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Abstract—A coprime array uses two uniform linear subarrays
to construct an effective difference coarray with certain desirable
characteristics, such as a high number of degrees-of-freedom
for direction-of-arrival (DOA) estimation. In this paper, we
generalize the coprime array concept with two operations. The
first operation is through the compression of the inter-element
spacing of one subarray and the resulting structure treats the
existing variations of coprime array configurations as well as the
nested array structure as its special cases. The second operation
exploits two displaced subarrays, and the resulting coprime
array structure allows the minimum inter-element spacing to
be much larger than the typical half-wavelength requirement,
making them useful in applications where a small inter-element
spacing is infeasible. The performance of the generalized coarray
structures is evaluated using their difference coarray equiva-
lence. In particular, we derive the analytical expressions for
the coarray aperture, the achievable number of unique lags,
and the maximum number of consecutive lags for quantitative
evaluation, comparison, and design of coprime arrays. The
usefulness of these results is demonstrated using examples applied
for DOA estimations utilizing both subspace-based and sparse
signal reconstruction techniques.

Index Terms—Coprime array, nested array, difference coarray,
direction-of-arrival estimation, compressive sensing.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation, which determines
the spatial spectra of the impinging electromagnetic waves,
is an important application area of antenna arrays. It is
well known that conventional subspace-based DOA estimation
methods, such as MUSIC and ESPRIT [3], [4], resolve up to
N−1 sources with an N -element array. However, the problem
of detecting more sources than the number of sensors is of
tremendous interest in various applications [5], [6]. Toward
this purpose, a higher number of degrees-of-freedom (DOFs)
is usually achieved by exploiting a sparse array under the
coarray equivalence. For example, the minimum redundancy
array (MRA) [7] is a linear array structure that, for a given
number of physical sensors, maximizes the number of con-
secutive virtual sensors in the resulting difference coarray.
The minimum hole array (also known as the Golomb array)
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minimizes the number of holes in the difference coarray [8].
However, there are no general expressions for the MRA and
Golomb array configurations as well as the achievable DOFs
for an arbitrary number of sensors. Therefore, the optimum
design and performance analysis of such arrays are not easy
in general. In addition, finding the suitable covariance matrix
corresponding to a large array requires a rather complicated
time-consuming iterative process.

Recently, several array configurations have been proposed
as attractive alternatives for sparse array construction. The
nested array [9], which is obtained by combining two uniform
linear subarrays, in which one subarray has a unit inter-
element spacing, can resolve O(N2) sources with N sensors.
Unlike the MRA, the nested array configuration is easy to
construct and it is possible to obtain the exact expressions of
the sensor locations and the available DOFs for a given number
of the sensors. The total aperture and the number of unique
and consecutive coarray sensors can be subsequently obtained
[9]. Note that, as some of the sensors in a nested array are
closely located, the mutual coupling effects between antennas
may become significant and thus compromise the coarray
reconstruction capability and the DOA estimation performance
[10], [11]. The recently developed coprime array [12], which is
referred to as the prototype coprime array in this paper, utilizes
a coprime pair of uniform linear subarrays, where one is of
M sensors with an inter-element spacing of N units, whereas
the other is of N elements with an inter-element spacing of
M units. By choosing the integer numbers M and N to be
coprime, a coprime array can resolve O(MN) sources with
M +N − 1 sensors. This is attractive when it is necessary to
reduce mutual coupling between elements. A different coprime
array structure was proposed in [13] by extending the number
of elements in one subarray. The result is a larger number of
consecutive virtual sensors under the coarray equivalence. By
considering the difference coarray of N+2M−1 sensors, they
demonstrated that continuous correlation lags can be created
from −MN to MN .

A close examination of the extended coprime configuration
reveals that there is at least one pair of adjacent sensors that
is separated only by the unit spacing, which is typically half
wavelength to avoid the grating lobe problem. In addition to
the mutual coupling effect as described above, there are situa-
tions that such half-wavelength minimum spacing is infeasible
or impractical. One of the examples is when the physical size
of the antenna sensors is larger than half-wavelength (e.g.,
[14]). Indeed, many parabola antennas are designed to have
a large size for enhanced directivity [15]. This problem is
alleviated through an effective array configuration design in
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which the minimum inter-element spacing is much larger than
the typical half-wavelength requirement [1].

In this paper, we propose the generalization of the coprime
array concept, which comprises two operations. The first
operation is the compression of the inter-element spacing of
one constituting subarray in the coprime array by a positive
integer. The resulting coarray structure is referred to as co-
prime array with compressed inter-element spacing (CACIS).
As such, the coprime array structure developed in [13], which
doubles the number of sensors in a constituting subarray,
becomes a special case of the proposed CACIS structure. The
second operation introduces a displacement between the two
subarrays, yielding a coprime array with displaced subarrays
(CADiS). The resulting CADiS structure allows the minimum
inter-element spacing to be much larger than the typical
half-wavelength requirement. These two operations can be
performed separately or jointly. We evaluate the performance
of each individual generalized coarray structure corresponding
to these operations using their respective difference coarray
equivalence. In particular, we derive the analytical expressions
of the coarray aperture, the achievable number of unique lags,
and the maximum number of consecutive lags for quantitative
evaluation, comparison, and optimal design.

It is noted that the focus of this paper is the examination
of the generalized coprime array structures in the context of
narrowband DOA estimation. Wideband or multi-frequency
signals may further permit the utilization of frequency-domain
DOFs for enhanced DOA estimation capability. For example,
it is shown in [16] that coprime arrays that handle wide-
band signals can benefit from frequency diversity to achieve
improved DOA estimation performance. On the other hand,
the exploitation of two coprime frequencies in a uniform
linear array can generate an equivalent coprime array with
an increased number of DOFs [17], [18].

The rest of the paper is organized as follows. In Sec-
tion II, we first review the coprime array concept based
on the difference coarray concept. Then two different DOA
estimation approaches, which are respectively based on the
MUSIC algorithm and compressive sensing (CS) techniques,
exploiting coprime arrays are summarized in Section III. The
two generalized coprime array structures, i.e., CACIS and
CADiS, are respectively described in Sections IV and V with
the analytical expressions of array aperture, unique coarray
lags, and consecutive coarray lags. Different nested array
structures are clarified and compared in Section VI. Simulation
results are provided in Section VII to numerically compare
the performance of the different generalized coprime array
configurations with the two DOA estimation techniques. Such
results reaffirm and demonstrate the usefulness of the results
presented in Sections IV and V. Section VIII concludes this
paper.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. (.)∗ implies complex conjugation,
whereas (.)T and (.)H respectively denote the transpose and
conjugate transpose of a matrix or vector. vec(·) denotes
the vectorization operator that turns a matrix into a vector
by stacking all columns on top of the another, and diag(x)
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Fig. 1. The prototype coprime array configuration.

denotes a diagonal matrix that uses the elements of x as its
diagonal elements. ‖ · ‖2 and || · ||1 respectively denote the
Euclidean (l2) and l1 norms, and E(·) is the statistical expec-
tation operator.

⊗
denotes the Kronecker product, and real(·)

and imag(·) represent the real and imaginary part operations.
CN(a,B) denotes joint complex Gaussian distribution with
mean vector a and covariance matrix B.

II. COPRIME ARRAY CONCEPT

A. Prototype coprime array structure

A prototype coprime array [12], as described in the previous
section, is illustrated in Fig. 1, where M and N are coprime
integers. Without loss of generality, we assume M < N . The
unit inter-element spacing d is set to λ/2, where λ denotes
the wavelength. The array sensors are positioned at

P = {Mnd| 0 ≤ n ≤ N−1}∪{Nmd| 0 ≤ m ≤M−1}. (1)

Because the two subarrays share the first sensor at the zeroth
position, the total number of the sensors used in the coprime
array is M + N − 1. Note that the minimum inter-element
spacing in this coprime array is λ/2.

Denote p = [p1, ..., pM+N−1]T as the positions of the array
sensors where pi ∈ P, i = 1, ...,M + N − 1, and the first
sensor is assumed as the reference, i.e., p1 = 0. Assume that
Q uncorrelated signals impinging on the array from angles
Θ = [θ1, ..., θQ]T , and their discretized baseband waveforms
are expressed as sq(t), t = 1, ..., T , for q = 1, ..., Q. Then, the
data vector received at the coprime array is expressed as,

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) =
[
1, ej

2πp2
λ sin(θq), ..., ej

2πpM+N−1
λ sin(θq)

]T
(3)

is the steering vector of the array corresponding to θq , A =
[a(θ1), ...,a(θQ)], and s(t) = [s1(t), ..., sQ(t)]T . The elements
of the noise vector n(t) are assumed to be independent and
identically distributed (i.i.d.) random variables following the
complex Gaussian distribution CN(0, σ2

nIM+N−1).
The covariance matrix of data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM+N−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIM+N−1,

(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1 , ..., σ

2
Q]) is the source

covariance matrix, with σ2
q denoting the input signal power of
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the qth source, q = 1, ..., Q. In practice, the covariance matrix
is estimated using the T available samples, i.e.,

R̂xx =
1

T

T∑
t=1

x(t)xH(t). (5)

From a pair of antennas located at the ith and kth positions
in p, the correlation E[xi(t)x

∗
k(t)] yields the (i, k)th entry in

Rxx with lag pi − pk. As such, all the available values of i
and k, where 0 ≤ i ≤M +N − 1 and 0 ≤ k ≤M +N − 1,
yield virtual sensors of the following difference coarray:

CP = {z | z = u− v,u ∈ P,v ∈ P}. (6)

The significance of the difference coarray is that the corre-
lation of the received signal can be calculated at all differences
in set CP . Any application which depends only on such
correlation (e.g., DOA estimation) can exploit all the DOFs
offered by the resulting coarray structure. Using a part or
the entire set of the distinct auto-correlation terms in set CP ,
instead of the original array, to perform DOA estimation, we
can increase the number of detectable sources by the array. The
maximum number of the DOFs is determined by the number
of unique elements in the following set

LP = {lP | lP d ∈ CP }. (7)

To gain more insights about the difference coarrays, we
separately consider the self-differences of the two subarrays
and their cross-differences. Since the coarray is obtained from
the Hermitian matrix Rxx, the self-difference in the coarray
has positions

Ls = {ls| ls = Mn} ∪ {ls| ls = Nm}, (8)

and the corresponding mirrored positions L−s = {−ls| ls ∈
Ls}, whereas the cross-difference has positions

Lc = {lc| lc = Nm−Mn}, (9)

and the corresponding mirrored positions L−c = {−lc| lc ∈
Lc}, for 0 ≤ n ≤ N − 1 and 0 ≤ m ≤M − 1. Consequently,
the full set of lags in the virtual array is given by,

LP = Ls ∪ L−s ∪ Lc ∪ L−c . (10)

An example is illustrated in Fig. 2, where M=6 and N=7.
Fig. 2(a) show the self- and cross-lags described in (8) and
(9). If we include the negative mirror of the above set, then
the full set of lags becomes symmetric, as shown in Fig. 2(b).
Notice that some “holes”, e.g., ±13,±19,±20, still exist in
the difference coarray and are indicated by × in this figure.
The total number of lags in the symmetric set gives a global
upper bound of the achievable DOFs.

III. DOA ESTIMATION TECHNIQUES

To better understand the significance of the performance
metrics to be examined, i.e., the coarray aperture, the number
of consecutive coarray lags, and the number of unique lags of
coarray lags, we briefly review the two representative DOA
estimation techniques that are recently developed for coprime
array configurations. The first one is based on the well-known
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Fig. 2. An example of prototype coprime configuration coarrays, where M=6
and N=7. (a) The set Ls and Lc. (b) The lag positions in full set LP

MUSIC algorithm, and the spatial smoothing technique [19],
[20], [21] is applied to construct a suitable covariance matrix
from the virtual sensor output prior to performing MUSIC
spectrum estimation [12], [13]. Notice that, while the use of
virtual sensors substantially increases the available number of
DOFs, the application of spatial smoothing essentially halves
the number of available virtual sensors. A different approach
to perform DOA estimation exploiting coprime arrays is
through sparse signal reconstruction by taking advantages of
the fact that the spatial signal spectra are sparse. Such sparse
signal reconstruction is achieved using the recently developed
compressive sensing techniques [22], [23]. These two DOA
estimation techniques are summarized below.

A. MUSIC Algorithm

Vectorizing Rxx in (4) yields

z = vec(Rxx) = Ãb + σ2
nĨ = Br, (11)

where Ã = [ã(θ1), ..., ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq),
b = [σ2

1 , ..., σ
2
Q]T , Ĩ = vec(IM+N−1). In addition, B = [Ã, Ĩ]

and r = [bT , σ2
n]T = [σ2

1 , ..., σ
2
Q, σ

2
n] are used for notational

simplicity. The vector z amounts to the received data from a
virtual array with an extended coarray aperture whose corre-
sponding steering matrix is defined by Ã. However, the virtual
source signal becomes a single snapshot of b. In addition, the
rank of the noise-free covariance matrix of z, Rzz = zzH , is
one. As such, the problem is similar to handling fully coherent
sources, and subspace-based DOA estimation techniques, such
as MUSIC, fail to yield reliable DOA estimates when multiple
signals impinge to the array.

To overcome this problem, it is proposed in [13] to apply
spatial smoothing technique to the covariance matrix so that
its rank can be restored. Since spatial smoothing requires
a consecutive difference lag set so that every subarray has
similar manifold, we extract all the consecutive lag samples of
z and form a new vector z1. Denote [−lξ, lξ] as the consecutive
lag range in LP . Then, z1 can be expressed as

z1 = Ã1b + σ2
nĨ1, (12)

where Ã1 is identical to the manifold of a uniform linear
array (ULA) with 2lξ + 1 sensors located from −lξd to lξd
and Ĩ1 is a (2lξ + 1) × 1 vector of all zeros except a 1 at
the (lξ + 1)th position. We divide this virtual array into lξ + 1
overlapping subarrays, z1i, i = 1, . . . , lξ + 1, each with lξ + 1
elements, where the ith subarray has sensors located at (−i+
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1+k)d, with k = 0, 1, . . . , lξ denoting the index of the overlap
subarray used in the spatial smoothing.

Define
Ri = z1iz

H
1i. (13)

Taking the average of Ri over all i, we obtain

R′zz =
1

lξ + 1

lξ+1∑
i=1

Ri, (14)

which yields a full-rank covariance matrix so that the MUSIC
algorithm can be performed for DOA estimation directly. As a
result, lξ DOFs are achieved, which are roughly equal to half
of the available consecutive lags of the resulting coarray.

B. Compressive Sensing Approach

Alternatively, (11) can be solved using the CS approach
[23]. The desired result of b, whose elements are the first Q
entries of vector r, can be obtained from the solution to the
following constrained l0-norm minimization problem

r̂◦ = arg min
r◦
||r◦||0 s.t. ||z−B◦r◦||2 < ε, (15)

where ε is a user-specific bound, B◦ is a sensing matrix
consisting of the searching steering vectors and ĩ, whereas
r◦ is the sparse entries in these search grids to be determined.
The sensing matrix B◦ and the entry vector r◦ are defined over
a finite grid θg1 , ..., θ

g
G, where G � Q. The last entry of r◦

denotes the estimate of σ2
n, whereas the positions and values

of the non-zero entries in the other elements of r◦ represent
the estimated DOAs and the corresponding signal power.

This type of problems has been the objective of intensive
studies in the area of CS, and a number of effective numerical
computation methods have been developed [24], [25], [26],
[27], [28]. In [23], the batch Lasso method was used, but other
methods may also be used. The objective function of the Lasso
algorithm is defined as

r̂◦ = arg min
r◦

[
1

2
||z−B◦r◦||2 + λt||r◦||1

]
, (16)

where the l2 norm in the objective function denotes the
ordinary least-squares (OLS) cost function, and the l1 norm
involves the sparsity constraint. In addition, λt is a penalty
parameter which can be tuned to trade off the OLS error for the
number of nonzero entries (degree of sparsity) in the estimates
[24]. The above Lasso objective is convex in r◦, and can be
optimized using linear programming techniques [29].

IV. COPRIME ARRAY WITH COMPRESSED
INTER-ELEMENT SPACING

Now we present our main results that generalize coarray
structures in two operations, i.e., CACIS and CADiS. The
CACIS is presented in this section, whereas the CADiS is
examined in the following section.

We consider two subarrays with M and N sensors, where
M and N are coprime. Note that, in the sequel, the condition
that M < N is no longer assumed. Unlike the prototype co-
prime array, an integer compression factor p is introduced for
changing the inter-element spacing of one subarray. Assume
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Fig. 3. The CACIS configuration.

that M can be expressed as a product of two positive integers
p and M̆ , i.e.,

M = pM̆, (17)

for some p that takes a value between 2 and M . It is easy to
confirm that M̆ and N are also coprime since M and N do
not have common factors other than unity. As shown in Fig.
3, in the generalized coprime array, the M -element subarray
has an inter-element spacing of Nd, whereas the N -element
subarray has an inter-element space of M̆d = Md/p. As such,
the generalized coprime array can be considered that the inter-
element spacing of one constituting subarray is compressed by
an integer factor of p, thus comes the term of coprime array
with compressed inter-element spacing (CACIS). Note that all
arrays consist of the same M+N−1 physical antenna sensors
and their aperture is (M − 1)N , regardless the value of p. It
is shown that the variation of the coprime array configuration
used in [13] is a special case of the CACIS configuration by
choosing p = 2.

In this array configuration, the self-lags of the two subarrays
are given by the following set 1,

L̃s = {l̃s| l̃s = M̆n} ∪ {l̃s| l̃s = Nm}, (18)

and the corresponding mirrored positions L̃−s , whereas the
cross-lags between the two subarrays are given by

L̃c = {l̃c| l̃c = Nm− M̆n}, (19)

and the corresponding L̃−c , where 0 ≤ m ≤ M − 1 and 0 ≤
n ≤ N − 1.

To completely exploit the DOFs of the CACIS configu-
ration, we summarize the properties of L̃s and L̃c in the
following proposition.

Proposition 1: The following facts hold for the CACIS:
(a) There are MN distinct integers in set L̃c.
(b) L̃c contains all the contiguous integers in the range
−(N − 1) ≤ l̃c ≤MN − M̆(N − 1)− 1.

(c) The negative values form a subset of the flipped positive
values in set L̃c, i.e.,
{l̃c| l̃c < 0, l̃c ∈ L̃c} j {–l̃c| l̃c > 0, l̃c ∈ L̃c}.

(d) The self-lags form a subset of the cross-lags, i.e., (L̃−s ∪
L̃s) j (L̃−c ∪ L̃c).

(e) There are “holes” located at both positive range and
negative ranges of L̃c. The holes falling in the negative
range are located at −(aM̆ + bN), where a ≥ 0, b > 0
are integers.

The proof is provided in Appendix A.

1 (̃·) is used to emphasize variables corresponding to the CACIS structure.
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Based on the properties (c) and (d) of Proposition 1, the
entire lag set in the virtual array defined in (10) consists of
{l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {−l̃c| l̃c ≥ 0, l̃c ∈ L̃c}, thus resulting
in Proposition 2.

Proposition 2: The CACIS configuration defined in equation
(17) yields a virtual array such that:
(a) It contains 2MN − (M̆ + 1)(N − 1)− 1 unique lags of

virtual sensors;
(b) Among the unique lags, there are 2MN−2M̆(N−1)−1

consecutive integers within the range [−MN + M̆(N −
1) + 1, MN − M̆(N − 1)− 1].

The proof is provided in Appendix B. In Fig. 4, M = 2M̆
is considered as an illustrative example of above properties.
It is equivalent to the configuration proposed in [13]. In this
case, the virtual array consists of 3M̆N+M̆−N unique lags,
among which [−M̆N−M̆+1, M̆N+M̆−1] are consecutive.
Note that our result contains more consecutive lags and is more
precise than the result provided in [13], which is [−M̆N +
1, M̆N − 1]. The difference, which is based on property (b)
of Proposition 1, is clarified in Appendix A.
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Fig. 4. An example of CACIS configuration coarrays, where M̆=3, p=2 and
N=7. (a) The set L̃s and L̃c. (b) The full set L̃P .

According to Proposition 2, we can draw a conculsion
that, for a specific pair of M and N , smaller values of M̆
led to more unique and consecutive coarray lags. In other
words, both numbers increase with the compression factor p.
The minimum value that M̆ can take is 1. In this case, the
CACIS configuration becomes a nested array structure, which
provides the highest numbers of the unique and consecutive
virtual sensors. More detailed discussions about nested array
configurations will be given in Section VI.

V. COPRIME ARRAY WITH DISPLACED SUBARRAYS

Sharing the same property as MRA, the prototype coprime
array and the CACIS structure provide sparse configurations
in which the minimum inter-element spacing remains the
unit spacing, which is typically half wavelength, to avoid
the grating lobe problem. In addition to the aforementioned
challenges associated with half wavelength minimum spacing
in regards of antenna size and mutual coupling, there is a
high number of overlapping between the self- and cross-lags.
This is the case for both the prototype coprime array and
the CACIS structures and is consequence of the collocated
subarray placement. By introducing a proper displacement
between the two subarrays, the new coprime array structure
achieves a larger minimum inter-element spacing, a higher
number of unique lags, and a larger virtual array aperture.

As we will see, however, the number of consecutive lags is
reduced because the positive and negative lags are no longer
connected.

Consider two collinearly located uniform linear subarrays,
as depicted in Fig. 5, where one consists of N antennas and
the other with M − 1 antennas. As such, the total number of
the sensors is kept to M+N−1. We refer to this coprime array
structure as coprime array with displaced subarrays (CADiS).
Similar to the CACIS configuration, we assume M and N are
coprime. The N -element subarray has an inter-element spacing
of M̆d, and the (M−1)-element subarray has an inter-element
spacing of Nd, where, as indicated in (17), M = pM̆ . The
difference to the CASIS structure lies in the fact that these
two subarrays in the CADiS structure are placed collinearly
with the closest spacing between the two subarrays set to Ld,
where L ≥ min{M̆,N}. Note that M̆ > 1 is required to
guarantee the minimum inter-element spacing to be larger than
unit spacing, but the nested structure under this configuration,
i.e., M̆ = 1, will also be discussed later as a special case. The
total number of array sensors in the CADiS structure remains
M + N − 1, which is the same as the CACIS configuration
discussed earlier. Note that the minimum inter-element spacing
in the CADiS is min{M̆,N}d, as compared to d in the CACIS
structure. In addition, the total array aperture of the CADiS is
(MN +M̆N −M̆ −2N +L)d, which is much larger than the
(M − 1)Nd of the CACIS. In practical application, however,
a small value of displacement L should be chosen to avoid
false peaks.

0 1 0 1

Ld

1N − 2M −

Subarray1 Subarray2

NdMd
(

Fig. 5. The CADiS configuration.

For the CADiS configuration, the corresponding self-lags l̄s
and cross-lags l̄c are respectively given by2

L̄s = {l̄s| l̄s = Nm} ∪ {l̄s| l̄s = M̆n}, (20)

L̄c = {l̄c| l̄c = M̆(N − 1) +Nm− M̆n+ L}, (21)

and their corresponding mirrored positions L̄−s and L̄−c , re-
spectively, where 0 ≤ m ≤M − 2 and 0 ≤ n ≤ N − 1.

The following proposition reveals the properties of the
resulting virtual sensors of the CADiS configuration.

Proposition 3: Set L̄s and L̄c have the following properties
in the CADiS configuration:
(a) There are (M − 1)N distinct integers in set L̄c.
(b) L̄c contains all the contiguous integers in the range (M̆−

1)(N − 1) + L ≤ l̄c ≤MN −N − 1 + L.
(c) There are “holes” located at M̆(N−1)−(aM̆+bN)+L

in set L̄c, where a ≥ 0, b > 0 are integers.
(d) (L̄−s ∪ L̄s) " (L̄−c ∪ L̄c).
The proof is provided in Appendix C.

2 (̄·) is used to emphasize variables corresponding to the CADiS structure.
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In the CACIS configuration, the negative lags form a
subset of the flipped positive counterpart. Therefore, only non-
negative lags in L̃c are used. In the CADiS configuration,
however, the negative lags do not generally overlap with the
flipped positive lags because of the displacement between
two subarrays, necessitating the consideration of both positive
and negative lags. As such, the CADiS configuration enjoys
a higher number of unique lags than the CACIS because
of the utilization of negative lags. In addition, the self-lags
are less likely to coincide with the cross-lags in the CADiS
configuration. Consequently, the CADiS offers a larger virtual
array aperture and a higher number of virtual sensors. The role
of the displacement L is as follows. On one hand, it reduces the
overlaps between the self- and cross-lags. On the other hand,
because L̄c has holes located at M̆(N − 1)− (aM̆ + bN) +L
for integers a ≥ 0 and b > 0, the number of consecutive
lags can be extended by choosing an approximate value of L
so that some self-lags are aligned to the cross-lag holes. For
illustrative purpose, we consider the case of p = 2, M̆ = 3,
N = 7 and L = M̆ + N as an example. The corresponding
L̄s and L̄c are shown in Fig. 6. It is clear that some holes in
L̄c (12, 14, 15, 18 and 21) are aligned by elements of L̄s. The
following proposition describes the selection of the value of
L that maximizes the number of unique and consecutive lags.

Proposition 4: For the CADiS configuration,

(a) The maximum number of unique lags 2MN + 2M − 5
can be achieved with L > N(M − 2).

(b) L = M̆ +N is the choice that yields the largest number
of consecutive lags. In this case, there are 2MN+2M̆−
1 unique lags, among which the range [(M̆ − 1)(N −
1),MN + M̆ − 1] and its corresponding negative range
[−MN − M̆ + 1,−(M̆ − 1)(N − 1)] are respectively
consecutive.

The proof is provided in Appendix D. Based on property
(2) of Proposition 4, it is clear that the number of unique
lags increases as M̆ increases, whereas the number of the
consecutive lags decreases. Particularly, for the nested array
structure, i.e., M̆ = 1, the positive range of consecutive lags
is [0,MN ] and its corresponding negative range becomes
[−MN, 0], resulting in all unique lags to be consecutive.

For comparison, we enlist in Table I the coarray aperture,
the maximum number of unique and consecutive lags for

0 5 10 15 20 25 30 35 40 45 50 55

 

 

¯`s
¯`c Holes

Fig. 6. An example of CADiS configuration coarrays, where p = 2, M̆ = 3,
N = 7 and L = M̆ + N .

both proposed configurations. As the results show, for a given
coprime pair of M and N , the nested structure achieves the
maximum number of consecutive and unique lags when using
CACIS configurations. In other word, it offers the highest
number of DOFs for DOA estimation. As for CADiS, the
nested structure provides the highest number only for the
consecutive lags. The number of its unique lags, 2MN+1, on
the other hand, is less than that of the CADiS structure with a
large separation between the two subarrays. That is, the nested
CADiS provides the highest number of DOFs only when
MUSIC or other subspace based methods are used for DOA
estimation, but it becomes less effective when CS based DOA
estimation methods are applied. It is noted that, to estimate
DOAs of up to MN sources, the nested CADiS structure
requires only M + N − 1 sensors, which are much less than
the result of 2M +N − 1 sensors as exploited in [13].

VI. COMPARISON OF DIFFERENT NESTED STRUCTURES

The nested structure is referred to a structure consisting of
two uniform linear subarrays, where one subarray has a unit
inter-element spacing [9]. A nested array is usually designed
such that the virtual sensors in the resulting coarray are all
contiguous. The nested structure proposed in [9], as shown
in Fig. 7, consists of an inner N1-element subarray with a
unit spacing d and an outer N2-element subarray with spacing
(N1+1)d, resulting in 2N2(N1+1)−1 contiguous lags. Note
that the nested array concept does not require a coprimality
between N1 and N2. It is also important to note that, in
the extension of the generalized coprime array framework,
different nested array configurations can be defined, by setting
M̆ to be one to the CACIS and CADiS structures. These
different nested configurations yield different numbers of
DOFs. For comparison of the three nested array structures,
we consider the same number, K, of physical sensors, and
optimize the array configuration for each structure to maximize
the respective number of DOFs. Such optimal solutions are
summarized in Table II. It is clear that the structure in [9]

TABLE I
COMPARISON OF THE COARRAY APERTURE, NUMBER OF UNIQUE LAGS, AND NUMBER OF CONSECUTIVE LAGS

Coarray aperture Maximum number of unique lags Maximum number of consecutive lags

CACIS (M − 1)N 2MN − M̆(N − 1) −N 2MN − 2M̆(N − 1) − 1

CADiS (M̆ > 1) (N − 1)M̆ + (M − 2)N + L 2MN + 2M − 5 MN − (M̆ − 1)(N − 2) + 1

(displacement L) (arbitrary L) (L > N(M − 2)) (L = M̆ + N)

Nested CADiS (M̆ = 1) MN 2MN + 1 2MN + 1
(displacement L) (L = N + 1) (L = N + 1) (L = N + 1)
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offers a higher number of DOFs than the nested CACIS
structure, but less than the nested CADiS.

0 1 𝑁1 − 1 0 1 𝑁2 − 1 

𝑑 (𝑁1 + 1)𝑑 

Subarray 1 Subarray 2 

Fig. 7. The nested configuration proposed in [9].

For better illustrative purposes, we compare three different
optimized nested configurations with K = 8 physical sensors
in Fig. 8. Fig. 8(a) shows the optimized nested CACIS
configuration. One subarray is of N = 4 sensors with an
inter-element spacing of M̆d = d, whereas the other is of
M = 5 elements with an inter-element spacing of Nd = 4d.
In addition, the two subarrays share the first sensor at the
zeroth position and form a coarrys with 33 lag positions. The
nested CADiS structure is illustrated in Fig. 8(b). One 4-
element subarray has an inter-element spacing of M̆d = d, and
the other subarray has an inter-element spacing of Nd = 4d.
In addition, there is a displacement Ld = (M̆ + N)d = 5d
between the two subarrays. As a result, its coarray has 41
lag positions. Finally, the nested array configuration proposed
in [9] is depicted in Fig. 8(c), where the inner subarray has
N1 = 4 elements with spacing d and the outer subarray has
N2 = 4 elements with spacing (N1 + 1)d = 5d. In this case,
the coarray has 39 lag positions. As a result, the nested CADiS
structure achieves a higher number of DOFs.

VII. SIMULATION RESULTS

For illustrative purposes, we consider M = 6 and N = 7
with different values of the compression factor p of the two
configurations, i.e., CACIS and CADiS. L = M̆ + N are
considered for the CADiS configuration for the convenience
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Fig. 8. Three different optimized nested configurations and their coarrays
(K=8). (a) The nested CACIS. (b) The nested CADiS. (c) The nested
configuration proposed in [9].

of performance comparison between both MUSIC and CS
techniques. All configurations consist of M + N − 1 = 12
physical antenna sensors and the unit inter-element spacing is
d = λ/2.

A. Array Configurations

The virtual sensors corresponding to the CACIS and CADiS
structures are respectively shown in Fig. 9 and Fig. 10. Fig.
9(a) depicts the CACIS configuration example for p = 2,
where the coprime array form a virtual array with 59 unique
lags, among which 47 lags within [−23, 23] are consecutive.
Fig. 9(b) shows for the case of p = 3, and the resulting
virtual array has 65 unique lags, among which 59 lags within
[−29, 29] are consecutive. When p = M = 6, i.e., M̆ = 1,
as shown in Fig. 9(c), the coprime array becomes the nested
array structure with 71 unique lags, which are all consecutive.
It is clear that both numbers of the unique and consecutive
lags increase with p, and the nested array achieves the max-

TABLE II
OPTIMUM SOLUTION FOR DIFFERENT NESTED STRUCTURES THAT MAXIMIZES THE DOFS

The number of physical sensors Optimal values Maximum number of DOFs

K is even M =
K + 2

2
, N =

K

2
(M − 1)N =

K2

4
CACIS K = M + N − 1

K is odd M =
K + 1

2
, N =

K + 1

2
(M − 1)N =

K2 − 1

4

K is even M =
K + 2

2
, N =

K

2
MN =

K2 + 2K

4
CADiS K = M + N − 1

K is odd M =
K + 1

2
, N =

K + 1

2
MN =

K2 + 2K + 1

4

K is even N1 =
K

2
, N2 =

K

2
N2(N1 + 1) − 1 =

K2 + 2K − 4

4
Configuration in [9] K = N1 + N2

K is odd N1 =
K − 1

2
, N2 =

K + 1

2
N2(N1 + 1) − 1 =

K2 + 2K − 3

4
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−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

(a)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

(b)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

(c)

Fig. 9. CACIS configuration coarrays, for different compression factor p
(M=6 and N=7). (a) p = 2 and M̆ = 3. (b) p = 3 and M̆ = 2. (c) p = 6
and M̆ = 1.

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(a)

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(b)

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(c)

Fig. 10. CADiS configuration coarrays with displacement L = M̆ + N ,
corresponding the compression factor p (M=6 and N=7). (a) p = 2, M̆ = 3
and L = 10. (b) p = 3, M̆ = 2 and L = 9. (c) p = 6, M̆ = 1 and L = 8.

imum number for both. For the CADiS configuration with
L = M̆ +N , the case of p = 2 is presented in Fig. 10(a). In
this case, the entire virtual array has 89 unique lags, among
which lags within [−44,−12] and [12, 44] are respectively
consecutive. For p = 3, there are 87 distinct lags, resulting
consecutive lags in [−43,−6] and in [6, 43] as shown in Fig.
10(b). In Fig. 10(c), the nested CADiS with p = 6 and M̆ = 1
is considered as a special case. It is noted that all 85 lags in
the full symmetric set of [−42, 42] are consecutive.

B. MUSIC and CS Spectra

In Figs. 11 and 12, we present numerical examples to
demonstrate the number of achievable DOFs for DOA esti-
mation using the generalized coprime arrays. As the virtual
sensor lags are obtained from the estimated covariance matrix
based on the received data samples as in (5), the virtual
steering matrix is sensitive to the noise contamination. To
clearly demonstrate the number of achievable DOFs, therefore,
we use 2000 noise-free snapshots to obtain a relatively clean
covariance matrix. Q = 33 uncorrelated narrowband sources
are considered, which are uniformly distributed between −60◦

and 60◦. For the MUSIC algorithm which requires consecutive
lags, we respectively obtain 23, 29 and 35 DOFs of CACIS
configuration for p = 2, p = 3 and p = 6 as shown in
Figs. 11(a), 11(c) and 11(e). On the other hand, 17, 19
and 42 DOFs are obtained using the CADiS configuration
as shown in Figs. 11(b), 11(d) and 11(f). Note that only
the nested structures have a sufficient number of DOFs to
resolve all 33 impinging signals. This is verified in Fig. 11
in which only the cases of p = 6 resolve all the 33 signals
for both configurations, whereas not all sources are correctly

identified for the cases of p = 2 and p = 3. In addition, it
is evident that the “nested CADiS” has better performance
than “nested CACIS” due to the higher DOFs of the former.
When the CS technique is applied for DOA estimation, a
higher number of DOFs is achieved because all unique lags are
exploited. The results obtained from the Lasso are shown in
Fig. 12, where a grid interval of θgi = 0.25◦ and the penalty
parameter of λt = 0.85 are used. It is clearly shown that
only the nested structure can recover all 33 sources using
the CACIS configuration, whereas all these signals can be
detected for all the CADiS configurations examined in Fig.
12 due to their higher unique lags. In addition, the CS based
technique results in better estimated spectra, when comparing
the MUSIC spectra depicted in Fig. 11.

To compare the performance between the CACIS and
CADiS structures as well as between the MUSIC and CS
methods, we use the respective nested structures and compute
the results in the presence of noise with a 0 dB SNR for all
signals, and the number of snapshots is reduced to 500. In
this case, the perturbation in the covariance matrix becomes
higher due to noise and the limited number of samples, and
the resulting DOA estimation performance degrades. The DOA
estimation results are compared in Fig. 13 for Q = 33 sources,
which is smaller than the available DOFs for both array
configurations. It is evident that the nested CADiS outperforms
the nested CACIS, and the CS based method achieves a better
spatial spectrum estimation performance.
C. Root Mean Square Error versus SNR and Number of
Snapshots

We further compare the DOA estimation performance of dif-
ferent CACIS and CADiS configurations through Monte Carlo
simulations. The average root mean square error (RMSE) of
the estimated DOAs, expressed as

RMSE =

√√√√√ I∑
i=1

Q∑
q=1

(θ̂q(i)− θq)2

IQ
,

is used as the performance metric, where θ̂q(i) is the estimate
of θq for the ith Monte Carlo trial, i = 1, . . . , I . We use
I = 500 independent trials in all simulations.

To enable comparison, we consider Q = 16 narrowband
uncorrelated sources, which are lower than the available DOFs
for all cases with both MUSIC and CS techniques. Fig. 14
compares the RMSE performance as a function of the input
SNR, where 500 snapshots are used. In Fig. 15, we compare
the performance of different array configurations and DOA
techniques with respect to the number of snapshots, where
the input SNR is set to 0 dB. It is evident that the DOA
estimation performance is improved with the increase of the
input SNR and the number of snapshots. For the CACIS
structure, the performance of both MUSIC and CS approaches
improves as the compression factor p increases because of the
increased number of consecutive and unique lags. As a result,
the nested array structure achieves the best performance. For
CADiS, MUSIC-based DOA estimation for non-nested CADiS
structures suffers from significant performance degradation
because of the disconnected coarray lags. As such, the nested
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array is the preferred CADiS structure when the MUSIC
algorithm is used for DOA estimation. Furthermore, the nested
CADiS slightly outperforms the nested CACIS as a result of
higher number of consecutive lags. However, because it has the
fewest unique lags, the nested structure is least effective among
the three CADiS array structures when the CS technique is
exploited. As a conclusion, the CS-based method obtains better
performance than the MUSIC counterparts. In addition, when
the CS-based technique is used, the CADiS outperforms the
corresponding CACIS structures.

VIII. CONCLUSIONS

We have proposed the generalized coprime array concept in
two aspects: compression of the inter-element of spacing of
one constituting subarray, and the displacement of the two
subarrays. The first operation yields flexibility of trading-
off between unique lags and consecutive lags for effec-
tive direction-of-arrival (DOA) estimation based on different
algorithms, whereas the second operation further allows a
larger minimum inter-element spacing beyond the typical half-
wavelength requirement. The performance of the generalized
coarray structures was evaluated using their difference coarray
equivalence, and the analytical expressions of the coarray
aperture, the achievable number of unique lags, and the maxi-
mum number of consecutive lags were derived for quantitative
evaluation, comparison, and optimal design. The usefulness
of these results was demonstrated using examples applied for
DOA estimations.
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X. APPENDIX

A. Proof of Proposition 1
(a) We prove it using contradiction. Denote l̃c1 = Nm1 −

M̆n1 and l̃c2 = Nm2 − M̆n2 as two arbitrary lags in
set L̃c, where 0 ≤ m1 ≤ M − 1, 0 ≤ m2 ≤ M − 1,
0 ≤ n1 ≤ N − 1 and 0 ≤ n2 ≤ N − 1.
Had l̃c1 = l̃c2 been held, we would have

M̆

N
=
m1 −m2

n1 − n2
. (22)

Since n1 − n2 < N , (22) cannot be hold due to the
coprimality of M̆ and N . That is, l̃c1 and l̃c2 cannot be
equal. Thus, L̃c has MN distinct integers.

(b) Given an arbitrary integer l̃c in set L̃c satisfying

−(N − 1) ≤ l̃c ≤MN − M̆(N − 1)− 1, (23)

we need to prove that there exist integers m ∈ [0,M −1]
and n ∈ [0, N − 1] such that l̃c = Nm− M̆n holds. The
requirement n ∈ [0, N − 1] is equivalent to

0 ≤ M̆n ≤ M̆(N − 1). (24)

Because Nm = l̃c + M̆n, we obtain the following
relationship by combining (23) and (24),

−(N − 1) ≤ Nm ≤MN − 1. (25)
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Fig. 11. Spatial spectra estimated using MUSIC for both configurations
(Q=33, M = 6 and N = 7). (a) CACIS with p=2. (b) CADiS with p=2. (c)
CACIS with p=3. (d) CADiS with p=3. (e) CACIS with p=6. (f) CADiS with
p=6.
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Fig. 12. Spatial spectra estimated using Lasso for both configurations (Q=33,
M = 6 and N = 7). (a) CACIS with p=2. (b) CADiS with p=2. (c) CACIS
with p=3. (d) CADiS with p=3. (e) CACIS with p=6. (f) CADiS with p=6.

This result can be equivalently expressed as −N <
Nm < MN, which implies −1 < m < M . Because
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Fig. 13. Estimated spatial spectra (SNR=0 dB, 500 snapshots, Q=33). (a)
MUSIC with nested CACIS. (b) MUSIC with nested CADiS. (c) LASSO
with nested CACIS. (d) LASSO with nested CADiS.
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Fig. 14. RMSE versus SNR (500 snapshots, Q=16). (a) The CACIS
configurations. (b) The CADiS configurations.

m is an integer, this requirement is equivalent to

0 ≤ m ≤M − 1, (26)

which is satisfied in the underlying coprime array.
Remark: The configuration proposed in [13] becomes a
special case of CACIS configuration, as M = 2M̆ . As
a result, the set L̃c contains all the integers in the range
−(N − 1) ≤ l̃c ≤ M̆N + M̆ − 1. Apparently, our result
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Fig. 15. RMSE versus the number of snapshots (SNR=0 dB, Q=16). (a) The
CACIS configurations. (b) The CADiS configurations.

contains more consecutive lags and more precise than
the results provided in [13] using the same configuration.
In [13], they only count the consecutive l̃c in the range
[0, M̆N ].

(c) Given an arbitrary integer in set L̃c satisfying l̃c = Nm−
M̆n < 0, where m ∈ [0,M − 1] and n ∈ [0, N − 1], the
following relationship can be obtained

0 ≤ Nm < M̆n ≤ M̆(N − 1) < M̆N. (27)

Consequently, the set L̃c− , which consists of the negative
elements in L̃c, can be expressed as

L̃c− = {l̃c| l̃c = Nm− M̆n,Nm < M̆n}, (28)

where 0 ≤ m ≤ M̆ − 1 and 0 < n ≤ N − 1.
Considering an arbitrary integer l̃c1 = Nm1 − M̆n1 in
set L̃c− , where Nm1 < M̆n1, m1 ∈ [0, M̆ − 1] and
n1 ∈ (0, N − 1], then we need to prove that there always
exists l̃c2 in set L̃c to satisfy

l̃c2 = Nm2 − M̆n2 = −l̃c1 = M̆n1 −Nm1, (29)

where integers m2 ∈ [0,M − 1] and n2 ∈ [0, N − 1].
Then the relationship

M̆

N
=
m1 +m2

n1 + n2
, (30)

must be valid. Since n1 + n2 ∈ (0, 2N) and M̆ and N
are coprime, it is indicated that M̆/N cannot be reduced
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to a ratio of smaller integers. As a result, the requirement
is equivalent to

m2 = M̆ −m1,

n2 = N − n1, (31)

It is clear that there always exists m2 ∈ [1, M̆ ] j [0,M−
1] and n2 ∈ [0, N − 1] to satisfy (31).

(d) Because the two subarrays share the first sensor at the
zeroth position, the self-lags can be taken as cross-lags
between every sensor of one subarray and the first sensor
of the other subarray. Thus, (L̃−s ∪ L̃s) j (L̃−c ∪ L̃c).

(e) We prove the proposition by contradiction. Based on (28),
we suppose Nm− M̆n = −(aM̆ + bN) holds for some
integers m ∈ (0, M̆) and n ∈ (0, N), where a ≥ 0 and
b > 0 are integers, then relationship

M̆

N
=
m+ b

n− a
(32)

must be valid. From 0 < n < N and a ≥ 0, we find
n− a < N . As such, due to the coprimality between M̆
and N , we cannot find an integer m that satisfies (32).
Therefore, Nm − M̆n 6= −(aM̆ + bN), i.e., there are
holes at −(aM̆ + bN) in set L̃c.

B. Proof of Proposition 2
(a) In line with the property (d) of Proposition 1, the full

symmetric set of lags which defined in (10) can be
expressed as

L̃P = L̃−c ∪ L̃c. (33)

Because L̃c can be denoted as

L̃c = {l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {l̃c| l̃c < 0, l̃c ∈ L̃c}, (34)

(33) is equivalent to

L̃P = {±l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {±l̃c| l̃c < 0, l̃c ∈ L̃c}.
(35)

Based on the property (c) of Proposition 1, the negative
values form a subset of the flipped positive values in set
L̃c. It is indicated that {l̃c| l̃c < 0, l̃c ∈ L̃c} j {–l̃c|
l̃c > 0, l̃c ∈ L̃c} and {−l̃c| l̃c < 0, l̃c ∈ L̃c} j {l̃c|
l̃c > 0, l̃c ∈ L̃c}. Finally, the set L̃P becomes

L̃P = {l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {−l̃c| l̃c ≥ 0, l̃c ∈ L̃c},
(36)

Denote η̃c and η̃c− as the number of distinct lags in set
L̃c and L̃c− , respectively. As a result of (36), the number
of distinct lags in set L̃P can be expressed as

η̃P = 2(η̃c − η̃c−)− 1, (37)

where η̃c − η̃c− represents the number of non-negative
lags in set L̃c.
Due to the property (a) of Proposition 1, there are MN
distinct integers in set L̃c. It is easy to confirm that

η̃c = MN. (38)

η̃P can be obtained easily if given η̃c− . Next, the deriva-
tion of η̃c− is given as follows.

According to the definition of L̃c− defined in (28),

L̃c− = {l̃c| l̃c = Nm− M̆n,Nm < M̆n},

where 0 ≤ m ≤ M̆ − 1 and 0 < n ≤ N − 1.
For illustration, the geometry distribution of m and n,
is shown in Fig. 16. As such, the boundary and interior
of the shadow part R1 represents all elements in L̃c− .
Since M̆ and N are coprime, there is no integer point on
the diagonal line between OB. In addition, the shadow
part R1 is symmetric with R2. As a consequence, for
obtaining the number of elements in set L̃c− , we can first
calculate the number of integer points in the rectangle
within [0, M̆ ] and [1, N − 1] and then get the half of
that number.
There are (M̆ + 1) and (N − 1) integers in the range [0,
M̆ ] and [1, N − 1], respectively, thus, we obtain

η̃c− =
(M̆ + 1)(N − 1)

2
, (39)

Finally, substituting (38) and (39) into (37),

η̃P = 2MN − (M̆ + 1)(N − 1)− 1, (40)

is derived analytically.

O 

B 

N N-1 1 n 

m 

𝑀  

R2 

R1 

Fig. 16. The geometry of m and n.

(b) On the basis of property (b) of Proposition 1, L̃c contains
all the contiguous integers in the range −(N −1) ≤ l̃c ≤
MN−M̆(N−1)−1. Then, it is easy to confirm that L̃P
contains 2MN − 2M̆(N − 1)− 1 consecutive integers in
the range [−MN+M̆(N−1)+1, MN−M̆(N−1)−1]
in terms of (36).

C. Proof of Proposition 3
(a) The proof can be extended from the proof of property

(a) of Proposition 1, i.e., two arbitrary lags l̄c1 and l̄c2 in
set L̄c cannot be equal. Thus, L̄c has (M − 1)N distinct
integers.

(b) The set L̄c can be rewritten as

L̄c = {l̄c| l̄c = M̆(N − 1) + z + L}, (41)

where 0 ≤ m ≤M −2 and 0 ≤ n ≤ N −1, for different
values of z that falls into the following set,

Z = {z| z = Nm−M̆n, 0 ≤ m ≤M−2, 0 ≤ n ≤ N−1}.
(42)
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Extended from the proof of the property (b) of Propo-
sition 1, we can conclude that z is consecutive in the
range

−(N − 1) ≤ z ≤MN − M̆(N − 1)−N − 1. (43)

Combining (41) and (43), L̄c contains all the contiguous
integers in the range

(M̆ − 1)(N − 1) + L ≤ l̄c ≤MN −N − 1 + L. (44)

(c) Based on the the proof of property (e) of Proposition 1,
it is easy to confirm that there are some holes located
at −(aM̆ + bN) in the negative range of set Z, where
a > 0, b > 0 are integers. Then we can draw a conclusion
that there are holes located at M̆(N−1)−(aM̆+bN)+L
in set L̄c by combining (41) and (42).

(d) Due to the displacement, the two subarray do not share
the first sensor any more. Considering the elements in set
L̄s, 0 6∈ L̄c because the minimum value in L̄c is L, which
is larger than 1. Consequently, (L̄−s ∪ L̄s) " (L̄−c ∪ L̄c).

D. Proof of Proposition 4
(a) Denote η̄s and η̄c as the number of the distinct lags in

sets L̄s and L̄c, respectively, and η̄o as the number of
overlaps between the L̄s and L̄c. Based on the definition
of L̄P and L̄s in (21), all lags in these sets are positive.
As a consequence of this, the number of full symmetric
set of lags in the virtual array can be expressed as

η̄P = 2(η̄s + η̄c − η̄o)− 1. (45)

Because of the coprimality of M̆ and N , M̆n 6= Nm for
n ∈ (0, N − 1] and m ∈ (0,M − 2]. As such,

η̄s = M +N − 2. (46)

In line with the property (a) of Proposition 1, we can
obtain

η̄c = (M − 1)N. (47)

Substituting (46) and (47) into (45), the relationship is
equivalent to

η̄P = 2(MN +M − 2− η̄o)− 1. (48)

When L > N(M − 2), the maximum value in L̄s is
less than the minimum value in L̄c. It signifies that there
is no overlap between l̄s and l̄c, i.e., η̄o = 0. Then the
maximum number of unique lags, which is 2MN+2M−
5, can be achieved.

(b) Due to the coprimality of M̆ and N , any integer value
for displacement, L, can be realized by an appropriate
choice of integers c1 and c2, i.e., [30]

L = c1M̆ + c2N. (49)

Based on the property (c) of the Proposition 3, there are
holes located at M̆(N − 1) − (aM̆ + bN) + L in set
L̄c, where with a and b are integers and a ∈ [0,∞),
b ∈ (0,∞). If some holes are aligned by the elements in
L̄s, the following relationship

M̆(N − 1)− (aM̆ + bN) + L = Nm, (50)

or
M̆(N − 1)− (aM̆ + bN) + L = M̆n (51)

must be valid. Substituting (49) into (50) and (51), the
requirement is equivalent to

M̆N + (c1 − a− 1)M̆ + (c2 − b)N = Nm,

or

M̆N + (c1 − a− 1)M̆ + (c2 − b)N = M̆n,

i.e.,
c1 = a+ 1 or c2 = b. (52)

Then the requirement further becomes

c1 = 1 or c2 = 1, (53)

so that the first hole (a = 0 and b = 1), which is outside
the consecutive range of L̄c, can be aligned.
When c1 = 1, i.e., L = M̆+c2N , the holes, where a = 0
and arbitrary b > 0,

M̆(N − 1)− bN + L

=M̆(N − 1)− bN + M̆ + c2N

=(M̆ − b+ c2)N, (54)

are aligned.
When c2 = 1, i.e., L = c1M̆ + N , the holes, where
arbitrary a > 0 and b = 1,

M̆(N − 1)− (aM̆ +N) + L

=M̆(N − 1)− (aM̆ +N) + c1M̆ +N

=(N − 1− a+ c1)M̆,

are aligned.
Thus, c1 = c2 = 1, i.e., L = M̆ + N , is the optimal
choice since all above holes can be aligned. In this case,
the holes, where a = 0 and b = 1, a = 0 and b = 2,
a = 1 and b = 1, are aligned. As a result, the first hole
outside the consecutive range of L̄c becomes M̆(N−1)−
(M̆ + 2N) +L where a = 1 and b = 2. Then, the set L̄c
contains all the consecutive integers in the range

M̆(N−1)−(M̆+2N−1)+L ≤ l̄c ≤MN−N−1+L,
(55)

where L = M̆ +N .
It is simplified as,

(M̆ − 1)(N − 1) ≤ l̄c ≤MN + M̆ − 1. (56)

Next, we give the proof of the number of the unique lags
when L = M̆ +N . The following relationship

M̆(N − 1) + (Nm1 − M̆n1) + M̆ +N = Nm2, (57)

or

M̆(N − 1) + (Nm1 − M̆n1) + M̆ +N = M̆n2, (58)

must be valid if L̄s overlaps with L̄c. It is equivalent to

M̆ +m1 + 1− n1
M̆

N
= m2, (59)
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or
N − n1 + (m1 + 1)

N

M̆
= n2. (60)

In (59), n1 must be equal to 0 because m2 is an integer,
yielding

M̆ +m1 + 1 = m2. (61)

It is clear to confirm m2 ∈ [0,M − M̆ − 3] since m1 ∈
[0,M −2]. This suggests that the number of the overlaps
in (59) is M−M̆−2. Similarly, we can show the number
of overlaps in (60) is 0. Hence,

η̄o = M − M̆ − 2. (62)

Substituting (62) into (48), we can obtain the number of
unique lags η̄P to be

η̄P = 2MN + 2M̆ − 1. (63)

REFERENCES

[1] Y. D. Zhang, S. Qin, and M. G. Amin, “DOA estimation
exploiting coprime arrays with sparse sensor spacing,” in Proc.
IEEE ICASSP, Florence, Italy, pp. 2267–2271, May 2014.

[2] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime
array configurations,” in Proc. IEEE Sensor Array and Multi-
channel Signal Processing Workshop, A Coruña, Spain, June
2014.

[3] R. O. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propagat., vol. 34, no. 3, pp.
276–280, March 1986.

[4] R. Roy and T. Kailath, “ESPRIT – Estimation of signal param-
eters via rotation invariance techniques,” IEEE Trans. Acoust.,
Speech, Signal Proc., vol. 17, no. 7, pp. 984–995, July 1989.

[5] S. Pillai, Array Signal Processing, Springer, 1989.
[6] R. T. Hoctor and S. A. Kassam, “The unifying role of the co-

array in aperture synthesis for coherent and incoherent imaging,”
Proc. IEEE, vol. 78, no. 4, pp. 735–752, April 1990.

[7] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans.
Antennas Propagat., vol. 16, no. 2, pp. 172–175, March 1968.

[8] G. S. Bloom and S. W. Golomb, “Application of numbered
undirected graphs,” Proc. IEEE, vol. 65, no. 4, pp. 562–570,
April 1977.

[9] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach
to array processing with enhanced degrees of freedom,” IEEE
Trans. Signal Proc., vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[10] I. J. Gupta and A. A. Ksienski, “Effect of mutual coupling
on the performance of adaptive arrays,” IEEE Trans. Antennas
Propagat., vol. AP-31, no. 5, Sept. 1983.

[11] Y. Zhang, K. Hirasawa, and K. Fujimoto, “Signal bandwidth
consideration of mutual coupling effects on adaptive array
performance,” IEEE Trans. Antennas Propagat., vol. AP-35, no.
3, pp. 337–339, March 1987.

[12] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime
samplers and arrays,” IEEE Trans. Signal Proc., vol. 59, no. 2,
pp. 573-586, Feb. 2011.

[13] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MU-
SIC algorithm,” in Proc. IEEE Digital Signal Proc. Workshop
and IEEE Signal Proc. Education Workshop, Sedona, AZ, Jan.
2011.

[14] W. C. Barott and P. G. Steffes, “Grating lobe reduction in
aperiodic linear arrays of physically large antennas,” IEEE
Antennas and Wireless Propagation Letters, vol. 8, pp. 406-408,
2009.

[15] Y. Rahmat-Samii, “Reflector antennas,” Chapter 15, in J. L.
Volakis (Ed.), Antenna Engineering Handbook, Fourth Edition.
New York, NY: McGraw-Hill, 2007.

[16] Q. Shen, W. Liu, W. Cui, S. W, Y. D. Zhang, and M. G.
Amin, “Group sparsity based wideband DOA estimation for co-
prime arrays,” in Proc. IEEE China Summit and International
Conference on Signal and Information Processing, Xi’an, China,
July 2014.

[17] Y. D. Zhang, M. G. Amin, F. Ahmad, and B. Himed, “DOA
estimation using a sparse uniform linear array with two CW
signals of co-prime frequencies,” in Proc. IEEE Int. Workshop
on Comp. Adv. in Multi-Sensor Adaptive Proc., Saint Martin,
pp. 404–407, Dec. 2013.

[18] S. Qin, Y. D. Zhang, and M. G. Amin, “DOA estimation
exploiting coprime frequencies,” in Proc. SPIE Wireless Sensing,
Localization, and Processing Conference, vol. 9103, Baltimore,
MD, May 2014.

[19] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for
direction-of-arrival estimation of coherent signals,” IEEE Trans.
Acoust., Speech Signal Process., vol. 33, no. 4, pp. 806-811,
Aug. 1985.

[20] B. Friedlander and A. J. Weiss,“Direction finding using spa-
tial smoothing with interpolated arrays,” IEEE Trans. Aerosp.,
Electron. Syst., vol. 28, pp. 574-587, Apr. 1992.

[21] S. U. Pillai and B. H. Kwon, “Forward/bachward spatial
smoothing techniques for coherent signal identification,” IEEE
Trans. Acoust., Speech Signal Process., vol. 37, no. 1, pp. 8-15,
Jan. 1989.

[22] P. Pal and P. P. Vaidyanathan, “On application of LASSO for
sparse support recovery with imperfect correlation awareness,”
in Proc. Asilomar Conf. Signals, Systems and Computers, Pacific
Grove, CA, Nov. 2012.

[23] Y. D. Zhang, M. G. Amin, and B. Himed, “Sparsity-based
DOA estimation using co-prime arrays,” in Proc. IEEE ICASSP,
Vancouver, Canada, pp. 3967–3971, May 2013.

[24] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” J. Royal Statistical Society, Series B, vol. 58, no. 1, pp.
267–288, 1996.

[25] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 33-61, 1998.

[26] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans.
Info. Theory, vol. 53, no. 12, pp. 4655-4666, 2007.

[27] S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sam-
pling,” IEEE Trans. Signal Proc., vol. 57, no. 1, pp. 92-106, Jan.
2009.

[28] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Com-
plex multitask Bayesian compressive sensing,” in Proc. IEEE
ICASSP, Florence, Italy, pp. 3375-3379, May 2014.

[29] D. P. Bertsekas, Nonlinear Programming, Second Edition.
Athena Scientific, 1999.

[30] P. P. Vaidyanathan and P. Pal, “Sparse sensing with coprime ar-
rays,” in Proc. Asilomar Conf. Signals, Systems and Computers,
Pacific Grove, CA, Nov. 2010.

Si Qin received the B.S. and M.S. degrees in Electri-
cal Engineering from Nanjing University of Science
and Technology, Nanjing, China, in 2010 and 2013,
respectively. Currently, he is a Research Assistant at
the Center for Advanced Communications, Villanova
University, Villanova, PA, working toward his Ph.D.
degree in Electrical Engineering. His research in-
terests include direction-of-arrival estimation, sparse
array and signal processing, and radar signal pro-
cessing.



14

Yimin D. Zhang (SM’01) received his Ph.D. degree
from the University of Tsukuba, Tsukuba, Japan,
in 1988. He joined the faculty of the Department
of Radio Engineering, Southeast University, Nan-
jing, China, in 1988. He served as a Director and
Technical Manager at the Oriental Science Labo-
ratory, Yokohama, Japan, from 1989 to 1995, and
a Senior Technical Manager at the Communication
Laboratory Japan, Kawasaki, Japan, from 1995 to
1997. He was a Visiting Researcher at the ATR
Adaptive Communications Research Laboratories,

Kyoto, Japan, from 1997 to 1998. Since 1998, he has been with the Vil-
lanova University, Villanova, PA, where he is currently a Research Professor
with the Center for Advanced Communications, and is the Director of the
Wireless Communications and Positioning Laboratory and the Director of
the Radio Frequency Identification (RFID) Laboratory. His general research
interests lie in the areas of statistical signal and array processing applied for
radar, communications, and navigation, including compressive sensing, convex
optimization, time-frequency analysis, MIMO system, radar imaging, target
localization and tracking, wireless networks, and jammer suppression. He has
published more than 200 journal articles and peer-reviewed conference papers
and 11 book chapters.

Dr. Zhang serves on the Editorial Board of the Signal Processing journal.
He was an Associate Editor for the IEEE Transactions on Signal Processing
during 2010–2014, an Associate Editor for the IEEE Signal Processing Letters
during 2006–2010, and an Associate Editor for the Journal of the Franklin
Institute during 2007–2013. He is a member of the IEEE Signal Processing
Society’s Sensor Array and Multichannel Technical Committee. He is a
Technical Committee Co-chair of the IEEE Benjamin Franklin Symposium
on Microwave and Antenna Sub-systems in 2014 and 2015.

Moeness G. Amin (F’01) received his Ph.D. degree
in Electrical Engineering from University of Col-
orado in 1984. He has been on the Faculty of the
Department of Electrical and Computer Engineering
at Villanova University since 1985. In 2002, he
became the Director of the Center for Advanced
Communications, College of Engineering. He is a
Fellow of the Institute of Electrical and Electronics
Engineers (IEEE), 2001; Fellow of the International
Society of Optical Engineering, 2007; and a Fel-
low of the Institute of Engineering and Technology

(IET), 2010. Dr. Amin is a Recipient of the IEEE Third Millennium Medal,
2000; Recipient of the 2014 IEEE Signal Processing Society Technical
Achievement Award; Recipient of the 2009 Individual Technical Achievement
Award from the European Association of Signal Processing; Recipient of
the 2010 NATO Scientific Achievement Award; Recipient of the Chief of
Naval Research Challenge Award, 2010; Recipient of Villanova University
Outstanding Faculty Research Award, 1997; and the Recipient of the IEEE
Philadelphia Section Award, 1997. He was a Distinguished Lecturer of the
IEEE Signal Processing Society, 2003-2004, and is currently the Chair of
the Electrical Cluster of the Franklin Institute Committee on Science and
the Arts. Dr. Amin has over 700 journal and conference publications in
the areas of Wireless Communications, Time-Frequency Analysis, Sensor
Array Processing, Waveform Design and Diversity, Interference Cancellation
in Broadband Communication Platforms, satellite Navigations, Target Local-
ization and Tracking, Direction Finding, Channel Diversity and Equalization,
Ultrasound Imaging and Radar Signal Processing. He co-authored 18 book
chapters. He is the Editor of the two books Through the Wall Radar Imaging
and Compressive Sensing for Urban Radar, published by CRC Press in 2011
and 2014, respectively.

Dr. Amin currently serves on the Editorial Board of the IEEE Signal
Processing Magazine. He also serves on the Editorial Board of the Signal
Processing journal. He was a Plenary Speaker at ISSPIT-2003, ICASSP-2010,
ACES-2013, IET-2013, EUSIPCO-2013, STATOS-2013, CAMSAP-2013 and
RADAR-2014. Dr. Amin was the Special Session Co-Chair of the 2008
IEEE International Conference on Acoustics, Speech, and Signal Processing;
the Technical Program Chair of the 2nd IEEE International Symposium
on Signal Processing and Information Technology, 2002; the General and
Organization Chair of both the IEEE Workshop on Statistical Signal and
Array Processing, 2000 and the IEEE International Symposium on Time-
Frequency and Time-Scale Analysis, 1994. He was an Associate Editor of the
IEEE Transactions on Signal Processing during 1996–1998; a member of the
IEEE Signal Processing Society Technical Committee on Signal Processing for
Communications during 1998–2002; a Member of the IEEE Signal Processing
Society Technical Committee on Statistical Signal and Array Processing
during 1995–1997. Dr. Amin was the Guest Editor of the Journal of Franklin
Institute September-2008 Special Issue on Advances in Indoor Radar Imaging;
a Guest Editor of the IEEE Transactions on Geoscience and Remote Sensing
May-2009 Special Issue on Remote Sensing of Building Interior; a Guest
Editor of the IET Signal Processing December-2009 Special Issue on Time-
Frequency Approach to Radar Detection, Imaging, and Classification; a Guest
Editor of the IEEE Signal Processing Magazine November-2013 and July-
2014 Special Issues on Time-frequency Analysis and Applications and Recent
Advances in Synthetic Aperture Radar Imaging; and a Guest Editor of the
EURASIP Journal on Advances in Signal Processing Special Issue on Sparse
Sensing in Radar and Sonar Signal Processing.


