV Thresholding 4.2907 2.6817 8.6974

Entropy-Based

Segmentation

8.3592 ¡0:0420 11.3735

K-Means Clustering 4.3279 2.6813 8.6961

high pixel intensities (Region 4) and that background

noise has low pixel intensities (Region 1). Thus,

input pixels with higher intensities are preferred. For

instance, if an input pixel is labeled as Region 4, the

output pixel will be set to Region 4 automatically.

When input pixels are from different regions, such

as from Region 1 and Region 3, the average value

from both regions is set as the output value. When the

input pixels originate from Region 1 and Region 2,

the output values could be suppressed to Region 1,

as in the case of [17]. However, in our experiments,

we maintain the output value as Region 2 to avoid

oversuppression of information. The defined set of

nonoverlapping logical rules is shown in Table V.

1) Calibrated Scene: Fig. 19 shows the fusion

results of the enhanced images from the calibrated

scene (Fig. 15). We observe that the additive fusion of

the enhanced images maintains all the targets, clutter,

and false detections. Among the three combinations

of the image segmentation methods with additive

fusion, the entropy-based additive fusion produces

the best result with the detection of all eight targets

and an IF of 8.36 dB, as shown in Table VI. The

multiplicative fusion fails to detect all eight targets

because only the rotated dihedrals, which are mutual

to both copolarization and cross-polarization images,

survive the fusion process while the remaining targets

are suppressed. The two-stage fuzzy fusion, which

fuses the outputs of the additive and multiplicative

fusion, produces a balanced output with high targets

and low clutter levels. Between the additive and fuzzy

logic fusion that maintains most of the targets, it

can be observed that the entropy-segmented image,

coupled with the two-stage fuzzy fusion, produces the

best result with an IF of 11.37 dB.

Fig. 20. Multi-polarization statistical LRT detection on calibrated

scene images.

In comparison with the LRT detector that

incorporates the multi-polarization signatures to

produce the output shown in Fig. 20, the fuzzy fused

composite image based on entropy segmentation

outperforms the multi-polarization LRT detector by

detecting seven targets versus the LRT detector’s six.

The false detections in the image produced by the

LRT detector are also more significant than the fuzzy

logic fusion. Thus, the entropy-based segmentation

coupled with the fuzzy logic fusion outperforms the

other methods by producing an image with high target

and low clutter levels.

2) Populated Scene: Similar fusion results

to that of the calibrated scene are also observed

for the populated scene. As can be observed from

Fig. 21 for the high signal-to-clutter ratio scenario,

although the additive fusion generally retains most

of the noise and clutter present in the individual

images, the corresponding composite image based

on the entropy-segmented images produces an output

image with minimal clutter. The image segmentation

processes also help improve the multiplicative and

fuzzy logic fusion results by suppressing all the

clutter. As shown in Table VII, both multiplicative and

fuzzy logic fusion produce composite images with

similar IFs. Generally, it can be observed that all three

fusion methods, employing the entropy-segmented

images, produce an output with low clutter levels.

Comparison with the multi-view LRT detector, whose

output is shown in Fig. 22, reveals that the composite

images produced by the proposed methods outperform

the LRT detector. This is because the LRT detector

fails to distinguish between targets and clutter in its

detection mask.

In the low signal-to-clutter ratio case, it can be

observed from Fig. 23 that the composite images

produced by the multiplicative and fuzzy logic fusion

based on the entropy-segmented images clearly depict

the four legs of the metal table, even though there

are some false detections close to the table. The LRT

detector that incorporates the multi-view information
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Fig. 21. Image fusion of segmented images from populated scene (dihedral level).

Fig. 22. Multi-view statistical LRT detection on populated scene

images (dihedral level).

TABLE VII

Improvement Factor in Target-to-Clutter Ratio of Fused Populated

Scene Images (Dihedral Level)

Additive Multiplicative Fuzzy Logic

Fusion Fusion Fusion

BCV Thresholding 2.6245 16.8401 16.7586

Entropy-Based

Segmentation

10.7841 14.8618 14.2677

K-Means Clustering 2.6968 16.8511 16.7585

(see Fig. 24) misses detection of one of the table legs,

but has fewer false alarms compared with that of the

composite images. Table VIII shows that the fusion
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Fig. 23. Image fusion of segmented images from populated scene (table level).

TABLE VIII

Improvement Factor in Target-to-Clutter Ratio of Fused Populated

Scene Images (Table Level)

Additive Multiplicative Fuzzy Logic

Fusion Fusion Fusion

BCV Thresholding 2.3180 7.1884 9.9716

Entropy-Based

Segmentation

5.2657 15.0991 16.1727

K-Means Clustering 2.3241 7.1969 9.9856

of the entropy-segmented images produces composite

images with the highest IF.

3) EM Modeling of Complex Scene: Figs. 25 and

26 show the image fusion results of the segmented
Fig. 24. Multi-view statistical LRT detection on populated scene

images (table level).
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Fig. 25. Image fusion of segmented multi-view copolarization images from complex scene.

multi-view copolarization (VV) and cross-polarization

(HV) images acquired from the complex scene,

respectively. In the copolarization composite images,

it is evident from Fig. 25 that the additive fusion

based on the entropy-segmented images produces

the best visual result by detecting both exterior and

interior walls. It also has the highest IF, as tabulated in

Table IX.

For the cross-polarization composite images

(Fig. 26), the fuzzy logic fusion produces images that

balance the output of the additive and multiplicative

fusion. Although the IF is lower than that of the

multiplicative, visually, the entropy-segmented image

coupled with the fuzzy fusion produces a result

with the least clutter. The additive fusion of the

entropy-segmented images also produces a similar

result, where the clutter level is lower compared with

that of BCV thresholding and K-means clustering.

When only considering the human targets, it is

evident that, for the cross-polarization images, the

multiplicative fusion of the BCV thresholding and

K-means clustering images produces the best result.

However, it can be observed that the entropy-based

segmentation, coupled with the fuzzy logic fusion,

produces the best result that detects both human

targets and room layout.

We observe from Fig. 27 that the multi-view LRT

detector, when applied to the copolarization images,

produces a similar output to that of additive fusion

based on the entropy-segmented images. While the

LRT detector manages to detect the four humans in

the cross-polarization images, the clutter levels are

higher than that of the multiplicative fusion with the

image segmentation techniques.

Figures 28 and 29 show the image fusion results

of the segmented polarimetric images from the left

and bottom views of the complex scene, respectively.

From the left view (Fig. 28), it can be observed

that, while the additive fusion and fuzzy logic

fusion coupled with BCV thresholding and K-means
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Fig. 26. Image fusion of segmented multi-view cross-polarization images from complex scene.

Fig. 27. Multi-view statistical LRT detection on copolarization

and cross-polarization complex scene images.

clustering are able to maintain the targets, clutter

levels are still quite high. Similar results are also

observed for the bottom view (Fig. 29). Although the

composite images based on the entropy-segmented

images do not detect all the targets, they generally

produce an image with high target and low clutter

levels. The IFs, as tabulated in Table X, are also the

highest. In both cases the multiplicative fusion fails to

TABLE IX

Improvement Factor in Target-to-Clutter Ratio of Fused Multiview

Complex Scene Images

Additive Multiplicative Fuzzy Logic

Copolarization (VV) Fusion Fusion Fusion

BCV Thresholding 6.8322 ¡20:1781 4.4134

Entropy-Based

Segmentation

7.0535 ¡18:7161 4.4921

K-Means Clustering 6.8318 ¡20:1781 4.4124

Additive Multiplicative Fuzzy Logic

Copolarization (HV) Fusion Fusion Fusion

BCV Thresholding 3.3666 9.4389 7.2484

Entropy-Based

Segmentation

7.8120 8.1383 7.5353

K-Means Clustering 3.4099 9.4347 7.2403

detect the human targets and the room layout due to

the suppression of nonmutual pixels in the enhanced

images. Figure 30 shows that the multi-polarization

LRT detector, which is evaluated on the polarimetric
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Fig. 28. Image fusion of segmented polarimetric images from left view of complex scene.

images both from the left and bottom views, does not

perform well enough to detect the walls and human

targets. In both cases high clutter levels are retained.

E. Discussions

From the experimental results it can be generally

observed that the BCV thresholding and K-means

clustering yield similar segmentation performances

and that their differences in the IF are almost

negligible. This is because the K-means clustering’s

minimization of the WCSS is equivalent to the BCV

thresholding’s maximization of the sum of class

variances when there are only two regions [14]. It can

also be observed that the BCV thresholding generally

has a poorer performance than the entropy-based

segmentation when the image has more clutter.

This is because the sparsity of the high pixel values

(target pixels) in a TWR image forces the BCV

thresholding method to also include low pixel values

(clutter pixels) in the target class, in order to obtain

a high class variance. Unlike the BCV method the

entropy-based segmentation is less affected by the

sparse target pixels in the image and is only dependent

on the pixel value probability. That is, low pixel

values will affect thresholding if they assume similar

probabilities as those of the target pixels. In the case

when the scene has less clutter, it is observed that

a similar performance will be produced by both

entropy-based segmentation and BCV thresholding

methods.

Using the calibrated scene as an example, the

corresponding copolarization images contain more

clutter than the cross-polarization image. Hence, in

the case of copolarization images, the entropy-based

segmentation outperforms the BCV, which chooses a

lower thresholding value. This is evident from Fig. 31,

wherein the maximum class variances for both regions

in the copolarization image are skewed towards the

lower pixel regions. As a result the summation of

both class variances produces a threshold value that
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Fig. 29. Image fusion of segmented polarimetric images from bottom view of complex scene.

Fig. 30. Multi-polarization statistical LRT detection on

copolarization and cross-polarization complex scene images.

is also located in the low pixel values region, causing

the segmented image to include most of the clutter.

As can be observed from Fig. 32, the respective class

entropies are less affected by the skewness towards

the low pixel values region. As the threshold value

is increased, the entropy of one region will generally

decrease, while the entropy of the other region will

increase. Thus, the maximization of the sum of class

entropies will produce a balanced threshold where

TABLE X

Improvement Factor in Target-to-Clutter Ratio of Fused

Polarimetric Complex Scene Images

Additive Multiplicative Fuzzy Logic

Left View Fusion Fusion Fusion

BCV Thresholding 3.6250 ¡6:1226 7.7683

Entropy-Based

Segmentation

11.5689 ¡13:2830 10.7922

K-Means Clustering 3.6476 ¡6:1682 7.7668

Additive Multiplicative Fuzzy Logic

Bottom View Fusion Fusion Fusion

BCV Thresholding 2.3547 ¡11:7157 4.2229

Entropy-Based

Segmentation

7.3869 ¡6:3540 5.1442

K-Means Clustering 2.4264 ¡11:7157 4.2229

the information content in both regions is almost

equal. For the case of a less cluttered image, such as

the one acquired using cross-polarization, a higher

threshold value is produced by the BCV method
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Fig. 31. Class variances with respect to threshold values for copolarization images (left) and cross-polarization image (right) of

calibrated scene.

Fig. 32. Class entropies with respect to threshold values for copolarization images (left) and cross-polarization image (right) of

calibrated scene.

since the maximum class variance for the second

region is located at a much higher pixel value region.

This dominance allows the summation of both class

variances to produce a high threshold value.

The observations that 1) the entropy-based

segmentation outperforms the BCV thresholding

method when there is more clutter, and 2) both

methods have similar performance when there is

less clutter in the image, are further supported by

Fig. 33. The histograms in the left column are

produced from images with more clutter, and those

in the right column are histograms of images with

less clutter. The thresholds associated with the

various segmentation methods are plotted in red,

green, and black, respectively, for the entropy-based

segmentation, BCV thresholding, and K-means

clustering. As can be seen the threshold values

corresponding to entropy are much higher in the case

of high clutter and comparable with those of K-means

and BCV thresholding in the case of low clutter.

In this paper, we have considered three different

scenes of varying complexity in an attempt to have

a broad representation of a variety of possible

indoor scenes. In all cases the corresponding image

histograms are uni-modal, as depicted in Fig. 33.

Thus, it can be generally concluded that most TWR

images have uni-modal histograms. In order to

automate the target detection process for uni-modal

images, an image segmentation method that is not

affected by the uni-modality and sparsity of the

targets needs to be taken into consideration. Through

the experimental results it has been shown that

the entropy-based segmentation, coupled with the

fuzzy-logic-based image fusion, is the most effective

and viable alternative to the LRT for target detection

in TWR images.

VI. CONCLUSION

In this paper, we examined image processing

approaches for target detection in TWRI. Image
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Fig. 33. Histogram of different images along with thresholds associated with the segmentation methods, showing calibrated scene (top

row), populated scene (middle row), and complex scene (bottow row).

segmentation techniques were first applied to

enhance the images by distinguishing between the

target and clutter regions. Image fusion techniques

were then used to fuse the enhanced images.

Performances of various candidate segmentation

and fusion techniques were evaluated using real

2D polarimetric and multi-view images, as well as

numerical EM modeling data. The results showed that

the entropy-based segmentation technique produced,

in most of the cases considered, an output better

than those produced by the other segmentation

schemes, as well as the LRT detector. Although there

were some missed detections, the entropy-based

segmentation consistently provided high target and

low clutter levels. While the BCV thresholding and

K-means clustering methods also maintained most

of the targets, the clutter levels were much higher

by comparison. For the fusion of multi-view and

multi-polarization images, it was generally observed

that the fuzzy logic fusion of the segmented images

revealed important information about the indoor

targets and walls.

1892 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 49, NO. 3 JULY 2013



ACKNOWLEDGMENT

The authors would like to thank Dr. Traian Dogaru

from the U.S. Army Research Lab for providing the

numerical EM modeling data.

REFERENCES

[1] Amin, M.

Through the Wall Radar Imaging.

Boca Raton, FL: CRC Press, 2010.

[2] Baranoski, E.

Through wall imaging: Historical perspective and future

directions.

Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2008),

Las Vegas, NV, Mar. 31—Apr. 4, 2008, pp. 5173—5176.

[3] Gaugue, A. and Politano, J.

Overview of current technologies for

through-the-wall-surveillance.

Proceedings of SPIE, 2005, pp. 1—11.

[4] Yoon, Y., Amin, M., and Ahmad, F.

MVDR beamforming for through-the-wall radar imaging.

IEEE Transactions on Aerospace and Electronic Systems,

47, 1 (2011), 347—366.

[5] Lai, C-P. and Narayanan, R.

Ultrawideband random noise radar design for

through-wall surveillance.

IEEE Transactions on Aerospace and Electronic Systems,

46, 4 (2010), 1716—1730.

[6] Ahmad, F., Amin, M., and Zemany, P.

Dual-frequency radars for target localization in urban

sensing.

IEEE Transactions on Aerospace and Electronic Systems,

45, 4 (2009), 1598—1609.

[7] Ahmad, F. and Amin, M.

Multi-location wideband synthetic aperture imaging for

urban sensing applications.

Journal of the Franklin Institute, 345, 6 (2008), 618—639.

[8] Debes, C., Zoubir, A., and Amin, M.

Target detection in multiple-viewing through-the-wall

radar imaging.

Proceedings of IEEE International Geoscience and Remote

Sensing Symposium (IGARSS 2008), Boston, MA, July

7—11, 2008, pp. I-173—I-176.

[9] Debes, C., Amin, M., and Zoubir, A.

Target detection in single- and multiple-view

through-the-wall radar imaging.

IEEE Transactions on Geoscience and Remote Sensing, 47,

5 (2009), 1349—1361.

[10] Debes, C., et al.

Adaptive target detection with application to

through-the-wall radar imaging.

IEEE Transactions on Signal Processing, 58, 11 (2010),

5572—5583.

[11] Debes, C., Zoubir, A., and Amin, M.

Enhanced detection using target polarization signatures in

through-the-wall radar imaging.

IEEE Transactions on Geoscience and Remote Sensing, 50,

5 (2012), 1968—1979.

[12] Sezgin, M. and Sankur, B.

Survey over image thresholding techniques and

quantitative performance evaluation.

Journal of Electronic Imaging, 13, 1 (2004), 146—165.

[13] Lee, J-S. and Jurkevich, I.

Segmentation of SAR images.

IEEE Transactions on Geoscience and Remote Sensing, 27,

6 (1989), 674—680.

[14] Otsu, N.

A threshold selection method from gray-level histogram.

IEEE Transactions on Systems, Man and Cybernetics,

SMC-9, 1 (1979), 62—66.

[15] Kapur, J., Sahoo, P., and Wong, A.

A new method for gray-level picture thresholding using

the entropy of the histogram.

Computer Vision, Graphics, and Image Processing, 29, 3

(1985), 273—285.

[16] Seber, G.

Multivariate Observations.

Hoboken, NJ: Wiley, 1984.

[17] Seng, C., et al.

Fuzzy logic-based image fusion for multi-view

through-the-wall radar.

Proceedings of 2010 International Conference on Digital

Image Computing: Techniques and Applications (DICTA),

Sydney, Australia, Dec. 1—3, 2010, pp. 423—428.

[18] Jansing, E., Albert, T., and Chenoweth, D.

Two-dimensional entropic segmentation.

Pattern Recognition Letters, 20, 3 (1999), 329—336.

[19] Wang, W., et al.

Knowledge-based bridge detection from SAR images.

Journal of Systems Engineering and Electronics, 20, 5

(2009), 929—936.

[20] Wang, W., et al.

Oil spill detection from polarimetric SAR image.

Proceedings of 2010 IEEE 10th International Conference

on Signal Processing (ICSP), Beijing, China, Oct. 24—28,

2010, pp. 832—835.

[21] Pasolli, E., Melgani, F., and Donelli, M.

Automatic analysis of GPR images: A pattern-recognition

approach.

IEEE Transactions on Geoscience and Remote Sensing, 47,

7 (2009), 2206—2217.

[22] Sun, W., et al.

Research of unsupervised image change detection

algorithm based on 2-D histogram.

Proceedings of 2010 IEEE 10th International Conference

on Signal Processing (ICSP), Beijing, China, Oct. 24—28,

2010, pp. 686—689.

[23] Bazi, Y., Melgani, F., and Al-Sharari, H.

Unsupervised change detection in multispectral remotely

sensed imagery with level set methods.

IEEE Transactions on Geoscience and Remote Sensing, 48,

8 (2010), 3178—3187.

[24] Schoenmakers, R. and Vuurpijl, L.

Segmentation and classification of combined optical and

radar imagery.

Proceedings of the International Geoscience and Remote

Sensing Symposium (IGARSS ’95), vol. 3, Florence, Italy,

July 10—14, 1995, pp. 2151—2153.

[25] Pasolli, E., et al.

Automatic detection and classification of buried objects in

GPR images using genetic algorithms and support vector

machines.

Proceedings of IEEE International Geoscience and Remote

Sensing Symposium (IGARSS 2008), vol. 2, July 7—11,

1998, pp. II-525—II-528.

[26] Patra, S. and Bruzzone, L.

A fast cluster-assumption based active-learning technique

for classification of remote sensing images.

IEEE Transactions on Geoscience and Remote Sensing, 49,

5 (2011), 1617—1626.

[27] Pellizzeri, T. M., et al.

Improved classification of SAR images by segmentation

and fusion with optical images.

Proceedings of the IEEE Radar Conference (RADAR),

Edinburgh, UK, Oct. 15—17, 2002, pp. 158—161.

SENG, ET AL.: IMAGE SEGMENTATIONS FOR THROUGH-THE-WALL RADAR TARGET DETECTION 1893



[28] Amin, M. and Ahmad, F.

Wideband synthetic aperture beamforming for

through-the-wall imaging.

IEEE Signal Processing Magazine, 25, 4 (2008), 110—113.

[29] Pal, N. R. and Pal, S. K.

A review on image segmentation techniques.

Pattern Recognition, 26, 9 (Sept. 1993), 1277—1294.

[30] Sahoo, P. and Arora, G.

A thresholding method based on two-dimensional Renyi’s

entropy.

Pattern Recognition, 37, 6 (2004), 1149—1161.

[31] Pham, D., Dimov, S., and Nguyen, C.

Selection of k in k-means clustering.

Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, 219, 1

(2005), 103—119.

[32] Wang, G. and Amin, M.

Imaging through unknown walls using different standoff

distances.

IEEE Transactions on Signal Processing, 54, 10 (2006),

4015—4025.

Cher Hau Seng received his B.E. (Hons) degree in computer engineering from

the University of Wollongong, Australia.

He is currently working towards the Ph.D. degree at the School of Electrical,

Computer, and Telecommunications Engineering, University of Wollongong. His

general research interests are in the area of image processing with applications to

radar and medical imaging.

[33] Seng, C., et al.

A two-stage image fusion method for enhanced

through-the-wall radar target detection.

Proceedings of the IEEE Radar Conference (RADAR),

Kansas City, MO, May 23—27, 2011, pp. 643—647.

[34] Dilsavor, R., et al.

Experiments on wideband through the wall imaging.

Proceedings of the SPIE, vol. 5808, Symposium on Defense

and Security, Algorithms for Synthetic Aperture Radar

Imagery XII, 2005, pp. 196—209.

[35] Thajudeen, C., et al.

Measured complex permittivity of walls with different

hydration levels and the effect on power estimation of

TWRI target returns.

PIER B: Progress in Electromagnetics Research B, 30

(2011), 177—199.

[36] Dogaru, T. and Le, C.

SAR images of rooms and buildings based on FDTD

computer models.

IEEE Transactions on Geoscience and Remote Sensing, 47,

5 (2009), 1388—1401.

1894 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 49, NO. 3 JULY 2013



Moeness Amin (F’01) received his Ph.D. degree in 1984 from the University of

Colorado, Boulder in electrical engineering.

He has been on the faculty of the Department of Electrical and Computer

Engineering at Villanova University since 1985. In 2002 he became the Director

of the Center for Advanced Communications, College of Engineering.

Dr. Amin is a fellow of the International Society of Optical Engineering and a

fellow of the Institute of Engineering and Technology (IET). He is a recipient of

the IEEE Third Millennium Medal, recipient of the 2009 Individual Technical

Achievement Award from the European Association of Signal Processing,

recipient of the 2010 NATO Scientific Achievement Award, recipient of the

Chief of Naval Research Challenge Award, recipient of the Villanova University

Outstanding Faculty Research Award, 1997, and the recipient of the IEEE

Philadelphia Section Award, 1997. He was a distinguished lecturer of the IEEE

Signal Processing Society, 2003—2004, and is a member of the Electrical Cluster

of the Franklin Institute Committee on Science and the Arts. He is a member

of SPIE, EURASIP, ION, Eta Kappa Nu, Sigma Xi, and Phi Kappa Phi. Dr.

Amin has over 550 journal and conference publications in the areas of wireless

communications, time-frequency analysis, sensor array processing, waveform

design and diversity, interference cancellation in broadband communication

platforms, satellite navigations, target localization and tracking, direction

finding, channel diversity and equalization, ultrasound imaging, and radar signal

processing. He coauthored 20 book chapters and is the editor of the first book on

through the wall radar imaging. He is a recipient of eight paper awards. He holds

two U.S. Patents on smart antennas. Dr. Amin currently serves on the Overview

Board of the IEEE Transactions on Signal Processing and the Editorial Board of

the IEEE Signal Processing Magazine. He also serves on the Editorial Board of

the EURASIP Signal Processing Journal. He was a plenary speaker at ICASSP

2010. Dr. Amin was the Special Session Cochair of the 2008 IEEE International

Conference on Acoustics, Speech, and Signal Processing. He was the Technical

Program Chair of the 2nd IEEE International Symposium on Signal Processing

and Information Technology, 2002. Dr. Amin was the General and Organization

Chair of both the IEEE Workshop on Statistical Signal and Array Processing,

2000 and the IEEE International Symposium on Time-Frequency and Time-Scale

Analysis, 1994. He was an Associate Editor of the IEEE Transactions on Signal

Processing during 1996—1998. He was a member of the IEEE Signal Processing

Society Technical Committee on Signal Processing for Communications during

1998—2002. He was a member of the IEEE Signal Processing Society Technical

Committee on Statistical Signal and Array Processing during 1995—1997. He has

given several keynote and plenary talks and served as a session chair in several

technical meetings.

Fauzia Ahmad (S’97–M’97–SM’06) received her M.S. degree in electrical

engineering in 1996 and Ph.D. degree in electrical engineering in 1997, both from

the University of Pennsylvania, Philadelphia.

From 1998 to 2000 she was an assistant professor in the College of Electrical

and Mechanical Engineering, National University of Sciences and Technology,

Pakistan. During 2000—2001 she served as an assistant professor at Fizaia College

of Information Technology, Pakistan. Since 2002 she has been with the Center

for Advanced Communications, Villanova University, Villanova, PA, where she is

now a Research Associate Professor and the Director of the Radar Imaging Lab.

Dr. Ahmad has over 110 journal and conference publications in the areas

of radar imaging, radar signal processing, waveform design and diversity,

compressive sensing, array signal processing, sensor networks, ultrasound

imaging, and over-the-horizon radar. She has also coauthored three book chapters

in the aforementioned areas.

SENG, ET AL.: IMAGE SEGMENTATIONS FOR THROUGH-THE-WALL RADAR TARGET DETECTION 1895



Abdesselam Bouzerdoum (M’89–SM’03) received the M.Sc. and Ph.D. degrees

in electrical engineering from the University of Washington, Seattle.

In 1991 he joined The University of Adelaide, Adelaide, Australia, and in

1998, he was appointed an associate professor with Edith Cowan University,

Perth, Australia. Since 2004 he has been a Professor of Computer Engineering

with the University of Wollongong, Wollongong, Australia, where he also

served as Head of the School of Electrical, Computer, and Telecommunications

Engineering from 2004 to 2006 and has been the associate dean (research) with

the Faculty of Informatics since 2007. He held a number of visiting appointments

at several universities and research institutes, including Institut Galilée (Université
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