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A modification of standard compressive sensing algorithms for sparse signal reconstruc-
tion in the presence of impulse noise is proposed. The robust solution is based on the
L-estimate statistics which is used to provide appropriate initial conditions that lead to
improved performance and efficient convergence of the reconstruction algorithms.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

High variance impulse noise causes large errors when
using standard sparse signal reconstruction algorithms [1–5].
The effect of impulsive noise can be mitigated by applying
robust approaches. For instance, the myriad projections and
nonlinear constraints based on the Lorentzian norm have
been employed within the Basis Pursuit (BP) algorithm,
producing improved results over the standard BP and Ortho-
gonal Matching Pursuit (OMP) [8]. However, an efficient
optimization of the Lorentzian norm requires complex para-
meter adjustments and exhaustive search procedures. Also, as
stated in [8], the myriad projections used for signal measure-
ments are computationally demanding compared to linear
projections, since an optimization problem is solved for each
projection. In [9], the ℓ0 regularized least absolute deviation
regression model is combined with weighted median regres-
sion to obtain an approximate solution. This method also
requires many computations, with the parameter selection
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(e.g., number of iterations and decaying speed) based on trial
and error. In this paper, we propose a simple and effective
CS-approach that combines the basic forms of reconstruction
algorithms such as BP and OMP with the L-statistics. The
latter is incorporated in the initialization phase of the BP and
OMP. Different from [8], no assumption of sparsity in the time
domain is invoked. However, the signal is sparse in the
transform domain, as it is often case in practice. In this paper,
we also assume that the amplitudes of the impulse noise
samples are not sufficiently large to be filtered out by myriad
projections.
2. Theoretical background

We observe a one-dimensional signal f of length N,
which can be represented as a linear combination of the
orthonormal basis vectors as [1]

f ðnÞ ¼ ∑
N−1

k ¼ 0
xkψkðnÞ or f ¼ Ψx; ð1Þ

where Ψ represents an orthonormal basis matrix, while x
represents a vector of transform domain coefficients. If the
number of non-zero coefficients in x is S, then we may say
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that f is S-sparse in the domain defined by Ψ. A set of M
random measurements are made through linear projec-
tions y¼Φf where Φ (M�N) is the measurement matrix.
Accordingly, we may write

y¼ΦΨx¼ Ax ð2Þ

where A is the thinned sensing matrix. The reconstructed
signal is obtained as a solution of M linear equations with
N unknowns. This system is under-determined and can
have infinitely many solutions. Thus, optimization algo-
rithms based on ℓ0-norm minimization are used to search
for the sparsest solution. In practice, the near-optimal
solutions based on the ℓ1-norm minimization are com-
monly used:

minjj ~xjjℓ1 subject to y¼ Aex ð3Þ

The above problem can be solved, for example, by the
commonly used simplex and interior point methods (e.g.,
primal–dual interior point method) [5], or by using greedy
algorithms such as OMP that will provide an approximate
solution.
3. Motivation

Assume that the desired noise-free signal is sparse in a
certain transform domain. The impulse noise, if transformed
through a linear combination of the time-domain samples,
will no longer be impulsive in nature and will infringe over
all samples. This causes the sparse signal domain to be
populated, rather than sparse, when considering the impulse
noise. For example, consider a sinusoidal signal at the
frequency k0. The discrete Fourier transform of f(n) corre-
sponds to the delta pulse at the frequency k¼k0:

f ðnÞ ¼ Cej2πk0n=N⥄
FT
FðkÞ ¼ CNδðk−k0Þ ð4Þ

where C denotes the signal amplitude, while N is the number
of samples. For the signal f(n) we can state that it is sparse in
the strict sense. On the other hand, for the noise represented
by an impulse at the instant n¼n0, the Fourier transform is
given in the form

νðnÞ ¼ Iδðn−n0Þ⥄
FT
VðkÞ ¼ Iej2πkn0=N ð5Þ

where I denotes the impulse amplitude. Hence, it is obvious
that each impulse in the time domain is transformed into a
sinusoid in the frequency domain, and as such, when added
to f(n), compromises the signal sparseness property. Hence,
generally, the data f νðnÞ ¼ f ðnÞ þ νðnÞ is non-sparse in both
time and frequency domains. A special case is when I
assumes a small value. In this case, f νðnÞ is nearly sparse,
since VðkÞ will be negligible compared to FðkÞ. Signal
sparseness is likely to be lost when dealing with noise of
multiple impulses. Hence, there is a need to subdue the noise
contributions at the onset. That is, the initial condition of the
iterative method adopted in the solutions of Eq. (3) should be
impulse-free to ensure algorithm convergence to reasonable
solutions.
4. L-estimate forms of signal reconstruction methods

In the case of impulse noise, the L-estimate form [10–
12] of the initial Fourier transform domain vector x0 is
used in the optimization to provide efficient reconstruc-
tion. Hence, in the sequel, we propose the L-estimate
primal–dual interior point method as well as the
L-estimate version of OMP.

4.1. L-estimate primal–dual interior point method

In the case when x, A and y are real, the optimization
problem given by (3) can be recast as the linear program:

min
u

∑u subject to f 1 ¼ x−u≤0; f 2 ¼−x−u≤0; Ax¼ y; λ1 f 1 ¼ 0; λ2f 2 ¼ 0;

ð6Þ
with initial condition,

xðkÞ ¼ x0ðkÞ ¼ Lfyg ¼ ∑
M−1

i ¼ 0
aiYsðiÞ;

Ys ¼ sortfyðmÞe−j2πmk=M ; m¼ 0;…;M−1g ð7Þ
where ∑M−1

i ¼ 0ai ¼ 1, frequency range is k¼0,…,N−1, while L
is the L-estimation operator. The coefficients ai should be
defined to provide impulse-free representation. Note that
the sequence of elements Ys is sorted into non-decreasing
order. In order to provide noise free x0, we should omit
2αðM−2Þ of the highest amplitudes, while the mean is
calculated over the rest of the values. Hence, the coeffi-
cients ai are defined as follows:

ai ¼
1

Mð1−2αÞþ4α for i∈½0;Mð1−2αÞ þ 4α�
0 elsewhere;

(
ð8Þ

where M is even. The variable α takes values within the
range [0, 1/2]. The proper value of α should be chosen
according to the expected amount of noisy samples. Now,
the modified procedure can be summarized as follows:
1.
 Determine x0¼L{y} for the known measurement vector
y and set x¼x0 for the first iteration.
2.
 Set u¼u0, λ1 and λ2 (which can be set using x0,
e.g.: 0:95jx0j þ 0:10maxfjx0jg; λ1¼−1/(x0−u0), λ2¼
−1/(−x0−u0)).
3.
 Minimization problem can be observed using Lagran-
gian:

Λðx;u; v; λ1; λ1Þ ¼ f ðuÞ þ vðAx−yÞ þ λ1f 1 þ λ2f 2 ð9Þ
where v¼−Aðλ1−λ2Þ.
4.
 Solve a system of equations obtained by finding the
first derivatives of Λ in terms of x, u, v, λ1 and λ2, to
compute Newton steps, Δx, Δu and Δv.
5.
 Update the values of variables for the next iteration.
The step length is calculated using backtracking line
search.

4.2. L-estimate OMP

OMP is a greedy signal reconstruction algorithm that
in each iteration searches for the maximum correlation
between the measurements and the transform matrix
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[6,7]. Thus, through the iterations it selects a certain
number of transform matrix columns, where this number
is defined by the given number of iterations. The least
square optimization is performed afterwards in the sub-
space spanned by all previously picked columns. In the
case of impulse noise, the L-estimate form of measure-
ments vector can be obtained by calculating firstly the
L-estimate of the initial transform domain vector x¼x0, as
in the previously described case. Hence, the L-estimate
OMP algorithms can be described as follows:

Step 1: Determine x0(k)¼L{y}, (k¼0,…,N−1), for the
known measurement vector y,

x0ðkÞ ¼ Lfyg ¼∑M−1
i ¼ 0aiYsðiÞ; Ys ¼ sortfyðmÞe−j2πmk=M ;

m¼ 0; :::;M−1g
while ϑ¼ argfsortðyðmÞe−j2πmk=M ; m¼ 0;…;M−1Þg

ð10Þ

Step 2: Set yL¼Θx0 and Θ¼Ψ (ϑ), Ψ is the Fourier
transform matrix.
Step 3: Set the initial residual r0¼yL and Ω0 ¼∅.
Step 4: Find the maximum correlation column:

ωi ¼ argmax
j

j〈ri−1;Θj〉j ð11Þ
Fig. 1. Time domain representations: (a) original clean signal, (b) original
noisy signal, (c) reconstruction using standard primal–dual algorithm,
and (d) reconstruction using L-estimate primal–dual algorithm.

Fig. 2. Fourier domain representation: (a) clean signal, (b) noisy signal,
(c) reconstructed FT using standard primal–dual algorithm, and
(d) reconstructed FT using L-estimate primal–dual algorithm.
Step 5: Update the set: Ωi ¼Ωi−1∪ωi.
Step 6: Solve the least square optimization problem:

xi ¼ argmin
x

jjri−1−Ωixi−1jj22 ð12Þ

Step 7: Update the residual: ri ¼ ri−1−Ωixi−1.
Step 8: Update i¼ i+1 and go to Step 3 if ioK.

5. Simulation results
Example 1. Consider a signal which is the sum of five
sinusoids corrupted by additive impulse noise:

f ðnÞ ¼∑5
i ¼ 1sinð2πkðiÞn=NÞ þ ξðnÞ

where k¼ ½25; 45; 80; 100; 176�, t¼[0,1,…,N−1], N¼1000.
The number of observations used for the signal reconstruc-
tions is M¼300, i.e., 30% of the total number of samples. In
this example, the parameter α¼0.07 is used, which means
that 16% of time samples are assumed to be corrupted by
noisy pulses. The original non-noisy signal and its Fourier
transform (FT) are shown in Figs. 1 and 2a, respectively,
while the noisy signal and its FT are shown in Figs. 1 and
2b. The desired signal reconstructed by the standard BP
primal–dual algorithm is shown in Fig. 1c, whereas its FT is
shown in Fig. 2c. We can observe that the noise is spread



Fig. 4. Fourier transform of (a) original clean signal, (b) standard OMP
reconstructed signal, and (c) recovered signal using L-estimate OMP.
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across the frequency spectrum. Finally, the respective
results obtained using the proposed algorithm are shown
in Figs. 1 and 2d.

Example 2. In this example, we will briefly illustrate the
performance of the L-estimate OMP. Similarly as in the
previous example, let us now consider a set of 10 sinusoids,
defined by the set of frequencies k¼ ½32; 80; 176;
267; 300; 350; 400; 560; 600; 680�, and unit amplitudes.
The observations used for the signal reconstructions include
only 28% of the total number of signal samples. Again,
parameter α¼0.07 is used (16% of measurements are assumed
to be corrupted by strong noisy pulses). The original noise free
and noisy signals are shown in Fig. 3a and b, respectively.
Time domain representation of reconstructed signal using the
L-estimate OMP algorithm is shown in Fig. 3c.

The original signal Fourier transform is shown in
Fig. 4a, the Fourier transform obtained by applying stan-
dard OMP to the noisy signal is given in Fig. 4b, while the
Fourier transform obtained by applying the proposed
L-estimate OMP is shown in Fig. 4c. It is obvious that the
standard OMP algorithm (Fig. 4b) fails due to the strong
impulse noise, producing false components at the frequen-
cies where the components do not appear in original
signal. On the other hand, the proposed approach succeeds
to recover all signal components, producing sometimes
just negligible difference in amplitudes.

Finally, we may conclude that the proposed algorithm
is shown not to be sensitive to the choice of M. Namely, it
is only important that the number of available samples after
the L-estimation (Mð1−2αÞ þ 4α) is sufficient for CS algorithm
convergence. Generally, the procedure is efficient as long as
Mð1−2αÞ þ 4α is above 20% of the total original signal length.
Fig. 3. Time domain representations: (a) original clean signal, (b) original
noisy signal, and (c) reconstruction using L-estimate OMP algorithm.
Excessive number of missing samples, for example more than
85% of values, tends to significantly compromise performance.
This topic has been intensively studied in [13], including the
influence of the number of missing samples to the ability of CS
reconstruction.
6. Conclusion

Sparse signal reconstruction methods based on the stan-
dard optimization algorithms (BP and OMP) combined with
L-statistics are proposed. These methods retain all of the
advantages of standard methods, while converging toward
the correct signal recovery when dealing with additive
impulse noise. This is achieved without introducing compu-
tationally complex constraints and minimization norms.
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