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Abstract—The paper considers sparse reconstruction of
Doppler and microDoppler time-frequency (TF) signatures of
radar returns of moving targets from limited or incomplete
data. The typically employed sinusoidal dictionary, relating the
windowed compressed measurements to the signal local frequency
contents, induces competing requirements on the window size. In
this paper, we use chirp dictionary for each window position
to relax this adverse window length-sparsity interlocking. It is
shown that local frequency reconstruction using chirp atoms
better represents the approximate piece-wise chirp behavior of
most Doppler TF signatures. This enables the utilization of longer
windows for accurate time-frequency representations. Simulation
examples are provided demonstrating the superior performance
of local chirp dictionary over its sinusoidal counterpart.

I. INTRODUCTION

Nonstationary signals arise in a broad class of active
sensing modalities, including sonar, radar, and ultrasound.
They are the preferred type of smart jamming and also char-
acterize many passive sensing problems, such as speech and
electromyographic recordings [1]- [4]. In particular, nonsta-
tionarity underlines Doppler and micro Doppler signals which
represent radar returns from moving target [5]-[8]. Time-
frequency signal representations (TFSRs) reveal the signal
local structure which changes with time. In so doing, they
enable separations of nonstationary signals that are mixed in
both time and frequency domains, where traditional windowing
and filtering based approaches fail to capture or distinguish
between individual signal components. TFSRs are commonly
obtained using linear basis signal decomposition [9], [10],
and quadratic time-frequency distributions (QTFDs), generally
referred to as Cohen’s class [11], [12]. The latter have their
roots in the nonparametric Wigner-Ville distribution (WVD).

QTFDs are defined by two-dimensional (2D) kernels which
convolve the WVD for interference reduction. The reduced-
interference distribution (RID) kernels act on preserving the
true signal power terms, referred to as auto-terms, and elimi-
nating, or at least considerably attenuating, the undesired cross-
terms. Cross-terms represent false power concentrations and
are generated from the data bilinear lag products underlying
QTFDs. It has been analytically shown that missing and
randomly sampled nonstationary signals give rise to artifacts
in both the time-frequency domain and the ambiguity domain
[13]- [15]. These artifacts clutter the signal components and
hide pertinent signal structure, including the instantaneous

frequencies. Efforts and attempts to use traditional RID kernels
to reduce the type of clutter induced by missing samples
along with mitigations of signal cross-terms have proven both
unsuccessful and ineffective.

In compressive sensing, a sparse representation of a signal
is projected onto a much lower dimensional measurement
space. This leads, in general, to decreasing the data-acquisition
requirements from time, logistic, and hardware complexity
perspectives. It is then possible to record a small number of
linear measurements of a signal and then reconstruct the com-
plete set of all samples. The required number of observations
is slightly more than the signal sparsity level but much less
than the signal dimension. Although vastly applied in many
applications, little considerations have been given to CS and
sparse reconstructions of nonstationary signals.

Owing to their instantaneous narrowband characteristics
and power concentrations, the signatures of a large class of
nonstationary signals occupy small regions in the TF domain.
This property casts these signals as sparse in the joint-
variable representations and has recently invited sparse signal
reconstruction and compressive sensing (CS) techniques to
play an important and fundamental role in TF signal analysis
and processing, especially with compressed observations [16]-
[18]. This role would depend on the signal local sparsity
level. For most single and multicomponent FM signals, local
reconstruction of TF signatures from few random observations
is deemed to outperform global signal reconstructions, which
deals with a much broader signal bandwidth. i.e., weaker
sparsity.

One of the most straightforward sparse reconstructions of
local signal frequency characteristics is achieved by applying
a sliding window, reminiscent of the STFT [17], [19]. Using
partial Fourier basis, one can proceed to apply Greedy algo-
rithms or convex optimization techniques to find the sparsest
frequency contents that describe the observations within the
time window. This approach involves sinusoidal dictionary that
relates the windowed compressed observations to their local
sparse frequencies. However, in many situations, the nonsta-
tionary signal frequency law is more properly approximated
by piece-wise second order polynomials than fixed frequency
sinusoids. In this case, a chirp dictionary, in lieu of sinusoidal
dictionary, is better suited for sparse reconstruction problems
dealing with FM signals. Further, compared to reconstruction



techniques using parameterized atoms [20], which also directly
operate on the data, the proposed chirp-based local frequency
sparse technique does not assume any specific signal structure
and, as such, is able to maintain its desirable performance
for a wide class of nonstationary signals. Chirp dictionary
have another two important attractions, namely, 1) They have
been shown to satisfy the restricted isometry property (RIP)
for perfect reconstruction similar to Gaussian and Bernoulli
random dictionaries, 2) They enjoy fast implementation and
lead to rapid signal recovery [21].

Section II of this paper formulates the problem and presents
the sinusoidal and chirp dictionaries. It delineates the dif-
ference in the two dictionaries and shows how to construct
the chirp dictionary for the underlying time-frequency rep-
resentation problem. This section also proposes an average
to be performed at each time-frequency point to deal with
variations in chirp parameters constructed from overlapping
windows. Section III focuses on the RIP associated with
the chirp dictionary and provides the lower bound on the
number of observations for exact recovery. Section IV includes
simulations results. The conclusions are given in Section V.

II. PROBLEM FORMULATIONS

Consider an arbitrary continuous-time non-stationary signal
xc(t), which consists of K components:

xc(t) =

K∑
k=1

Ak(t) exp (jφk(t) + vc(t)) , 0 ≤ t < T (1)

where Ak(t) and φk(t) are the time- varying positive amplitude
and phase of the kth component, vc(t) is an additive white
noise, and T is the total observation interval. It is assumed
that the phase time- variations are much faster than those of
amplitudes. The continuous-time instantaneous frequency (IF)
of the kth component is defined as:

Fk(t) =
1

2π

dφk(t)

dt
(2)

We assume that it is known a priori that the absolute IFs do not
exceed Fmax i.e. |Fk(t)| ≤ Fmax. We also assume that the IFs
do not vary abruptly but rather smoothly over time, which is
a reasonable assumption in many applications including radar.

To avoid aliasing, the continuous-time signal is first passed
through a low-pass filter to remove out-of-band noise, and then
sampled with a rate Fs ≥ 2Fmax. The discrete-time signal is:

x(n) =

K∑
k=1

Ak(nTs) exp(jφknTs) + v(n),

n = 0, 2, ..., N − 1

(3)

where Ts = 1/Fs is the sampling period, x(n) and v(n) are the
discrete-time version of xc(t) and vc(t), and N = bT/Tsc. The
cut-off frequency of the low-pass filter is chosen to be equal to
Fs so that the samples of v(n) can be assumed uncorrelated.

The proposed approach builds on the local approximation
of each signal component as a chirp. That is, by dividing
the observation time interval into (possibly overlapping) time

windows of a judiciously chosen duration, Tw, the discrete-
time signal over each window is approximated by:

xm(n) ≈
K∑

k=1

Ck,m exp

{
j2π

[
αk,m

n2

2F 2
s

+ βk,m
n

Fs

]}
+ vm(n) 0 ≤ n < Nw − 1

(4)

where m is the window index, Ck,m, αk,m and βk,m are the
complex amplitude, the chirp rate, and the initial frequency
of the kth component/chirp over the mth window, xm(n) =
x(mL + n) and vm(n) = v(mL + n), with L being the
shift between two consecutive windows in terms of number
of samples, and Nw = bTw/Tsc.

Since |Fk(n)| ≤ Fmax, the initial frequency |β| ≤ Fmax,
and frequency change in a period of Tw cannot exceed Fmax,
thus chirp rate α has range value:

α ∈ [−FmaxFs/Nw, FmaxFs/Nw] (5)

The parameter space of interest is (see Figure 1):

Ω = {(α, β) such that
|α| ≤, FmaxFs/Nw, |β| ≤ Fmax and |αTw + β| ≤ Fmax}

(6)

The discrete dictionary, to be used in CS, is designed by

Fig. 1. 2D value space Ω of α, β.

uniformly sampling the 2D parameter space Ω. Let I denote
the total number of chirp rate values in the discrete dictionary.
For the ith chirp rate value in the dictionary, which we denote
as α̃i, let β̃i,j denote the corresponding possible values for the
initial frequency, where j = 1, ..., Ji. Since the shape of the
parameter space Ω is not rectangular, the Ji’s are not all equal.

By performing a sparse component analysis within each
window, we can track the time-variations of the chirp param-
eters of each component (i.e. chirp rate, initial frequency and
complex amplitude), thus estimating arbitrary IFs.

In vector form, the signal over the mth window can be
expressed as:

Xm = ΨSm + Vm (7)

where Xm = [xm(0), ..., xm(Nw − 1)]T , Vm =
[vm(0), ...vm(Nw− 1)]T , Sm ia a K- sparse amplitude vector
of length

∑I
i=1 Ji, and the dictionary matrix, Ψ, is defined as:

Ψ = [Ψ1,Ψ2, ...,ΨI ]

Ψi = [ψi,1, ψi,2, ..., ψi,Ji
]

ψi,j |n = exp

(
j2π(α̃i

n2

2F 2
s

+ β̃i,j
n

Fs
)

)
;

i = 1, ..., I, j = 1, ...,

(8)



Since K < Nw �
∑I

i=1 Ji, solving for Sm in equation (7)
becomes a sparse recovery (or CS) problem, which can be
solved by:

Ŝm = arg min ‖Sm‖1 s.t. ‖Xm −ΨSm‖22 ≤ ε (9)

where ‖‖1, ‖‖2 denotes L1, L2 norms respectively, ε is the
noise level. The solution for Equation (9) can be obtained by
greedy algorithm such as Orthogonal Matching Pursuit (OMP)
or linear programming [22], [23]. The proposed method is
basically using a chirp dictionary, and select the atoms which
best match the local structure of the signal, which is similar
to Matching Pursuit algorithm. However, sparse reconstruction
considers the sparsity level of the signal, as well as minimum
observations required for exact recovery.

In addition to employing different dictionaries, the process
of obtaining the final signal time-frequency signatures is also
different for sinusoidal and chirp atoms. In the case of sinu-
soidal atoms, or dictionary, the sparse reconstruction algorithm,
whether it is OMP or convex optimization, returns the local
frequency contents, which are referred to the center point of
the sliding window, similar to the generation of spectrograms.
On the other hand, for the case of chirp dictionary, the chirp
parameters returned by the sparse reconstructions describes the
segment of the data captured by the window and, as such,
represent the local signal behavior over the entire window ex-
tent, and not only the center point. Since overlapping windows
generate overlapping chirps, some averaging process is in order
and must be performed to render unique answers at each time
sample. In essence, for every time-frequency point (t, f), we
sum all the magnitudes of reconstructed chirps provided by all
corresponding sliding windows which include the time sample,
t. In so doing, any chirp anomaly will be de-emphasized,
whereas accurate frequency representations of the underlying
signal will be strengthened. All time-frequency points having
summed magnitude smaller than a certain threshold are ignored
and will not be considered. In the simulation section, we
demonstrate the advantages of performing the proposed time-
frequency averaging over the case of no averaging, where we
display the results by just overlaying the reconstructed chirps
in the time-frequency domain.

III. RIP ANALYSIS OF Ψ

In this section, we examine the RIP associated with the
chirp dictionary used in the previous section. Similar to the
work in [21], we consider the bounds on the eigenvalues of
the outer product of the dictionary matrix. We show that these
bounds compete with those of Gaussian random dictionaries
and as such lead to the same conditions on sparsity and
compressed observations. The analysis follows closely that
of [21] but differs in the final results due to differences in
dictionary structure. Let Q =

∑I
i=1 Ji and Q = {1, ..., Q}.

The structure of matrix Ψ is described in Eq. 8. The matrix
Ψ would allow exact recovery of the original K- sparse input
Sm by l1 minimization if it has restricted isometry constant
δ2K satisfying the condition [24]:

δ2K < 1. (10)

Let Γ ⊂ Q, where card(Γ) ≤ 2K, and let ΨΓ denote the
matrix formed by the columns of Ψ indexed by the subset Γ.

From [24], we have:

(1− δ2K) ≤ λmin ≤ λmax ≤ (1 + δ2K) (11)

where λmax, λmin are the maximum and minimum eigen-
values of ΨH

Γ ΨΓ. Based on Eq.10 and Eq. 11, if ΨH
Γ ΨΓ

has eigenvalues in the range (0, 2) for all subsets Γ, then Ψ
enables exact recovery of the original K- sparse input Sm by
l1 minimization .

Since the chirp dictionary Ψ is deterministic, the above
requires checking all

(
Q

2K

)
possible Γ to find δ2K , which

can be a computationally formidable problem. According to
[26], a Gaussian random matrix G ∈ CNwxQ with entries
of zero mean and variance 1/Nw can satisfy δ2K < 1 with
number of measurements O(K log(Q/K)). Therefore, we will
compare the bounds on the eigenvalues of ΨH

Γ ΨΓ with those
of GH

Γ GΓ. In the simulations, Nw = 50, Q = 16512 and
100000 random realizations of subset Γ are used to estimate
the eigenvalue statistics. The simulations are repeated for
different cardinalities of subset Γ. Figure 2 shows the bounds
(sample mean + 3 STD for the maximum eigenvalue and
sample mean -3 STD for the minimum eigenvalue) for both
chirp and Gaussian dictionaries.

Fig. 2. Eigenvalue bounds of ΨH
Γ ΨΓ and GH

Γ GΓ

Figure 2 shows that the bound for the two dictionaries are
very close to each other. This implies that Ψ can also satisfy
condition δ2K < 1 with high probability if the minimum
number of observations is O(K log(Q/K)).

It is noteworthy that if the signal is a chirp, the sparsity
level K of windowed signal Sm is constant irrespective of the
window size Nw. Therefore, in the case of missing samples,
we can increase the window size to obtain enough observations
for exact recovery. On the other hand, if the sinusoid dictionary
is used, a larger window length directly results in less sparsity.
Thus, chirp signals benefit from chirp dictionaries when it
comes to sparse reconstruction.

IV. SIMULATION RESULTS

This section demonstrates the performance of local re-
construction with the chirp dictionary and sinusoid dictionary
when applied to two different types of signals. In order to
verify the proposed approach, firstly, we sample the data at



Nyquist rate, and then randomly discard some of the samples.
In the two cases, the sampling frequency is Fs = 256Hz,
the total signal length is N = 256, and only 50% of the
data is used to estimate the instantaneous frequencies. When
computing the TF representation, a rectangular window is
used.

In the first example, the signal consists of two closely-
parallel chirps. Its discrete-time version is expressed as:

x(n) = exp

{
j2π[(0.1Fs)

n

N
+ (0.3Fs)

n2

2N2
]

}
+ exp

{
j2π[(0.13Fs)

n

N
+ (0.33Fs)

n2

2N2
]

}
+ v(n)

(12)

where n = 0, 1, ..., N − 1. The signal-to-noise ratio is set to
SNR = 10dB. To capture enough data to resolve the two
chirps, the window size is set to a large value, Nw = 90.
Sparsity level is assumed to be K = 5. The result in
Figure 6.b shows the failure of local reconstruction using the
sinusoid dictionary due to lack of sparsity in frequency. In
contrast, when the chirp dictionary is used, the sparsity remains
constant, irrespective of the window size Nw. The two chirps
are clearly resolved as evident from Figure 6.a.
In the next example, we consider a three component- signal,

(a) (b)

Fig. 3. Local reconstruction of a two- component signal when 50 % of data
is missing using (a) Chirp atoms (b)Sinusoid atoms

which is expressed as:

x(n) = exp
{
j[(0.1Fs) cos(2π

n

N
) + 2π(0.25Fs)

n

N
]
}

+ exp
{
j[(0.1Fs) cos(2π

n

N
) + 2π(0.35Fs)

n

N
]
}

+ exp

{
j2π[(0.4Fs)

n

N
− (0.3Fs)

n2

2N2
]

}
+ v(n)

(13)

where n = 1, 2, ..., N − 1. The signal is thinned by discarding
50% of data samples. Sparsity level is assumed to be K = 5,
SNR = 30dB. The higher SNR is necessary if no average is
used. The signal in this case can be approximated by piecewise
chirp, thus too large of a window length would result in
incorrect local signal frequency structure. On the other hand, a
smaller window size would not guarantee enough observations.
The window size is Nw = 70. The result in Figure 4 once
again shows that the reconstruction using sinusoid atoms fails
to resolve the signal, whereas the chirp dictionary yields a

desirable TF representation. The TF representation using the

(a) (b)

Fig. 4. Local reconstruction of a three- component signal when 50 % of data
missing using (a) Chirp atoms (b)Sinusoid atoms

chirp dictionary gets even better when the proposed averaging
of Section II is applied. With the same parameters used in the
above examples, the effect of averaging is shown in Figure 5.

(a) (b)

Fig. 5. Averaging local reconstruction using chirp dictionary of (a) Two-
component signal (b)Three component signal

In the third simulation, we use the data from human gait
radar returns. The data has 20000 samples with Fs = 1000.
The data is first uniformly sampled at Nyquist rate, and then
randomly taken 50% of samples. Sparsity level is assumed to
be K = 30. Rectangular and Hanning window are employed
when Chirp and Sinusoid dictionary are used, respectively. The
result in Figure 6 shows that Chirp atoms are more suitable
for the torso and limbs’ microDoppler presentations.

V. CONCLUSION

The accurate piece-wise chirp approximations to the time-
frequency signature of many Doppler and microDoppler sig-
nals motivate the use of chirp dictionary for sparse recon-
struction of the signal local frequency structure under full
and incomplete data. Compared to a sinusoidal dictionary,
the chirp dictionary attempts to relax the inverse relationship
between the local frequency sparsity and the length of the
observation window. This relationship is synonymous with



(a) (b)

Fig. 6. Local reconstruction of a real signal returned from a human gail
when 50 % of data is missing using (a) Chirp atoms (b)Sinusoid atoms

sinusoidal dictionaries when applied to FM signals. The OMP
Greedy algorithm was applied to compare the performance
of the two dictionaries under different Doppler signatures.
For sliding windows, the chirp dictionary outperformed the
sinusoidal dictionary, irrespective of the window size. Unlike
the sinusoidal dictionary, where OMP results are referenced
to the window mid-point, the chirp dictionary-based recon-
struction produces the chirp parameters best fitting of the
entire windowed data. These parameters may differ when
moving by one or more samples. As such, an average of the
chirp dictionary reconstructions corresponding to overlapping
windows was performed at each time-frequency point, enabling
improved time-frequency signal representations compared to
the non-averaging case.
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