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Abstract—Wall ringing and reverberation pose a challenging
problem for through-the-wall radar image formation algorithms.
We propose a novel method based on compressive sensing (CS)
that enables high reconstruction quality combined with efficient
data collection. A joint wall reverberation and target model is
developed and the reconstructed scene is obtained based on
a group sparse CS approach. Thus, the wall returns can be
separated from the target returns resulting in a clean image.
We demonstrate the performance using simulation results.

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) has the potential
to image scenes behind walls or other opaque obstacles that
cannot be accessed by other means. Various civil and military
applications have generated a high interested in this emerging
technology [1]–[4].

A major challenge for TWRI are strong reflections from
the front wall that distort the received signal. When passing
through the front wall, the wave is subject to refractions and
reflections from the outer and inner surfaces of the wall.
This causes multiple reflections within the wall, leading to
what is referred to as wall ringing or reverberation [5]. Wall
reverberation, i.e., multiple reflections within the wall, cause
wall residuals along the range dimension that may mask
targets in the region of interest. Additionally, these multiple
reflections cause wall ringing, which creates multiple target
copies in the radial direction. The former problem has been
tackled by wall mitigation techniques, such as [6], [7]. The
latter calls for a multipath exploitation or mitigation scheme
[8].

Moreover, highly resolved images require a huge amount
of data to be measured, stored and processed. Yoon and
Amin [9], first addressed this issue by applying Compressed
Sensing (CS) to TWRI, providing good image reconstruction
using only a fraction of the full data. CS further proved to
be a powerful tool for TWRI, if the scene is sparse or can
be sparsely expressed in a convenient basis [9]–[11]. Strong
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clutter from wall ringing and reverberation, however, results
in a densely populated scene.

In this paper, we consider the problem of multiple reflec-
tions within the front wall together with a scheme of efficient
data collection. It has been shown that wall mitigation on the
full data is a viable preprocessing step to obtain a sparse
scene [12], [13]. Other methods project the measured data
on a space orthogonal to the wall returns [14]. We propose,
however, a joint reconstruction approach that captures the wall
and target returns simultaneously. By taking wall reverberation
and ringing into account, unwanted target copies and wall
residuals can be suppressed successfully. The propagation
model is a modification of the model proposed by the authors
in [15]. We employ a scheme for efficient data collection and a
reconstruction approach based on mixed norm regularization.
Hence, the wall and targets effects can be separated and a
clean image of the scene of interest is obtained. Simulation
results are provided to show the effectiveness of the proposed
approach.

The remainder of the paper is structured as follows. First, we
introduce the signal model for wall and target returns. Based
on this, the proposed compressive sensing reconstruction al-
gorithm is described, followed by numerical evaluation and a
conclusion.

II. SIGNAL MODEL

The signal model is formulated using a monostatic stepped-
frequency approach [1], [2]. The proposed approach, however,
is applicable to other imaging techniques in TWRI.

Assume that the wideband transceivers are placed on a
line array consisting of N elements at positions xn, n =
0, . . . , N − 1 at a certain standoff distance from the wall.
In the stepped-frequency approach, the wideband pulse is
approximated by M monochromatic signals. The frequencies
fm,m = 0, . . . ,M − 1 are spaced uniformly over the desired
bandwidth fM−1 − f0.

The received signal, y[m,n], corresponding to the mth
frequency and the nth transceiver, can be expressed as the
superposition of the target returns yt[m,n] and the wall
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response yw[m,n],

y[m,n] = yt[m,n] + yw[m,n]. (1)

We divide the region of interest into a regular grid with a
finite number of grid points, with Nx and Ny , respectively,
representing the points in crossrange and downrange. Let σp
represent the complex reflectivity corresponding to the pth spa-
tial grid point or the pth target, where p = 0, 1, . . . NxNy− 1.
Note that absence of a target at a particular grid point is
simply represented by a zero value for the corresponding target
reflectivity. Therefore, the target return can be expressed as,

yt[m,n] =

NxNy−1∑
p=0

σp exp(−j2πfmτpn), (2)

where τpn denotes the round-trip propagation delay between
the p-th target and the n-th transceiver. The target reflectivities
are assumed constant, independent of frequency and aspect
angle. We assume knowledge or accurate estimation of the
wall parameters, i.e., the thickness d and the permittivity εr.
Hence, τpn can be calculated from geometric considerations
[1], [2]. For a method to obtain accurated estimates of the
relevant wall parameters, refer to [16].

As walls behave as specular reflectors, the nth transceiver
will only receive reflections from the parts of the wall perpen-
dicular to the incident wave [14]. Accordingly, the wall return
yw[m,n] can be expressed as,

yw[m,n] = σw exp(−j2πfmτw), (3)

where σw denotes the reflectivity of the wall observed by each
antenna element and τw is the two-way propagation delay from
each antenna element to the front wall. As the monostatic
array is parallel to the wall, the delay τw is independent of the
transceiver position.

A. Vectorized Measurements

The measurements in (1) can be vectorized for notational
convenience. The measured data vector y ∈ CMN×1 is
obtained by stacking all MN measurements y[m,n] in one
column vector,

y = [y[0, 0], . . . , y[M − 1, 0], . . . , y[M − 1, N − 1]]T . (4)

The complex reflectivities σp corresponding to targets at
positions xp can be vectorized as,

s = [σ0, σ1, . . . , σNxNy−1]T . (5)

The dictionaries Φt and φw contain the phase terms of the
target and wall models, respectively,

[Φt]ip = exp(−j2πfmτpn), m = i mod M,n = bi/Mc,
[φw]i = exp(−j2πfmτw), i = 0, 1, . . . ,MN − 1.

(6)
Now, using (4 - 6), model (1) can be rewritten as

y = Φtst + φwσw (7)

Fig. 1. Wall ringing propagation with k = 1 internal bounces

B. Front Wall Multipath

First, we consider the wall ringing contribution on the
target return. Subsequently, we turn to the modeling of the
wall reverberation. The effect of wall ringing on the target
image can be delineated through Fig. 1, which depicts the
wall and the incident, reflected, and refracted waves. The
distance between the target and the array element in crossrange
direction, ∆x, can be expressed as

∆x = (∆y − d) tan θair + d(1 + 2k) tan θwall, (8)

where ∆y is the distance between target and array element in
downrange direction, and θair and θwall are the angles in the air
and in the wall medium, respectively. The integer k denotes
the number of internal reflections within the wall. The case
k = 0 describes the direct path as derived in [1], [2]. From
Snell’s law,

sin θair

sin θwall
=
√
εr. (9)

Equations (8) and (9) form a nonlinear system of equations that
can be solved numerically for the unknown angles, e.g., using
the Newton method. Having the solution for the incidence
and refraction angles, we can express the one-way propagation
delay associated with the wall ringing multipath as [5]

τ(k,∆x,∆y) =
(∆y − d)

c cos θair
+

√
εrd(1 + 2k)

c cos θwall
, (10)

where c is the propagation speed in vacuum.
The wall return including the reverberation can be treated

similar to the wall ringing target multipath. Fig. 2 depicts
various possible propagation paths which constitute the wall
return. The major difference to wall ringing is that the wall
reverberation does not involve any interaction with the tar-
gets in the scene of interest, see Fig. 2 c). Taking multiple
reflections within the front wall into account, we have to
change the measurement model (7). We assume a maximum
of K different propagation paths that include interactions
with the targets and Kwall propagation paths that involve only
interactions with the front wall. The overall received signal is



Fig. 2. Various cases of wall reflections: a) reflection from the front face,
b) reflection from the back face, c) wall reverberation with multiple internal
reflections.

the superposition of all possible propagation paths weighted
with the respective amplitudes. Hence, (7) can be modified as

y = Φ
(0)
t s

(0)
t +Φ

(1)
t s

(1)
t +· · ·+Φ

(K−1)
t s

(K−1)
t +Φwsw. (11)

The wall ringing contribution is reflected by the summation
of several Φ(k)

t s
(k)
t terms, where k corresponds to the number

of double-reflections within the front wall, as defined in (8).
The wall contribution is similarly defined, where Φw is the
concatenation of several phase vectors corresponding to the
wall delays τ (k)w and sw = [σ

(0)
w , σ

(1)
w , . . . , σ

(Kw−1)
w ]T consists

of the stacked amplitudes of the wall responses.
Note that, in practice, due to the strong attenuation in wall

materials, only two to three wall reverberation responses are
typically observed [17].

III. COMPRESSIVE SENSING AND RECONSTRUCTION

The ultimate goal of the proposed approach is to obtain a
good representation of the scene employing an efficient data
acquisition scheme. Hence, we desire a faithful reconstruction
using only a fraction of the complete dataset. First, we define
how the considered measurements are seleced from the full
data. For stepped-frequency operation, as considered in this
work, a binary downsampling matrix D ∈ {0, 1}J×MN is a
reasonable choice [9], [18]. In this case, one can think of D
as an MN ×MN identity matrix, where all but J rows have
been deleted. Hence, we obtain an undersampled measurement
vector

ȳ = Dy. (12)

Applying downsampling operation (12) to the model in (7)
yields

ȳ = y = A
(0)
t s

(0)
t +A

(1)
t s

(1)
t + · · ·+A(K−1)

t s
(K−1)
t +Awsw.

(13)
where A(r) = DΦ(r), r = 0, 1, . . . ,K − 1 and Aw = DΦw.

Using the final measurement equation (13), we propose
different schemes for reconstructing the image.

A. Separate Reconstruction

The first and somewhat simplistic approach is to reconstruct
the target image regardless of the wall. This is mainly done
for comparison so as to demonstrate that more sophisticated
reconstruction approaches would provide higher benefits.

For the reconstruction, we assume a model that does not
take the wall response into account. However, wall ringing for
the target response is considered, hence, the measurements are
modeled as

ȳ = Ãts̃t. (14)

The vector s̃t ∈ CNxNyK×1 is obtained by stacking the various
vectors of the scene of interest as

s̃t =

[(
s(0)

)T
. . .

(
s(K−1)

)T]T
, (15)

and the new measurement matrix Ãt ∈ CJ×NxNyK has the
form

Ãt = [A(0) A(1) · · · A(K−1)]. (16)

Since the sub-images s(k) describe the same underlying scene,
the support of these subimages must be equal. Hence, we
propose a reconstruction approach based on a group-sparsity
constraint that takes the properties of s̃t into account. This can
be achieved by using `1 minimization using a mixed `1 − `2
norm regularization [19]

ˆ̃st = arg min
s̃t

1

2
‖ȳ − Ãts̃t‖22 + λ‖s̃t‖2,1, (17)

where

‖s̃t‖2,1 :=

NxNy−1∑
p=0

∥∥∥∥[s(0)p , s(1)p , . . . , s(K−1)p

]T∥∥∥∥
2

, (18)

and λ is the so-called regularization parameter. The convex
optimization problem (17) can be solved using the freely
available toolbox SparSA [19]. A single composite image
of the scene is obtained by adding the magnitudes of the
reconstructed subimages.

Two remarks about the reconstruction should be noted. First,
the choice of the regularization parameter λ is critical as
it determines the trade-off between sparsity and fidelity to
the measurements. We used a simple heuristic [20] in setting
λ = c‖ÃH

t ỹ‖∞, where (·)H denotes the Hermitian transpose
and 0 < c < 1 is a constant. In our simulation, we use
c = 0.15, which provided good results. More sophisticated
methods for choosing the regularization paramater based on
cross-validation have been proposed in [18]. Second, in the
mixed-norm regularization term (18), different weightings for
the returns could be included, as the amplitudes are expected
to get weaker and weaker. However, this will not affect the
group-sparsity of the vector ˆ̃st. A group of pixels (across the
different propagation paths) can either be on or off, which
solely determines the sparsity. An additional weighting, hence,
has only a minor effect and was omitted in our formulation.
The weakening amplitude is captured by smaller pixel values
for larger values of k.



B. Joint Group Sparse Reconstruction

As a second approach, we reconstruct the wall and target
image jointly considering the full signal model (13) stacking
all unknowns into one tall vector,

ȳ = Ajsj = [Ãt Aw]

[
s̃t
sw

]
, (19)

From the above high-dimensional joint model of (19), we
can pose the reconstruction problem using a modified group
sparse regularization term. The convex optimization problem
can be expressed as

ŝj = arg min
sj

1

2
‖ȳ −Ajsj‖22 + λρj(sj). (20)

where

ρj(sj) : =

NxNy−1∑
p=0

∥∥∥∥[s(0)p , s(1)p , . . . , s(K−1)p

]T∥∥∥∥
2

+ ‖sw‖2 .

(21)
The difference lies in the choice of the regularizer (21). Our
choice stems from the fact that all target sub-images should
have a common support and wall reflections are either present
or not. This is achieved by grouping the pixels of the target
sub-images and the wall reflection coefficients separately. The
final output image is again obtained by the summation of the
magnitudes.

IV. RESULTS

For the simulation, a 77-element uniform linear monostatic
array with an inter-element spacing of 1.9 cm is used for
imaging. The origin of the coordinate system is chosen to be
at the center of the array. The concrete front wall is located
parallel to the array at 2.44 m downrange and has a thickness
d = 20 cm and relative permittivity ε = 7.6632. A stepped-
frequency signal, consisting of 801 equally spaced frequency
steps covering the 1 to 3 GHz band is employed for scene
interrogation. This is a typical frequency range for through-
the-wall radar and a reasonable trade-off between down-range
resolution and wall attenuation [17].

We simulate two scenarios with two point targets each.
In Scenario a, the targets are located at (0.31, 3.6) m and
(−0.62, 5.2) m, whereas in Scenario b, the targets are located
at (0.31, 3.6) m and (2.5, 5.9) m. Reflections from the front
and back faces of the wall as well as one wall reverberation
are considered, resulting in a total of three propagation paths
for the wall model. The target model accounts for two wall
ringing responses in addition to the direct path. White noise
with 0 dB SNR is added to the simulated measurements. For
comparison, the beamformed images using the full data record
are depicted in Figure 3. For the proposed CS reconstructions,
we use one-fourth of the array elements and one-fourth of
the frequencies. The corresponding results, averaged over 100
Monte Carlo runs, are provided in Figs. 4 and 5. The true
postions of the targets are marked with a small circle.

The conventional CS reconstruction results considering only
the direct propagation path, i.e., (17) with K = 1, are depicted

(a) Scenario a

(b) Scenario b

Fig. 3. Conventional DSBF reconstruction using all measurements.

in Figs. 4a and 5a. As the wall reverberations and ringing are
not accounted for in this reconstruction model, the wall returns
including reverberation and the targets plus their wall ringing
copies are all visible. Separate reconstruction of the target
scene, without taking the wall response into consideration, was
performed with the proposed group sparse CS approach, i.e.,
(17) with K = 3, see Figs. 4b and 5b. This method also does
not lead to good results. The wall response is very strong and
some spurious targets are introduced in the reconstructed target
image. However, if the wall model is properly incorporated in
the reconstruction algorithm through (20), the group sparse
approach leads to excellent results, refer to Figs. 4c and 5c.
The wall response is perfectly suppressed and the two targets
are clearly visible.

V. CONCLUSION

A joint wall and target model for TWRI data was intro-
duced. Based on this model, a group sparse reconstruction
approach with efficient data collection was developed. Sim-
ulation results showed good system performance, featuring a
clean image with suppressed wall reverberation and ringing.
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