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ABSTRACT

A modified robust two-dimensional compressive segsalgorithm for reconstruction of sparse time-frency

representation (TFR) is proposed. The ambiguitgtion domain is assumed to be the domain of obtiensa The two-

dimensional Fourier bases are used to linearlytaelae observations to the sparse TFR, in lieuhef Wigner

distribution. We assume that a set of availablepasnin the ambiguity domain is heavily corruptgdam impulsive

type of noise. Consequently, the problem of spdiSR reconstruction cannot be tackled using standandpressive
sensing optimization algorithms. We introduce a-tlimensional L-statistics based modification ink@ ttransform

domain representation. It provides suitable init@hditions that will produce efficient convergermfehe reconstruction
algorithm. This approach applies sorting and wénghbperations to discard an expected amount opksrcorrupted
by noise. The remaining samples serve as obsengatised in sparse reconstruction of the time-frequesignal

representation. The efficiency of the proposed aggh is demonstrated on numerical examples thapdsenboth cases
of monocomponent and multicomponent signals.
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1. INTRODUCTION

Compressive sensing (CS) has been used in varippkcations with one-dimensional and two-dimenslona
signal$’™  as they appear in antenna arrays, indoor and @#Ring, communications, remote sensing, biomedical
and multimedia applications, etc. One of the maiquirements imposed by the CS theory is signalsgigatt means
that the signals have concise representations \elpressed in a proper basis. Namely, a signal eaacourately
recovered if it is sparse in its own domain orame of the transform domains such as DFT, DWT, Di@Tgeneral, a
signal which isK sparse in a specific domain can be completelyasharized byM measurementdM>K), although the
total number of samples required by the Shanon-Mygheorem isN>M . The full signal reconstruction can be
achieved through the convex optimization that sgessity as an important a priori informatfbf..

In most applications, the observed signals arecatyi sparse in one-domain and non-sparse in o@leserve that
in the case of non-stationary signals, the timefemcy domain is used for signal representdffdHs Most of these
signals are characterized by specific instantanéegsiency laws such as those corresponding to Boggnatures of
animate or inanimate targ€ts?. The power localization property in joint-domag@presentations renders these signals
sparse not only in the time-frequency, but alsthiz ambiguity domain. However, attenuating or reimgythe cross-
terms necessitates discarding ambiguity domaintpdirat are far from the origin. The selectionaffobservations in
the ambiguity domain near the origin enables thenédation of under-determined linear model. In thése, sparse
signal reconstruction techniques would provide higbolution time-frequency signal representatitvereby allowing
accurate IF estimatiotg*¢,

In this paper, we deal with ambiguity domain obaéions affected by significant amount of impulshase. Here,
it is important to emphasize that the problem fdatian is different from the concept introducedpirevious papé&'..
Therein, the noisy signal in time domain is proedsasing robust statistics, assuring that aftersvdlheg ambiguity
function is noise free. In other words, the meanamts taken from ambiguity function are not affddbg noisy pulses.
The underlying problem is accurate reconstructibrsmarse time-frequency representation when impulsise is
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encountered in the ambiguity domain (as domainbskovations). The standard CS reconstruction teciest® ™! will
not be able to provide desirable results. Therefoie propose a robust method to map the noisy aribigomain
observations to the non-noisy sparse time-frequemegyesentation. The measurements around the oitigithe
ambiguity domain are used ify minimization to yield the sparse cross-term fréeRTIn order to deal with impulse

noise, we apply robust estimation approach diretctiyhe ambiguity domain rather than the time-damathich has
been usually the case. One efficient robust apprasdased on the concept of L-estimation argimmed filter
form™™. It can be suitable not only in the presence gilitee noise, but also in the presence of mixed Sansnd
impulse noise. We show that the proposed appro@gtifisantly eliminates the influence of noisy pes providing
better time-frequency representation compared ¢ostndard approach. Simulation examples includsynsignals
(both monocomponent and multicomponent) with défgrinstantaneous frequency laws.

The paper is organized as follows. The ambiguityndim and time-frequency domain representations teen
reviewed in Section Il. The compressed sensindhéntime-frequency analysis is given in Section iigluding the
proposed modification for the case of impulse noiBge simulation results are illustrated in Sectlvi while the
concluding remarks are given in Section V.

2. AMBIGUITY FUNCTION AND TIME-FREQUENCY SIGNAL ANALYSIS

Time-frequency analysis has been widely used tbwlitha signals characterized by time-varying spaictonterit®
5] Very often it has been employed to estimate tiymags instantaneous frequency law, bringing intaot
information about the physical processes in reglliegtions, such as communications, speech andoaamdalysis,
radar§®2%, biomedicingl], multimedi&®?®!. One of the commonly used time-frequency distidns is the Wigner
distribution defined by:

WD(tw) = | x(t+§)>€(t—%)él” ¢ . 1)

The Wigner distribution provides an ideal concatitn for linear frequency modulated signals. Hogrefor signals
with nonlinear instantaneous frequency, it produiceer-interferences caused by the third and higivder phase
derivatives. The more serious drawback appearhdrcase of multicomponent signals, when the Wigtgribution
produces undesired components called cross-terimsy Teside between signal's auto-terms, at thetipnsof their
arithmetic mean, making the Wigner distributionfieetive in most of the practical applications.drder to deal with
cross-terms, ambiguity domain based time-frequatisributions are widely studf*®. The ambiguity function is
defined as,

N T+, T, _i
AT, 0) = [ x(t+=)X (t-=)e'® dt. 2
(1,6) _L ( 2) ( 2) (2)
The ambiguity function is a counterpart of the Wagulistribution as they are related by the two-digienal Fourier
transform,

WD(t,w) = of T A7,0)e@ ) o .

The main advantage of using the ambiguity domaivaeised on the fact that the auto-terms are loeatedd near the
origin. Thus, the cross-terms can be suppressesigoificantly attenuated, by using low-pass filtgrfunction realized
by using different types of kernefr,6),

The class of time frequency distributions basetherfiltered ambiguity function is obtained as:

CD(t,w) =F,{ AT,0)c(r.0)} , (4)



and it is referred to as the Cohen class of digtidims. A number of distributions belonging to tlsiass have been
introduced to deal with multicomponent signals, s they differ only by the kernel shape. Howeitas important
to note that reduced interference kernels negativdluence the auto-terms concentration. In otwerds, there is a
trade-off between cross-terms reduction and autogeoncentratidff’.

3. COMPRESSIVE SENSING IN TIME-FREQUENCY ANALYSIS
3.1 Thecompressive sensing concept

Compressive sensing is generally related to thegs® of simultaneous sensing and compression palsighat
relies on linear dimensionality reduction. The silgof interestx is not sampled according to the Shanon-Nyquist
sampling theorem that requires a certain numbeN afamples. Instead, we acquire an arbitrary seMolinear
measurements, whekd<<N. This linear set of measurements can be acqusig) @ certairCSmatrix ® of sizeMxN.
The corresponding incomplete set of samples isddle measurement vector and can be defined as:

y=®Xx. )

The CS matrix® includes independent projections that allow theovery of full data setN, using just few
observationsM. Namely, sincéVi<N holds, the sensing matriix is rank-deficient, which means that for a cergnal

Xp ORN, an infinite number of signals might have the same measurements:

Yp =®PX, =P X%.
Hence, the CS matrix should be defined such tretitbasurementy; =®x, y; =®x provide unique identification of
different signalsg andx. One of the major requirements that should besfgadi in CS is signal sparsity, meaning that a
signal has concise representation in its own oeréam transform domain. Such a signal can be amliroximated by
using a small number of non-zero coefficients, $Lidable basis is used.
Consider the signal representation in a certaiisk{dzs}iNl for RN. The signalxORN can be represented as:

N
X=2 4
i=1

If the basis vectorgy, are columns of the matri¥ of sizeNxN, and the transform coefficient§ are written in the
vector formJ, then the signal can be expressed as follows:

x=Wsg. (6)
If the number of non-zero coefficients this K<« N , then we may say thatis K-sparse in domail. TakingM linear
measurements of the signalusing the CS matrix, we obtain,

y=0Ox=YoJ. @)
An additional constraint, which ensures accuragealireconstruction from its measurements, is thetsensing matrix
@ and the fixed basis matri¥ represent a low coherence pair. Thus, the mé&irig usually a random matrix, since it
exhibits a very low coherence with a basis matrix.



3.2 CSproblem formulation in the ambiguity domain

Improved time-frequency signal power localizati@as be achieved by using the compressed sensimgagbpand
exploiting sparsity in the time-frequency donf&in For most of the signals appearing in real apfiica, the time-
frequency representation contains a small numbeonfzero values. The sparsity assumption is defagefollows: the
NxN time-frequency representation of signal withcomponents (wher&k <N ) should have at mod€-N non-zero
points. Due to the ability to reduce cross-termgfdnusing on the region near the origin in the agulty-domain, the
latter becomes the preferred observation-domaindiasussed earlier. We, therefore, formulate the gE&blem
accordingly. In that sense, the observation vdstobtained as a set of measurements from the aitp@pmain:

y=(A7,9 (7.0, (8)

where, in order to avoid the cross-terms, the nreasents are taken from specific ambiguity reg@rround the
origin. Therefore, in the CS problem, the obseoratiselection region should provide similar lowsppsrformance as
the kernel function. Furthermore, the transform dommatrix is obtained as a two-dimensional Four@nsform,

Y=F,, 9

which, together with the random CS sensing mabixonstitutes a low-coherence pair. The combinettixia referred
to as the representation dictionary and will beaded asy=pW. Since the measurements are taken from the predkfi
ambiguity domain regiorf?, the matrixY is actually obtained as,

Y=0W=F, (Q). (10)

Here, it is important to emphasize that a suitagieof ambiguity domain sampl€xs can be obtained by applying an
appropriate ambiguity domain mask, formed as alsanah around the origin. The resulting transformmein vector
consists of the coefficients from the sparse tinegfiency representation:

=Wt &) | (4, ty), @@, wy)} (11)
Due to the sparsity in the time-frequency domaiashof the coefficient in? should be zero-valued.

3.3 Robust statisticstailored to CSreconstruction in ambiguity domain

The CS sparse solution should be obtained by splttie system defined by (7), where the optimizasgatem
variables are defined by (8), (10) and (11). Thistam is under-determined and can have infiniteinynsolutions.
According to the theory, the localized distributiatith the smallest possible number of non-zero ficiehts can be
obtained as a solution of, - norm minimization of the time-frequency distritmrt. However, in practice we may use

the near-optimal solutions based on thenorm minimization:
min”g’”l subject toy=Y3. (12)
-1

This problem is known as Basis Pursuit, and it loarsolved by commonly used simplex and interionpoiethods
(e.g., primal-dual interior point method). Sometloé commonly used algorithms for sparse signalnsitoction are
also the Orthogonal matching pursuit and Block agtinal matching pursuit algorithm. However, thehpemn appears
in the presence of noise, especially when the Uyidgrambiguity measurements are corrupted by isg@Wlind of
noise. Namely, the linear measurements are seveleyaded, with original information masked by é&amgoise
amplitudes spread across the measurements. Theptarsamples will cause standard reconstructigoridhms to fail
in their attempts to recover an accurate sparse-tieguency representation. One solution couldobéefine a robust
measurement procedure which is not based on lipegections in order to avoid the impulse noiseolr case, we



have a predefined measurements defined by the aimpi@pmain mask around the origin. Thus, we prepasolution
which includes robust statistics into CS reconsiouctechnique in the ambiguity domain. Namely, seek to provide a
noise free version of the initial transform domagttor &, or, in other words, robust initial transformatitanthe time-

frequency domain. This is achieved using the Listtas approach. The L-estimators are definedresali combinations
of order statistics, and can be used even for tixedmoise type. The L-statistics approach involsesing out data
samples taking care of the corresponding complkeguiencies (in the exponents), and then removingititest values.
The minimization problem can be finally formulatas follows:

TFR=arg n;irﬂz?"l . Y9-y= q(e,r)DQ (13)

M (1-2a )+ 4a

with initial transform: &, =0 {A({,0)}= z|=1

AL (7,6), (14)

AL(7,6) = sor{ AT, 6) g i2mkiM éerzﬂlM}'
where ¢ £ )Y1Q anccard @ }= M

Note that the sorting operation is performed in -deoreasing order. In order to provide noise frgewe omit
2a (M —-2)of the highest elements iAL(7,d) , while the mean is calculated over the rest ofwlees. Therefore, the

proposed modified approach can be observed as-fitatilstics based, -norm minimization.

4. SIMULATION RESULTS

In order to illustrate the advantages of the predasethod, let us observe a set of noisy measutsnrethe ambiguity
domain. The monocomponent sine frequency modukitgwl is considered:
x(t) = ol (-Bsin(1.8 -1 /2y 1012

The ambiguity function is calculated for the comsaltl signals and the ambiguity domain measurenagattaken from
the predefined ambiguity domain regior@ O{7,—AN;: 7o+ BN, 8,— BN, 8,— N} , where (1y,6)is the
coordinate of the central point in the ambiguityr@in. The parametd} is set to 0.15, and it is actually defined such
that 30% of samples along each coordinate aredadun the ambiguity mask. The total size of amitygfunction is
N:xN,, and in the exampld$;=N,=60 is used. The assumption is that 10% of the nrea®ents are corrupted by strong
noisy peaks. Consequently, the direct CS basedepiane-frequency reconstruction cannot providisfsatory results.

In order to remove noisy peaks, we need to dissafiicient amount of samples using L-statisticsetsure elimination
of most of the noisy pulses. In most cases, wedisecard more samples than those corrupted by tlse.ndence, we
observe the case when the parametg@rhich defines the number of discarded sampleshasen as:

M (1-2a)+ 40 = 0.859M
In essence, we discard 15% of the highest valu#®imitial transform domain vectat, in (14).
The non-noisy ambiguity function (correspondindttth data set) and the corresponding standard Widistribution of
monocomponent signa(t) are shown in Figure 1.a and b, respectively. Mo, due to the phase non-stationarity, we
need to deal even with the strong inner-interfegsrtbat appear in the Wigner distribution. The Itesef standard CS
reconstruction from noisy measurements are giveRigure 1.c, showing that it is not suitable in thesence of
impulse noise. The sparse time-frequency repreenfaobtained using the proposed L-statistics thagg-norm

minimization are given in Figure 1.d.
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Fig 1. Signalx(t): a) Standard ambiguity domain representatiorrigireal signal; b) standard Wigner distributionasfginal signal;
¢) Sparse time-frequency reconstruction results filee set of noisy measurements in the ambiguityado, b) sparse time-frequency
reconstruction results obtained using the proposetthod

A more challenging situation arises when dealinthvai non-stationary multicomponent signal, wheneaddition to
noise, strong cross-terms between each componémst gen obscure the individual component powerritistion.
Consider the signal that consists of a chirp andsine frequency modulated component:

y(t) = e} 16/5008(3/ 27t Goostr ty 1271), & i@ e+ 2ot _
The non-noisy ambiguity function (corresponding ftdl data set) and the Wigner distribution of catesied
multicomponent signal are shown in Figure 2.a andebpectively. The cross-terms are evident. la &hiample, we

assume that the noise is concentrated as a butshlie narrow time range in the time-frequencyndm. The results
of standard(,-based reconstruction of the noisy data are shoviigure 2.c, where the cross-terms are elimindiat,

due to the nature of the additive noise, there jsesesistent burst component. The proposed L-stistased/(;
minimization again provides both cross-terms néiise results, as shown in Figure 2.d.
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Fig 2. Signalx(t): a) Standard ambiguity domain representationrigfireal signal; b) standard Wigner distributionafginal signal;
c) Sparse time-frequency reconstruction from theo$enoisy measurements in the ambiguity domainsggrse time-frequency
reconstruction results obtained using the proposetthod

5. CONCLUSION

This paper dealt with CS and time-frequency sigeplesentation (TFSR). The considered nonstatiosigmnals were
sparse in the time-frequency domain. The CS algoritvas applied to the ambiguity domain observationgrovide
high resolution time-frequency representation &létdor instantaneous frequency estimation. We $eduon the case
where the observations are corrupted by impulsgendVe used a two-dimensional L-statistics to sottthe ambiguity
function samples and select those of high signaldige ratio. The L-statistics provided a noise fsparse TFR. The
efficiency of the proposed approach was demonstrdig numerical examples that comprised both cades
monocomponent and multicomponent signals.

ACKNOWLEDGMENT

The work by M. Amin was supported by ARO and ARldancontract W911NF-11-1-0536.

REFERENCES

[1] Fornasier, M., and Rauhut, H., [Compressive sehsif@hapter in Part 2 of thélandbook of Mathematical
Methods in ImagingO. Scherzer Ed.), Springer (2011).

[2] Yoon, Y., and Amin, M., "Compressed sensing techeidpr high-resolution radar imaging," Proc. SP6E68,
6968A-69681A-10 (2008).



[3] Ahmad, F., and Amin, M., "Through-the-wall humantmno indication using sparsity-driven change deteqt
IEEE Transactions on Geoscience and Remote Sensi(®), 881-890 (2013).

[4] Gurbuz, A.C., McClellan, J. H., and Scott, Jr. W, FA Compressive Sensing Data Acquisition and lmgg
Method for Stepped Frequency GPRs, " IEEE Transs@ence and Remote Sensing, 57(7), 2640-2650 Y2009

[5] Donoho, D. L., “Compressed sensing," IEEE Tranfa.Ifheory, 52(4), 1289-1306 (2006)

[6] Tropp, J., and Needell, D., “CoSaMP: Iterative sigrecovery from incomplete and inaccurate sampleppl.
Comput. Harmon. Anal., pages 30 (2008).

[7]1 Chen, S. S., Donoho, D. L., and Saunders, M. Atptific decomposition by Basis Pursuit," SIAM J. S&bmput.,
20(1), 33-61 (1999).

[8] Boashash, B., [Time-Frequency Signal Analysis amdcéssing: A Comprehensive Reference], Amsterdam:
Elsevier (2003).

[9] Orovi, 1., Orlandé, M., Stankow, S., Uskokouw, Z., “A Virtual Instrument for Time-Frequency Anals of
Signals with Highly Non-Stationary Instantaneousedtrency,” IEEE Transactions on Instrumentation and
Measurements$60(3), 791 — 803 (2011)

[10] Stankovic, S., Orovic, I., loana, C.: "Effects oauhy Integral Formula Discretization on the Piecisof IF
Estimation: Unified Approach to Complex-lag Distitton and its L-Form," IEEE Signal Processing Lesttd 6(4),
307-310 (2009).

[11] Stankové, S., Zarg, N., Orovi, I., loana, C.: "General form of time-frequencystdbution with complex-lag
argument,” Electronics Letters, 44(11), 699-70108)0

[12] Setlur, P., Amin, M. G. and Thayaparan, T., “Micieppler signal estimation for vibrating and ratatitargets,”
Proc. of the Eighth International Symposium on 8ldg?Processing and its Applications, Sydney, Austyg2005)

[13] Setlur, P., Amin, M. G. and Ahmad, F., “Analysisneicro-Doppler signals using linear FM basis deposition,”
Proceedings of the SPIE Symposium on Defense anatiBe Orlando, FL (2006).

[14]Chen, V. C., “Analysis of radar micro-Doppler situm@ with time-frequency transform,” Proc. of theEBE
Workshop on Statistical Signal and Array Proces$8§AP), 463-466 (2000).

[15]Flandrin, P., Borgnat, P., "Time-Frequency Energdstiibutions Meet Compressed Sensing, " IEEE T retisas
on Signal Processing, 8(6), 2974-2982 (2010)

[16] Stankové, S., Orow, I., Amin, M., “Compressed Sensing Based RobushéFFrequency Representation for
Signals in Heavy-Tailed Noise,” ISSPA 2012, 605-62012)

[17]Huber, P.J., [Robust Statistics], John Wiley&Sams | 1981

[18]Orovi¢, I., Stankow, S., Thayaparan, T., Stankovic, LJ., “Multiwinddsvmethod for Instantaneous Frequency
Estimation and its Application in Radar Signal Arsa$,” IET Signal Processing, 4(4), 363-370 (2010).

[19]Chen, V. “Joint time-frequency analysis for radignal and imaging,” IEEE International Geoscienod &emote
Sensing Symposium, IGARSS 2007, 5166-5169 (2007)

[20]Orovi¢, I., Stankou, S., Amin, M., “A New Approach for Classificatimf Human Gait Based on Time-Frequency
Feature Representation§ignal Processingd1(6), 1448-1456 (2011).

[21]Sejdk, E., and Jiang, J., “Time-Frequency Analysis e Heart Sounds,” iProc. of 2002 ECEGRSOntario,
Canada, 5-9 (2002)

[22] Petranow, D., Stankow, S., Stankow, LJ., “Special purpose hardware for time frequeanglysis,” Electronics
Letters, 33(6), 464-466 (1997)

[23]Mobasseri, B.G., “Digital Watermarking in joint texfrequency domain,” IEEE Int. Conf. on Image Pssieg,
Rochester, NY, 111-481 - 111-484 (2002).

[24] Stankow, S., Orow, 1., Zark, N., “An Application of Multidimensional Time-Fregncy Analysis as a base for the
Unified Watermarking Approach,” IEEE Transactiomslmage Processing, 1(3), 736-745 (2010)

[25] Stankow¢, S., Orow, |., SejdE, E., “Multimedia Signals and Systems,” Springed1(2)

[26]Choi, H., Williams, W., "Improved Time-Frequencypresentation of multicomponent signals using expbak
kernels,"IEEE Transactions on Signal Processing, 73(6), 86R2{1989)

[27]Baraniuk, R. G., and Jones, D. L., "Signal-Depehd&me-Frequency Analysis Using a Radially Gaus${iamel,"
Signal Processing, 32(3), 263-284 (1993)

[28] Stankove, LJ., "Auto-Terms Representation by the Reducedrierence Distributions; A procedure for Kernel
Design, " IEEE Transactions on Signal Processid(t}¥ 1557-1563 (1996)

[29]Amin, M.G., and Williams, W. J., "High Spectral R&gion Time-Frequency Distribution kernels," |IEEE
Transactions on Signal Processing, 46(10), 2796+-28998)



