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Abstract—Radar technology for monitoring of human gait has
recently gained interest in the fields of home security, medial
diagnosis, assisted living and rehabilitation. Due to its remote,
reliable and privacy-preserving sensing, radar is promising to
become an effective tool for medical gait analysis. We show the
influences of gait abnormalities and assistive walking devices
on the joint-variable representations of the back-scattered radar
signals. Using both, parametric and non-parametric techniques,
we extract gait features to classify normal, abnormal and cane-
assisted gait. In particular, the fundamental frequency of the
time-frequency behavior is estimated using sum-of-harmonics
modeling in order to characterize different gaits. Results obtained
using experimental K-band radar data are presented for the
person-specific and person-generic case.

I. INTRODUCTION

The human gait is a complex motion and requires the con-
certed interaction between many systems, including strength,
sensation and coordination [1]. Deviations from a normal walk,
which are generally referred to as gait abnormalities, provide
information about a person’s musculoskeletal and neurological
condition. Observing a patient’s gait plays a key role in many
medical examinations. For example, different neurological
conditions lead to very characteristic gaits [2], [3]. Thus, the
human gait can serve as an early indicator of several disorders.

Contrary to extensive clinical gait studies, we seek a cost-
effective and efficient technology to collect and interpret gait
data accurately and in realtime. Electromagnetic sensing for
indoor human monitoring has become a key technology in
home security, elderly care, and medical diagnosis applications
[4], [5]. In contract to other non-wearable sensing modalities
such as infrared reflective light, video cameras, and in-ground
force platforms [6], [2], radar is insensitive to lighting, can
penetrate through common materials, preserves privacy and
its performance is not impaired by clothing. Clearly, gait
monitoring systems should not be affected by the use of
assistive walking devices, such as a cane or crutches, which
are commonly used by the elderly population aged over 65
years to gain mobility [7] and by patients in rehabilitation to
reestablish a normal gait, respectively.

We show that radar signals of human walks contain detailed
information on a person’s gait. In particular, the time-frequency
features that arise due to the micro-Doppler (mD) effect [8] are
examined. By giving a detailed biomechanical interpretation of
the observed mD signatures, we further the understanding of
the state of gait normality and abnormality, which enhances
the practitioners’ ability for rendering diagnosis.

Human gait has previously been studied using radar in, e.g.,
[9], [10], [11]. However, radar-based human gait analysis and
detection of walking aids has not been widely investigated so
far [12], [13], [14]. Opposed to existing radar-based human gait
classification methods, which consider walks with and without
arm swinging [15], [16], [17], or different speeds of walking
[18], [19], we focus on detecting differences in the lower limbs
kinematics, i.e., all test subject were asked to walk slowly
without arm swinging. Further, we consider two classes of
cane-assisted walks which is motivated by the recent interest
in keeping with the cane widespread use and rising interest
in the corresponding Doppler signatures [20], [21]. As such,
we deal with an intra motion category classification problem,
i.e., we distinguish different walking styles within the class of
human gait.

For classifying normal, pathological and assisted gait, we
use predefined features from the time-frequency representation
(TFR) of the radar return signal. First, we describe the differ-
ences of the mD signatures in their TFR for different walking
styles. Then, we proceed to model this time-frequency behavior
as a sum-of-harmonics (SOH) to estimate the underlying fun-
damental frequency (FF) of the gait, which is used to calculate
a descriptive feature for gait recognition. Using only a small
number of features, we can reliably classify the considered
gait classes. Results will be presented and discussed for the
person-specific and person-generic case.

The remainder of this paper is organized as follows. Section
II introduces TFRs of radar return signals of different human
gaits and gives a biomechanical interpretation of the observed
mD signatures. From these TFRs, features are extracted for
classification of normal, abnormal and cane-assisted walking
styles as described in Section III. Experimental results using
real radar data are presented in Section IV and final conclu-
sions are given in Section V.

II. MICRO-DOPPLER SIGNATURES OF HUMAN GAIT

A. Time-Frequency Representations

The highly non-stationary and multi-component back-
scattered radar signal from a walking person is typically
analyzed in joint-variable domains such as TFRs. The latter
clearly reveal the time-varying mD features of a human gait
in the joint Doppler frequency vs. time domain. This domain
reveals the velocity, acceleration, and higher-order motion
terms of the different parts of the human body. A typical
choice of TFR for this application is the spectrogram [22].



For a discrete-time signal s(n) of length N , the spectrogram
is given by the squared magnitude of the short-time Fourier
transform (STFT) [23]
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for n = 0, . . . , N − 1, where L is the length of the smoothing
window w(·), k is the discrete frequency index with k =
0, . . . ,K − 1, and L,K ∈ N.

Fig. 1 shows examples of spectrograms for different human
walks, i.e., normal walking, limping with one and both legs,
and walking with a cane. For the latter, we consider two
different ways of using the cane: having the cane moved in
alignment with one of the legs, and moving the cane out of
sync with any leg. Further, we evaluate all walking styles for
motions toward and away from the radar system.

The spectrogram of a typical normal gait when a person is
walking toward the radar system is depicted in (a). The torso’s
motion can be identified by the highest energy due to its large
radar cross section and consequently strongest reflections. The
torso’s time-frequency signature periodically varies between
approximately 20 Hz and 110 Hz Doppler frequency, repre-
senting the acceleration and deceleration phases during the
human walking cycle [8]. The time-frequency signature of the
swinging foot shows a clear sinusoidal shape with up to about
300 Hz Doppler shift in this case. This mD signature, see e.g. in
the time interval between 0 s and 1 s in (a), shall be referred to
as stride signature below. In this case, the spectrogram reveals
six stride signatures during the 6 s measurement. Note that
there is no arm swinging involved in this motion.

In contrast to (a), the mD signature of a person walking
away from the radar system is shown in (b). Here, we
observe five strides in the 6 s measurement. The mD stride
signatures are clearly different compared to the toward-radar
measurement. For a detailed analysis of a human walk that is
observed with a radar from behind see [24].

Figs. 1(c) and (d) show the spectrograms of a person
walking with a limp toward and away from the radar system,
respectively. Here, limping refers to the inability to bend one
of the knees properly. Thus, every other stride signature in
(c) and (d) is different from that of a normal stride. That
is, in the toward-radar case, the second, forth and sixth mD
signatures are due to a limping leg, where in the away-from-
radar measurement the first, third, fifth and seventh stride
signatures are abnormal. For both measurements, we observe
that the abnormal stride signatures have a smaller maximum
Doppler shift compared to a normal stride signature. Further,
due to the straight leg’s swinging, the mD stride signature
has a clear pronounced sinusoidal shape. This is particularly
recognizable when the radar has a back view on the person.
In this case, the salient spiky characteristic of a normal stride
when walking away from the radar is absent as can be seen
by comparing the first and second stride signature in (d).

The case when both legs cannot be bent properly is
depicted in (e) and (f). We observe that the stride signatures
for this walking style reveals smaller maximal Doppler shifts
compared to a normal walk. In addition, the stride signatures
do not show the typical clear sinusoidal shaped mD signatures

(a) Normal walk (b) Normal walk

(c) Limping with one leg (d) Limping with one leg

(e) Limping with both legs (f) Limping with both legs

(g) Walking with a cane (h) Walking with a cane

(i) Walking with a cane out of sync (j) Walking with a cane out of sync

Fig. 1: Examples of spectrograms for different human walking
styles performed toward (left) and away from (right) the radar
system.

for walking toward the radar. When the radar has a back-
view on the person, the spiky behavior in the TFR, which
is characteristic for a normal stride, is absent when the knee
is not fully bent.

The influence of using a cane on the mD signatures of
a human walk is shown in (g) and (h) for toward and away



from radar motions, respectively. In (g), the first, third and fifth
stride signatures are altered by the cane’s motion, i.e., leg and
cane mD signatures are overlaying. Consequently, the energy
of these mD signatures is higher compared to those of normal
strides. In the case where the radar has a back view on the
person, the spike behavior, which is characteristic of a normal
stride, is eclipsed by the overlaying cane signature. This can
be seen in the second, forth, and sixth stride signatures in (h).

In order to obtain isolated mD signatures of a swinging
cane, (i) and (j) show the spectrogram of a person walking with
a cane, where the cane is moved independently of both legs.
The resulting mD signature sequence consists of an isolated
cane signature followed by two stride signatures. This pattern
is repeated three times during the measurement shown in (i).
The away-from-radar measurement in (j) reveals the cane’s
signature at the second, fifth and eighth position.

III. RADAR-BASED GAIT CLASSIFICATION

A. Features from the Spectrogram

We calculate the spectrogram according to (1), where s(n)
is the complex zero-mean radar return signal. In order to
eliminate the Doppler signatures and obtain spectrograms as
shown in Fig. 1, an adaptive thresholding technique is used
to suppress the background noise in the TFR [25]. Next, we
apply an energy-based thresholding algorithm for extracting
the upper and lower envelopes for toward and away from
radar motions, respectively [26]. An example of an envelope
signal is given in Fig. 2(b). The absolute value of the envelope
has minima during double support phases and maxima when
a swinging foot or cane exhibits the maximal Doppler shift.
Thus, we obtain a signal that lends itself to capture the inherent
periodicity of the gait. Here, using the envelope has the
advantage that it is not affected by the individual appearance
or inherent pattern of the individual mD signatures in the time-
frequency domain, but only represents the observed Doppler
shift. Thus, all strides and even cane movements reveal a
very similar shape in the envelope signal, which facilitates the
estimation of the underlying gait periodicity.

For a normal human walk this periodicity relates to the
stride rate, which is an important characteristic for describing
a person’s gait. However, for cane-assisted walks the stride
rate may not be well defined: in the case where the cane is
not moved synchronously with any leg, the strides become
non-periodic, see e.g. Figs. 1(i) and 1(j). For this reason,
we introduce the repetition frequency of mD signatures, fmD,
irrespective of being due to strides or cane movements. In
order to obtain an estimate of fmD, we calculate the Fourier
transform (FT) of the extracted envelope and determine the
maximum of its magnitude as indicated in Fig. 2(c) [27].

Since fmD itself does not describe the considered walking
styles appropriately, i.e., it is not a descriptive feature for
gait recognition, we use it to define another feature: the gait
harmonic frequency ratio [28]. It is calculated as the ratio
between the FF estimate f0 and the mD repetition frequency
fmD, i.e.,

β =
f0
fmD

. (2)

Here, we expect the values of β to be:

• 1 for normal walking and limping with both legs as
each mD stride signature assumes the same pattern,

• 1/2 for limping with one leg and walking with a cane
in a synchronized manner as every other mD signature
appears the same,

• 1/3 for walking with a cane out of sync as a set of
two strides and one cane movement constitutes one
period.

In this paper, we find f0 utilizing SOH modeling as described
in the next section.

Further, we extract the maximal observed Doppler fre-
quency fD,max for each measurement as indicated in Fig. 2(a).
Using again the envelope signal obtained from the noise-
reduced spectrogram, we calculate the mean of the highest
10% of observed Doppler shifts [25]. In so doing, the maximal
Doppler frequency estimate becomes less sensitive to outliers.

From the spectrograms in Fig. 1, we observe that some
walking styles reveal different maximum Doppler shifts per
leg motion. In particular, limping with one leg leads to a
salient pattern of alternating high and low maximal Doppler
frequencies, see Figs. 1(c) and 1(d). To capture this behavior,
we use the peaks of the envelope signal and approximate
the envelope’s envelope using spline interpolation. In order to
measure the variation in maximal Doppler shifts, we proceed
to calculate the coefficient of variation given by

cv =
σ

µ
, (3)

where σ is the standard deviation and µ is the mean of the
interpolated signal.

B. Sum-of-Harmonics Modeling

The periodicity of the time-frequency signature along the
time-variable can be revealed using non-parametric and para-
metric techniques. Whereas we use the former to identify the
periodicity of mD signatures with time from the envelope
signal, the latter models the behavior of the time-frequency
signature as a SOH, and then proceeds to estimate the FF.
In both cases, we obtain gait characteristics that, if put into
relation, form a salient feature for gait classification, i.e., the
feature β as given in (2).

To capture the characteristics of the different stride types,
we define a signal E(n) as

E(n) =
1

K ′

K′−1∑
k=0

S̃(n, k), n = 0, . . . , N − 1, (4)

where S̃ is the noise-reduced spectrogram, and K ′ < K is
the number of relevant frequency bins corresponding to the
Doppler frequency range between an adaptive threshold and
500 Hz. Here, the threshold is chosen corresponding to 2v0,
see Fig. 2(a), where v0 is the average walking speed of the
person [20]. Adding the different Doppler frequency slices
of the spectrogram above a specific frequency threshold, in
essence, has the effect of summing up the signal power at high
Doppler frequencies. This converts the time-frequency signal
behavior into a signal composed of a train of pulses along the
time variable, see Fig. 2(d). Thus, E(n) can be interpreted as
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Fig. 2: (a) Spectrogram of a person walking with a cane out of sync. (b) Envelope signal of the mD signatures and (c) its FT
with fmD estimate. (d) The short-time energy signal E(n) and (e) its FT with FF estimate f0 obtained via SOH modeling.

the short-time energy of the original radar return signal, where
the background noise has been suppressed. The resulting signal
reveals a periodic behavior along the time variable, which can
be modeled as a SOH, i.e.,

x(n) =

q∑
i=1

ui cos(2πif0n) + vi sin(2πif0n)

=

q∑
i=1

αi cos(2πif0n+ φi),

(5)

where f0 is the FF in Hz, q is the number of harmonics
(NOH), and the harmonic amplitudes and phases are αi and
φi, respectively. The ith harmonic frequency is given by if0.

Given the signal E(n), we use the algorithm proposed in
[29] to estimate the FF, the NOH, and harmonic amplitudes
and phases. For this, the measured data E(n) is assumed to
consist of a SOH signal x(n) and an additive white gaussian
noise component u(n), i.e.,

E(n) = x(n) + u(n), n = 0, . . . , N − 1. (6)

The parameters are found by minimizing the squared-error
between the data and the model given by

ξ =

N−1∑
n=0

|x(n)− s(n)|2 , (7)

and utilizing the nonlinear least squares (NLS) method, for
estimating f0, augmented by a model order selection method,
for detecting q. For this, (7) is jointly optimized over candidate
FFs and candidate orders. Here, we use fmD as an initial
estimate of the FF. In a first step of the SOH algorithm, this
estimate is refined by minimizing (7) using an optimization
technique. Next, candidate FFs are determined from the refined
f0 estimate for which the cost function defined by the NLS
method is evaluated. At this point, we incorporate prior knowl-
edge to limit computational costs in the joint-optimization
for finding f0 and q, and avoid overfitting. As described in
Section III-A, we expect the FF to be 1/3 · fmD, 1/2 · fmD or
1 · fmD given the initial FF estimate fmD is correct. Thus, the
candidate FFs assume only the aforementioned values.

Given the estimates for f0 and q, the SOH model in (5) is
linear in the parameters ui and vi. Thus, using the linear least-
squares solution, the harmonic amplitudes αi and phases φi,
i = 1, . . . , q, can be computed in a closed-form as a function
of f0 and q. The estimated parameter vector is thus given by

p = [f0 q α1 · · ·αq φ1 · · ·φq]T . (8)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

A 24 GHz UWB radar system [30] was used to collect
experimental data in an office environment at Technische
Universität Darmstadt, Germany. The antenna feed point was
positioned approximately 1.15 m above the floor and four dif-
ferent test subjects were asked to walk back and forth between
approximately 4.5 m and 1 m in front of the radar. All subjects
were asked not to swing their arms. Data were collected with a
non-oblique view to the targets and at a 0◦ angle relative to the
radar line-of-sight. In total, 400 measurements of 6 s duration
are considered including 200 toward and 200 away from radar
motions. The number of data samples are equal among the test
subjects and classes. We consider five different gait classes:
normal walking (NW), limping with one (L1) or both legs
(L2), walking with a cane in a synchronized manner (CW)
and out of sync (CW/oos). Thus, the data set contains 100
measurements per person and 20 measurements per walking
style.

B. Classification Results

The final feature vector, which is used for classification of
different human walking styles, is defined as

z = [fmD β fD,max cv α1 · · ·αqmax ]
T
, (9)

where qmax = 5 is the maximal order of the SOH model
and αi = 0 ∀ i > q. The set of classes is defined as
C = {NW,L1,L2,CW,CW/oos}. Using 80% of the mea-
surements we train a Nearest Neighbor (NN) classifier and
evaluate its performance using the remaining 20% of data. All
presented classifications rates are obtained by averaging over
500 classification results, where training and test samples are
randomly chosen.

1) Gait harmonic feature: As described in Section III-A a
descriptive feature for classifying different walking patterns is
the gait harmonic frequency ratio β. Table I shows the results
for classifying {NW, L2}, {CW, L1} and CW/oos using only
the aforementioned feature. Ignoring the direction of motion,
(a) shows the confusion matrix for the three considered gait
classes. In (b) and (c) the results for walking toward and
away from the radar are given, respectively. We observe that
the classification rates are higher, when the radar has a back
view on the person, in particular for the class CW/oos. This
is due to the very characteristic mD signature of a normal
stride when observed from behind, which does not exhibit a
sinusoidal shape in the TFR as a limping leg or a cane but



TABLE I: Confusion matrices for classifying three different
gait patterns using the gait harmonic feature β. Numbers
represent the correct classification rates in %.

(a) both

True / Predicted NW, L2 CW, L1 CW/oos

Normal walk (NW), Limping both (L2) 67 27 6
Cane - synchronized (CW), Limping one (L1) 18 77 5
Cane - out of sync (CW/oos) 5 1 94

(b) toward

True / Predicted NW, L2 CW, L1 CW/oos

Normal walk (NW), Limping both (L2) 66 28 6
Cane - synchronized (CW), Limping one (L1) 12 79 9
Cane - out of sync (CW/oos) 9 3 88

(c) away

True / Predicted NW, L2 CW, L1 CW/oos

Normal walk (NW), Limping both (L2) 68 27 5
Cane - synchronized (CW), Limping one (L1) 24 75 1
Cane - out of sync (CW/oos) 0 0 100

a spiky behavior. Hence, in the sum over multiple Doppler
frequencies, a normal stride leads to a short, impulsive-like
waveform at intervals of 1/fmD. This behavior leads to longer
lasting harmonics in the spectrum compared to walking toward
due to the impulsive-like waveform. Thus, the detection of sub-
harmonics arising from gait abnormalities is facilitated.

2) Gait classification: Fig. 3 shows a scatter plot of the
features fmD and fD,max for all persons. In this feature space,
two gait classes are well separated: walking with a cane out of
sync reveals the highest FF of all classes and limping with both
legs typically reveals the smallest maximal Doppler shift. The
former is due to the additional mD signature of the cane which
leads to a higher mD repetition frequency, whereas the latter
can be explained by the reduced redial velocity of a limping
leg compared to a healthy foot swing.

The average correct classification rates for different persons
as well as the whole data set are given in Table II. We can see
that, in the person-specific scenarios, the presented approach
achieves very high classifications rates, where the walks of
persons A-D are correctly classified in 89%, 89%, 96% and
94% of the cases, respectively. For persons A and B the highest
confusion appears among the classes NW and CW. In these
cases, the cane was not correctly detected, but the gait was
falsely classified as normal walking, which, in fact, is the
underlying gait of walking with a cane.

The results for the person-generic case are given in Ta-
ble II(d), where the entire data set, i.e., experimental data
of all four persons, was used to train and test the classifier.
The overall average classification accuracy decreases to 88%.
Again, most of the confusion can be observed between the
classes NW and CW, whereas CW/oos reveals the highest
correct classification rate. Concluding, we note that in this
case the person-specific training is advantageous over a person-
generic one, which is evident from the higher individual
classification rates.

TABLE II: Confusion matrices for classifying five different
gait classes of four different persons. Numbers represent the
correct classification rates in %.

(a) Person A

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 70 4 4 21 1
Limping with one leg (L1) 4 95 0 1 0
Limping with both legs (L2) 0 0 100 0 0
Cane - synchronized (CW) 22 0 0 78 0
Cane - out of sync (CW/oos) 0 0 0 0 100

(b) Person B

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 77 0 0 23 0
Limping with one leg (L1) 4 86 1 9 0
Limping with both legs (L2) 0 1 99 0 0
Cane - synchronized (CW) 16 3 0 81 0
Cane - out of sync (CW/oos) 0 0 0 0 100

(c) Person C

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 100 0 0 0 0
Limping with one leg (L1) 4 95 0 0 1
Limping with both legs (L2) 0 0 92 6 2
Cane - synchronized (CW) 0 0 0 100 0
Cane - out of sync (CW/oos) 1 1 0 5 93

(d) Person D

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 91 0 0 9 0
Limping with one leg (L1) 0 100 0 0 0
Limping with both legs (L2) 0 2 89 9 0
Cane - synchronized (CW) 5 1 1 93 0
Cane - out of sync (CW/oos) 2 0 0 0 98

(e) All

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 82 0 4 14 0
Limping with one leg (L1) 1 90 3 5 1
Limping with both legs (L2) 4 3 90 3 0
Cane - synchronized (CW) 11 2 5 82 0
Cane - out of sync (CW/oos) 0 0 0 2 98

V. CONCLUSION

The paper detailed the differences in radar mD signa-
tures of different human walking styles. Considering normal,
pathological and cane-assisted walks, physically interpretable
features are extracted from TFRs incorporating SOH modeling
to capture the underlying gait pattern. Experimental results
verify that five gait classes can be correctly classified with
high degree of reliability for different individuals. As such, this
work furthers the understanding of radar-based gait analysis,
which supports the idea of using radar as a diagnostic tool and
thus paves the way for ambulatory medical gait analysis.
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Fig. 3: Scatter plots of the mD repetition frequency fmD vs. the maximal observed Doppler shift fD,max for different persons.
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