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ABSTRACT

Multipath propagation can create ghost targets that severely
affect the reconstruction quality of through-the-wall radar im-
ages. We propose a compressive sensing (CS) based recon-
struction method, which inverts a specular multipath model
through exploitation of the structured sparsity in the scene.
This allows suppression of the ghost targets and increased
signal-to-clutter ratio at the target locations, leading to ’clean’
images of stationary scenes. Simulation results demonstrate
the effectiveness of the proposed approach.

Index Terms— Through-the-wall, Multipath, Compres-
sive Sensing

1. INTRODUCTION

For many civilian and military applications, it is essential to
acquire accurate information of scenes behind walls or other
opaque obstacles. Through-the-wall radar imaging (TWRI)
can provide high-resolution images of otherwise obscured ar-
eas utilizing electromagnetic wave propagation [1–5].

We consider two major challenges that affect image qual-
ity and applicability of TWRI in practice. First, we address
multipath propagation due to specular reflections from inte-
rior walls. These additional propagation paths may result in
the power being focused at so-called ghost targets, which can
be confused with real targets in the image [6]. Earlier work
focused on mitigating the effects of multipath propagation [1].
Subsequently, multipath propagation has been exploited in or-
der to gain more target information [7] or enhance the power
focused onto the target pixels [6].

Second, the desire for high-resolution images results in
large amounts of data to be recorded, stored, and subsequently
processed. An efficient data acquisition approach based on
compressive sensing (CS) was first proposed in [8]. Subse-
quent research has proven CS to be a powerful approach to
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obtain a good image quality from few measurements, pro-
vided that the scene is sparse in its canonical or any other
basis [8–11]. However, ghost targets due to multipath may
render the scene less sparse and, therefore, affect image qual-
ity of the reconstruction.

In this paper, we consider the problem of multipath propa-
gation in view of efficient data collection. We combine multi-
path exploitation [6] with CS for TWRI [8] to obtain a sparse
reconstruction of the scene. A specular multipath propaga-
tion model, developed by the authors in [12], is employed in
two different CS formulations. The first method assumes full
knowledge of the target scattering characteristics, which may
not be available in practical applications. The second method
is based on a group sparse constraint, which achieves scene
reconstruction using a mixed-norm optimization approach.
Thus, we only need to assume stationary point-like targets.
However, we do not require them to be fully isotropic. We
obtain a good estimate of the scene, featuring enhanced target
strength and suppressed ghost targets. The effectiveness of
the proposed methods is demonstrated using simulated data.

The remainder of the paper is organized as follows. Mul-
tipath propagation model for the received signal is introduced
in Section 2. In Section 3, we describe the proposed CS re-
construction approaches. Section 4 contains simulation re-
sults and conclusions are drawn in Section 5.

2. SIGNAL MODEL

The signal model is formulated using a monostatic stepped-
frequency approach [1]. The proposed approach, however, is
applicable to other TWRI techniques.

Assume that N wideband transceivers are arranged as
a line array, with element positions xn, n = 0, . . . , N − 1
at a certain standoff distance from the wall. In the stepped-
frequency approach, the wideband pulse is approximated
by M monochromatic signals. The frequencies fm,m =
0, . . . ,M − 1 are uniformly spaced over the desired band-
width fM−1 − f0. In this work, we consider target returns
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only, assuming that the wall response has been properly dealt
with using wall clutter mitigation techniques [13–15].

We divide the region of interest into a regular grid of
Nx ×Ny points, with Nx and Ny representing the number of
points in crossrange and downrange, respectively. Let σp be
the complex reflectivity of the pth spatial grid point or the pth
target, where p = 0, 1, . . . , NxNy − 1. Note that the absence
of a target at a particular grid point is simply represented by a
zero value for the corresponding target reflectivity. Assuming
monostatic operation, the target return can be expressed as,

y[m,n] =

NxNy−1∑
p=0

σp exp(−j2πfmτpn), (1)

where τpn denotes the round-trip propagation delay between
the p-th target and the n-th transceiver. The target reflectivi-
ties are assumed constant, independent of frequency and as-
pect angle. We assume knowledge or accurate estimation of
the wall thickness d and permittivity εr. For a method to ob-
tain accurate estimates of the wall parameters, refer to [16].
Hence, τpn can be calculated from geometric considerations
[1].

2.1. Vectorized Measurements

The measured data vector y ∈ CMN×1 is obtained by stack-
ing the measurements y[m,n] into a single column vector,

y = [y[0, 0], . . . , y[M − 1, 0], . . . , y[M − 1, N − 1]]T . (2)

The complex reflectivities σp can be vectorized as,

s = [σ0, σ1, . . . , σNxNy−1]T . (3)

The dictionary Φ contains the phase terms of the target model,

[Φ]ip = exp(−j2πfmτpn), m = i(modM), n = bi/Mc,
i = 0, 1, . . . ,MN − 1.

(4)
Now, using the above equations, Eq. (1) can be rewritten as

y = Φs. (5)

2.2. Interior Wall Multipath

In TWRI, multipath propagation corresponds to indirect paths
which involve reflections at one or more interior walls, by
which the signal may reach the target. The dominant mul-
tipath component corresponds to a ’bistatic’ scattering sce-
nario. That is, the transmitted signal propagates directly to a
scatterer and the scattered wave travels back to the transceiver
after being reflected by an interior wall or vice versa. This
type of multipath propagation results in ghost targets that lie
within the perimeter of the imaged room [6]. Other multipath
scenarios exist, but can usually be omitted, since either the

Fig. 1. Multipath via reflection at an internal wall.

resulting ghost target is weak or it lies outside the room and
can be mitigated by time-gating.

Consider the scattering scenario illustrated in Fig. 1,
where the front wall has been ignored for simplicity. The
pth target is located at xp = [xp, yp]T , and the interior wall
is parallel to the y-axis and located at x = xw. Multipath
propagation consists of the propagation from the nth antenna
to the target along the path P ′′ and then from the target via
a reflection at the interior wall along the path P ′. Assuming
a specular wall reflection, the geometry can be equivalently
expressed by reflecting the target about the interior wall. We
obtain a virtual target located at x′p = [2xw − xp, yp]T and
the delay associated with path P ′ is the same as that of the
path P̃ ′ from the virtual target to the antenna. Hence, we can
use the method for determining the delay of the direct path for
the calculation of the one-way propagation delay τ (P

′)
pn of the

multipath. The delay calculation method is described in [1],
and utilizes Snell’s law and the known front wall parameters.

Having observed the significance and the mechanism of
multipath propagation, these observations have to be incor-
porated into the measurement model (5). We assume a max-
imum of K − 1 multipath propagation paths and one direct
path. For each considered propagation path k, we use a sep-
arate target reflectivity vector s(k), as the target radar cross
section (RCS) for bistatic reflection generally differs from the
monostatic one. However, we assume that the target reflec-
tivity corresponding to each path is constant across the array
elements (see [12] for details on feasibility of this assump-
tion). Hence, (5) can be modified to

y = Φ(0)s(0) + Φ(1)s(1) + · · ·+ Φ(K−1)s(K−1) (6)

The received multipath components are expressed as the sum-
mation of the target reflectivity vectors s(k) multiplied by the
respective dictionary Φ(k). The dictionaries include the mod-
ified delays as described above, resulting in phase terms anal-
ogous to (4).

Note that, in practice, the number of multipath contribu-
tions is limited by the number of large flat surfaces. Thus, for
a single room, one would expect K = 6 propagation paths:
one direct path and 5 multipath propagation paths due to three
interior walls, floor, and ceiling.
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3. COMPRESSIVE SENSING AND
RECONSTRUCTION

The ultimate goal of the proposed approach is to obtain a good
representation of the scene, employing an efficient data acqui-
sition scheme. Hence, we aim at obtaining a faithful recon-
struction, using as few measurements as possible. First, we
define how the considered measurements are selected from
the full data vector in (6). For stepped-frequency operation,
as considered in this work, a binary downsampling matrix
D ∈ {0, 1}J×MN is a reasonable choice [8, 17]. In this case,
one can think of D as a fat matrix that randomly selects J
entries of y, discarding the rest. Hence, we obtain an under-
sampled measurement vector ȳ = Dy.

Applying undersampling to the model in (6), yields

ȳ = A(0)s(0) + A(1)s(1) + · · ·+ A(K−1)s(K−1), (7)

where A(k) = DΦ(k), k = 0, 1, . . . ,K − 1.
Using the final measurement equation (7), we propose dif-

ferent schemes for sparse reconstruction of the image.

3.1. Simple CS Reconstruction

Assuming all sub-images s(k) to be identical, as in the case
of isotropic scatterers such as spheres, and equal attenuation
in all propagation paths, the measurement relation in (7) sim-
plifies to

ȳ =
(
A(0) + A(1) + · · ·+ A(K−1)

)
s = Ās (8)

where s is the common reflectivity vector.
Hence, the reconstruction problem simplifies to a sim-

ple CS reconstruction problem, as proposed in [8]. However,
the above common vector assumption usually does not hold
in practical scenarios, especially for complex-shaped targets,
where the target RCS depends on the bistatic angle.

3.2. Group Sparse CS Reconstruction

Next, a practical approach is introduced, where the limitations
of the aforementioned reconstruction scheme are overcome.
The target RCS usually varies strongly with the bistatic an-
gle; hence, we cannot assume prior knowledge of the exact
relationship between the various sub-images s(k). However,
we know that all sub-images are representations of the same
ground-truth. If a target location in one sub-image has non-
zero reflectivity, this should also be the case for the corre-
sponding location in all other sub-images. In other words,
if a pixel is in the support of one sub-image, it should be in
the support of all other sub-images. Hence, theK sub-images
s(k) share, at least approximately if not exactly, the same sup-
port. This observation calls for a group sparse or structured
sparse reconstruction, which we describe below.

First, all unknowns in model (7) can be stacked to form

one tall vector s̃ =
[(
s(0)

)T (
s(1)

)T · · · (s(K−1))T ]T .
The measurements can then be expressed as

ȳ = Ãs̃. (9)

where the combined measurement matrix is obtained by con-
catenating the individual matrices into one fat matrix Ã =
[A(0) A(1) · · · A(K−1)].

The above high-dimensional model (9) is the basis for for-
mulating the reconstruction problem using group sparse regu-
larization. We choose `1 minimization using a mixed `1 − `2
norm regularization, as this approach promotes group sparse
solutions [18,19]. Hence, we obtain an optimization problem,

ˆ̃s = arg min
s̃

1

2
‖ȳ − Ãs̃‖22 + λ‖s̃‖2,1, (10)

where

‖s̃‖2,1 : =

NxNy−1∑
p=0

∥∥∥∥[s(0)p , s(1)p , . . . , s(K−1)p

]T∥∥∥∥
2

(11)

and λ > 0 is the so-called regularization parameter. Problem
(10) can be solved using SparSA [18]. By imposing a group-
sparse constraint on the solution, the K-fold increase in the
number of unknowns can be remedied and less measurements
are required to obtain a unique solution.

In order to exploit the power received through multi-
path propagation, the sub-images have to be combined to
obtain a single composite image. As we do not know
the phase of the individual reflectivities s(k)p , we resort to
non-coherent combination of the sub-images. That is, we
calculate the `2 norm across the pixels of the sub-images,

[ŝ]p =

∥∥∥∥[ŝ(0)p , ŝ
(1)
p , . . . , ŝ

(K−1)
p

]T∥∥∥∥
2

. This approach will

not lead to improved signal-to-noise ratio in the presence of
spatially white noise in the sub-images. However, we are able
to improve the signal-to-clutter ratio. The returned power of
a target is accumulated over all propagation paths. The re-
maining clutter, which is spatially non-white, will likely not
be accumulated in a single location, and hence it is attenuated
with respect to the target return.

4. RESULTS

For the simulation results, a 77-element uniform linear mono-
static array with an inter-element spacing of 1.9 cm is used for
imaging. The origin of the coordinate system is chosen to be
at the center of the array. The concrete front wall is located
parallel to the array at 2 m downrange and has a thickness
d = 20 cm and relative permittivity ε = 7.67. We consider
three interior walls; the left and right side walls are located
at ±2 m crossrange while the back wall is at 5 m downrange.
A stepped-frequency signal, consisting of 801 equally spaced
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(a) Conventional Backprojection (b) Simple MPCS Reconstruction, isotropic (c) GS MPCS Reconstruction, isotropic

(d) Conventional CS Reconstruction (e) Simple MPCS Reconstruction, non-isotropic (f) GS MPCS Reconstruction, non-isotropic

Fig. 2. Backprojected image using the full data (a) along with various CS reconstruction results using one fourth of the array
elements and on eights of the frequency bins (b-f).

frequency steps, covering the 1 to 3 GHz band, is employed
for scene interrogation. We assume that all wall reflections
have been properly suppressed and only the target signal re-
mains.

We simulate two point targets, located at (1.5, 2.7) m and
(-0.5, 3.5) m. In the received signal, the direct return along
with multipath returns via the three interior walls are consid-
ered; hence, K = 4. Two different scenarios are simulated.
In the first case, all targets are perfectly isotropic, resulting in
equal reflectivity vectors s(k), k = 0, . . . ,K − 1. In the sec-
ond case, we introduce a random phase shift for each target
/ multipath pair, which should simulate non-isotropic targets.
However, for the sake of simplicity and comparability, we do
not account for differences in the propagation losses of the
paths. White Gaussian noise with 0 dB SNR is added to the
simulated measurements. For comparison, the backprojected
image using the full data record is depicted in Fig. 2a. For the
proposed CS reconstructions, we use one-fourth of the array
elements and one-eighth of the frequencies. The correspond-
ing results, averaged over 100 Monte Carlo runs, are depicted
in Figs. 2(b)-(f).

Conventional CS reconstruction of the image, without
taking multipath propagation into consideration, does not

lead to good results. The targets are reconstructed along with
all the ghosts, leading to an ambiguous interpretation of the
scene, see Fig. 2(d). In the isotropic target scenario, both
the simple and the group sparse (GS) multipath CS (MPCS)
reconstruction algorithms are able to reconstruct the two tar-
gets perfectly, refer to Figs. 2(b),(c). All ghost targets are
reliably suppressed. However, if we consider non-isotropic
targets, the group sparse approach clearly outperforms the
simple MPCS approach, as depicted in Figs. 2(e),(f). Due
to the inaccurate measurement model in the simple MPCS,
the point targets become weaker and cannot be accurately
located. Clearly, the group sparse approach does not suffer
from such problems.

5. CONCLUSION

Based on a multipath propagation model for TWRI, we have
proposed group sparse reconstruction approaches under effi-
cient data collection towards the objective of reconstructing
the ground truth of the image without multipath ghosts. Re-
sults based on simulated data have shown good reconstruc-
tions, featuring a clean image with suppressed ghosts.
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