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Abstract

Multipath that involves target scattering is an importahepomenon in synthetic aperture
radar (SAR). It is highly pronounced in imaging of buildingtériors due to the presence of
walls, ceilings, and floors surrounding the targets of igerMultipath attributed to targets is
a special type of clutter, which can be either suppressedcpuloiéed. The latter has been the
subject of many recent works in the area of SAR imaging anddubi® tangible improvementsiin
target detection and localization. In this paper, we carsitiate-of-the-art multipath suppression
and exploitation approaches, present their corresporahiadytical models, and highlight their
respective requirements, assumptions, and offering$ 8artventional and compressive sensing
based approaches are discussed, where the latter asswer@esknce of few behind-the-wall

targets.

. INTRODUCTION

In recent years, radar imaging of building interiors hashgdimuch interest due to the rising
and ubiquitous use in civilian, security, and defense apptins [1]-[3]. Typically, there is no
visual access to the scene, and optical, ultrasound, om#iiedmaging is not effective. In this
case, sensing is performed by the electromagnetic (EM) hitp@ad has allowed the emergence
of the area of through-the-wall radar imaging (TWRI). Indtargets and interior building layout

are detected and characterized from a standoff distaneerddar systems may be ground-based
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or airborne and assume different modes of operations aridmsysarameters. One mode, which
is consistent with many sensing objectives, is synthetertape radar (SAR). TWRI using SAR

is the only viable choice when two-dimensional (2-D) phgbiapertures required to achieve
the desired resolution are logistically difficult or impise. We restrict the discussions to SAR
imaging of stationary targets. Moving targets pose a wheteotdifferent challenges, exceeding
the scope of this article.

SAR imaging could be impaired by the many scatterers praseattypical indoor scene. In
addition to the shortest path to the target and back to theiveg the transmitted wave may
travel on indirect paths due to secondary reflections ayisom interior walls, floor, and ceiling.
This leads to rich multipath associated with the targetsicivhdepending on the scattering
environment, can have different adverse effects on the eéngueplity and interpretation. The
energy in the multipath returns may accumulate at locatishere no physical targets reside,
thus creating “ghosts”. With increased specular and diffsisatterings, the stationary scene can
become very cluttered, masking the true targets and digglttieir detection. The significance
of multipath and ghost targets in imaging of building inbesi has been shown in various works.
Dogaru and Le [3] showed the ghost phenomenon using exeemsiinerical EM simulations.
Others examined the same, using measurements in a lab g@{Jp][ The radar community
also acknowledged multipath as a significant problem on aiabimdustry day [6].

Since multipath exists and is often observed, it must berikest and accounted for, using
accurate analytical models, and properly addressed iningagchniques. Broadly, there are
two paradigms to deal with indirect propagation, namelyjtipath suppression and multipath
exploitation. The key idea of the former is to characterize multipath returns and mitigate their
effects on image formation [7]-[16]. Different propertiekdirect and indirect radar returns can
be used to distinguish between the two arrivals and attenifatot remove, the indirect returns.
These methods are generally straightforward to apply. Wewehey do not make use of the
energy and target information contained in the multipatbrres. The second method, reminiscent
of the RAKE receiver in wireless communications [17], airhsexploiting the multipath and using
it for imaging enhancements [4], [5], [18]-[24]. By properhodeling the indirect propagation
paths, whether they are resolvable or not, their energy eanaptured and attributed to their
respective targets, allowing an increase in target toerlgthd noise ratios, and thus culminating
in an enhanced image. Further, areas in the shadow regioigloly Fattenuative targets, which

cannot be illuminated by the radar directly, can be imagedutiyzing multipath. Although
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multipath exploitation has potential and tangible bengfiteften requires prior information or

is computationally demanding.

Il. SIGNAL MODEL

A forward scattering model should be developed in order faitipath to be properly exploited
or mitigated. This requires determining the scattered fielch the targets inside the building. If
the building layout and imaging geometry is known, this peabcan be exactly solved by using
Maxwell’s equations [25]. However, there are two issueg thader this approach impractical.
First, solving a full wave model is computationally demargdand may require vast resources.
Second, inferring the positions of the scatterers from ttattered field, requires solving an
inverse problem. Since the forward problem is nonlinear twuthe influence of the scatterers on
the surrounding field, the inverse problem is even more ehgihg and, for practical purposes,
impossible to solve. In order to overcome these difficultiesious linear approximations of
the forward scattering model, such as the Born approximatiGrchoff approximation, and
Geometric Optics (GO), have been introduced, all of whighdytractable solutions to the inverse
problem [1], [26], [27]. More specifically, the Born appraxation makes the weak scatterer
assumption, i.e. the electrical parameters of the scastele not differ much from that of the
background medium. As such, the total field inside the taigetpproximated by the incident
field [26]. The Kirchhoff or Physical Optics (PO) approxinaat assumes perfectly conducting
targets, and the interaction with the incident field takex@lon the surface of the targets only
[27]. For both Born and PO approximations, the backgroundiome, which is the building
enclosure in the problem at hand, is described by the Grdentdion that depicts the impulse
response of the wave equation. The GO or ray tracing appmesehlocal plane wave assumption
or “ray of light” to model the propagation of the wave [1]. 8inthe latter is the simplest and
most commonly used approximation in TWRI, we focus on ragit@ for describing the signal

model.

A. Basic Sgnal Model

Consider anV-element monostatic linear array of transceivers. Eithiesfahe array elements
can be physically present or a single transceiver can be dnoveifferent locations to synthesize
the intended aperture. For the synthetic aperture, we assinstop-and-go approximation for
the movement pattern, i.e. the transceiver remains statfomhile it transmits and receives at a

particular array position and then moves to the next locatithe model may be extended to a
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bistatic or multi-input multi-output (MIMO) SAR scenarioh&re the transmitter(s) and receiver(s)

move along different trajectories. However, this is noateel here for the sake of simplicity.
The linear array is located along theaxis parallel to an exterior wall of thicknegs with

its element locations denoted hy,,n = 0,..., N — 1. At the nth array element location, a

modulated wideband pulse{s(t) exp(j2n f.t)} is transmitted, where is the fast time(t) is

the pulse in the complex baseband, gfds the carrier frequency. For a scene Bfstationary

point targets behind the wall at positio(s,, z,), the nth element receives the baseband signal
yn(t), given by
P—1
Yn(t) = Z 0ps (t — Tpn) exp (—J27 feTpn) + vn(t), (1)
p=0

where o, is the deterministic complex reflectivity of theth target, andr,, is the two-way
propagation delay between thh transceiver and thgth target. We consider additive receiver
noise v, (t), which is typically assumed to be i.i.d. complex circular Gsian process. For
through-the-wall propagation,,, comprises the components corresponding to travelingraist
before, through, and after the wall [1]. Note that the reedigignal is a superposition of the
individual direct target returns only. Target interac8onith other targets and the surrounding
environment are ignored in this model. However, in indo@nseios, such interactions are both

pronounced and measurable, and give rise to multipath pedijmen.

B. Multipath Propagation Model

We broadly categorize multipath returns as follows:
« Interior Wall/Floor/Ceiling Multipath: These involve indirect paths with secondary specular
reflections at a large smooth surface.
« Wall Ringing Multipath: This type involves signals that undergo multiple refleciovithin
the exterior wall on transit to/from the targets.
« Target-to-Target Interaction: This includes paths where the wave interacts with more than
one diffusely scattering targets.
The interior wall/floor/ceiling multipath returns can berther subdivided into the following
classes:
« First order multipath: This involves one secondary reflection either on transniieoeive
path.

« Second order multipath: This involves two secondary reflections during the rouiialypath.
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Fig. 1. Various cases for multipath in indoor-scenes. Frefntb right: direct propagation, one secondary reflection
at an interior wall, multiple reflections inside front wallyo secondary reflections at an interior wall, and targegeta

multipath.

« Higher-order multipath: This includes multipath returns involving three or more@wtary

reflections during the round-trip path.

Fig. 1 shows examples of various multipath propagationsa8e the signal weakens at each
secondary reflection, the higher-order multipath retuaus usually be neglected.

Considering a maximum ok possible propagation paths for each target-transceivebo-
tion, including the direct path and excluding target-tayéd interactions, we can extend thth

received signal model in (1) as
R—1P-1

yn(t) = Z Z al(f)s (t - TISZ)) exp (—jQWfCTIg;)) + vy (t), 2)

r=0 p=0
where TIEZ) is the round-trip propagation delay between tith transceiver and theth target
along therth path, andysz) is the complex reflectivity of theth target when observed through
the rth path. Letr = 0 correspond to the direct path and the remainibg 1 be the multipath
returns. The various propagation delays can be readilylzdtd using GO considerations [5]. The
number pathsk is a deterministic parameter that depends on the numberyaedof scattering
walls, which are assumed to be knowrpriori. For illustration, Fig. 2 depicts an example of
an interior wall multipath. The associated propagatioragiehay be determined by considering
the equivalent two-way path to the corresponding virtuedea Target-to-target interactions can
be included in the multipath model of (2) by assuming addalodouble bounce paths between
pairs of diffusely scattering targets. Note that, in thisegathe associated propagation delays not
only depend on the distances between the transceivers aridrgets, but also on the separation

between the targets themselves.
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Fig. 2. Multipath propagation via reflection at an interioaliv

C. Image Formation and the Effects of Multipath

Having developed the forward scattering model, we now pdoeith the inverse problem
of determining the locations of th& point targets. The conventional approach is delay-and-
sum beamforming or backprojection, which does not accoamtriultipath propagation. As the
number targets is usually unknovarpriori, the target space is discretized into a rectangular grid
of P pixels. Hence,P is the deterministic total number of possible target pos#j which is
determined by the dimensions of the area being imaged argl/#tem resolution. A non-existing
target is simply represented by a pixel with zero reflegtivitn estimate of the image is obtained
as [1]

N-1
10) = + X onl0)# (Dl =0 P, 3)
n—
which employs matched filtering of theth received signal, followed by sampling the output at
the delay corresponding to direct propagation to the ctipixel, and finally, coherently summing
the results corresponding to all array locations.

If multipath returns are present in the received signas,itliage formation process results in
ghost targets, i.e., the energy in the multipath return®dsiged at locations where no physical
targets exist. Fig. 3 shows the image of a scene consisting@foint targets inside a room,
which was obtained by applying beamforming to data simdlateing (2). In addition to the
direct returns, only first-order interior wall multipath cartwo wall ringing multipath returns
per target were assumed to be present in the measurementshasfere that the multipath via
reflections at interior walls causes ghosts within the roamereas the wall ringing multipath
creates equally spaced copies of the target response irotharange direction. The ghosts cause

the scene image to be highly cluttered, rendering intemioet difficult and challenging.
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Fig. 3. Beamformed image of a two target scene showing 5 gtamgets associated with each targé& & 6

propagation paths per target).

[1l. M ULTIPATH SUPPRESSION

Having described the multipath model and the clutteringa@ff of multipath propagation, we
revert back to multipath suppression and exploitation. @bjective of multipath suppression is
to mitigate the effects of indirect propagation on the duatif the reconstructed scene image.
A variety of multipath suppression methods have been déVigk-[14], which can either act

directly on the raw data measurements or are implementegastgrocessing step for the SAR
image. These methods require the targets and ghosts/athltipturns to be well resolved and

can achieve ghost suppression without any prior knowleddbeoscene.

A. Suppression using Ghost Properties in SAR Images

We first describe methods applicable to suppression of ghasSAR images resulting from
target-to-target interactions. Considering two targefsasated by a distan@é, the received signal
at thenth transceiver location would consist of three componethis:two direct returns with
respective round-trip propagation dela:y{:%) and 72(2), and a double scattering return involving
the two targets with a round-trip propagation delayrﬁf) = M + % wherec is the speed
of light in free-space. Since the conventional SAR imagenfition method, described in Section
II-C, is based on direct returns of single target scattexinige additional delay associated with
the double scattering multipath results in a ghost locateal farther range than the two targets,
as shown in Fig. 5(a).

Ghosts in SAR images resulting from target-to-target adgons have very specific charac-
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Fig. 4. The support angle of SAR echoes in the wavenumber itor@ost target exhibits a narrower support as

compared to the real target.

teristics, which can be exploited to distinguish them fraraltargets. These characteristics stem
from the changes in the associated double scattering gepmvih aspect angle as viewed by
the imaging system [7]. Most targets exhibit aspect depeingeattering. However, unlike the
targets, the ghost intensity takes on high values only ovporéion of the synthetic aperture
(see Fig. 4), implying a smaller effective aperture for itnggof ghosts. This causes a wider
point spread function in crossrange for the ghosts as cardpara real target, and subsequently
lower crossrange resolution. Second, the phase chasiterf the ghost differ across the SAR
aperture, leading to changes in the ghost location whenrefdeéhrough different smaller sub-
apertures. This same characteristic causes the ghosts defbeused when employing the full
aperture. In order to reveal the ghost characteristics iR 8Aages, the full aperture is typically
split into small sub-apertures for separate imaging. Thevalghost characteristics across the
sub-aperture images are effectively used for its suppressi

A simple technique for using the variation of the ghost istgnacross the sub-aperture images
was proposed in [7]. For each “candidate” target, the vagaof the intensity is calculated across
the sub-aperture images. Candidates with high variancelentified as ghosts, and are attenuated
or suppressed to obtain a ghost-free image. A more sopdtistidcechnique models the intensity
variations to distinguish between the targets and the ghzeted on their aspect dependency [8].
However, the target intensity is also a function of its otéion, which is typically unknown.
As such, the intensity variation across the various substageimages can be modeled by a
hidden Markov model (HMM), where the hidden states are thesibte target orientations. The
output of the HMM is the intensity profilp € R of a certain image pixel, wher&/ is the
number of sub-apertures. Training data from known targetséd to estimate the state-transition

probabilities, the probability of observing a certain imgéy in a given state, and the initial state

March 13, 2014 DRAFT



SIGNAL PROCESSING MAGAZINE 9

Before After

—10
—15
—20
—25

-30

—35

: : ! ‘ ‘ —40
z [dB] x [dB]

Fig. 5. Multipath suppression using HMM based approach T8le ghost at the highlighted position has been
suppressed.

probabilities. Thus, a specific HMM can be built for each ¢desed target type. For notational
brevity, we consider only one target type, denotediby

In the testing phase, sub-aperture images are created fienfutl aperture image using
directional filters. Thepth image pixel has a corresponding intensity profilg which may
or may not be generated by tf& target. The trained HMM is used to evaluate the likelihood
that the observed intensity profile is generated by the gigeget. The likelihood is given by

P(pp|T1) = Plpplg, T1)P(q|Th), (4)
all g

where Rp,|q,T1) is the probability thajp, was generated by state sequencgiven targetl’,
P(q|T1) is the probability that state sequengeoccurs given targef;, and the summation is
carried out over all possible state sequengd§the pixel corresponds to the target, the likelihood
should be high, whereas the value should be low if it corredpdo a multipath ghost. The pixel
in the ghost-mitigated image is obtained by multiplying tvéginal full aperture image pixel

with the obtained likelihood value,
I(p)™"9®d = P(p,,|T1)I(p).

Hence, only targets that fit the considered model with a hilgélihood are retained and the
ghosts are suppressed. The performance of the approadbsisailed in Fig. 5. The ghost is
strongly visible in the original image. However, it has besuppressed by about 15 dB in the
processed image.

A different class of algorithms exploits the differenceghie phase history of the sub-aperture
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images [9]. As explained above, the ghost targets exhibifferent phase history when viewed
from different aspect angles, which depends on the distahbetween the two scattering centers.
This is exploited for a SAR image reconstruction scheme tfgaierates a separate image for
each assumed. The true scatterer positions are then contained in thectdpath image with

0 = 0. This approach can be combined with a scheme that expla@tdrift of ghost targets with
aspect angle [10]. Drifting and non-drifting target carades are separated using the Fourier
transform of a sub-aperture image pair. Non-drifting tésgee retained, whereas drifting targets
are suppressed. An issue with the described approach ihthphase changes have to be observed
over a large number of aspect angles. Hence, a large aparidrantennas with a large azimuth
beamwidth are required. This may work against the powertcaings of the transmit chain.

One way to overcome the large synthetic aperture constiqittt exploit the nonlinearity in
the phase delays of the ghosts directly in the raw data [LhHeU far-field assumptions, real
targets exhibit a linear phase shift when viewed from a stlifiperture. In contrast, the ghosts
have an additional nonlinear term in the phase history, lwban be exploited to cancel multipath
returns and obtain a ghost-free image.

All of the aforementioned methods have been mainly develapaler the assumption of far-
field conditions, which are mostly applicable to airbornatfulrms. For ground-based systems,
the building resides usually in the near-field, and may beeniesl from different sides. This
gives rise to another approach for ghost suppression in TI¥Bl An image is generated for
each vantage point used to interrogate the building intefifier image registration, the primary
reflections, i.e., the true targets, stay at the same lotaticall images. However, multipath
returns place ghosts at different locations, since theipaih reflection geometry changes with
the vantage point. Thus, multiplicative fusion of the régied images retains the overlapping
true targets and mitigates the non-overlapping ghostss @pproach is conceptually similar to
[9], [10]. However, the drifts are much larger as the vantpgmts have a large separation. We
note that, as the secondary specular reflection geometryfusction of the vantage point or
aspect angle, the drift-based methods described abovdsar@gplicable to specular multipath

cases.

B. Other Methods for Multipath Suppression

In this section, we briefly discuss multipath suppressiothous that do not fit in the above
considered class of algorithms. One possibility is a caledavIMO based approach [13]. In

MIMO radar imaging, orthogonal waveforms are transmittexirf a transmit array and the scene
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reflections are received, using a receive array. Exploitlrg orthogonality of the transmitted
waveforms, the returns can be associated with the respetsimsmitter. From the propagation
model, we know that the angle of departure (AOD) equals ttgdeanf arrival (AOA) for the
direct path. However, in the multipath propagation casetiquaarly so for specular multipath,
the transmit and receive paths are different and, consdiguéme AOA is different from the
AOD. This effect can be exploited by using spatial filtering the transmit and receive signals.
By retaining only the signal components with equal AOA andDAGhe multipath returns
can be filtered out. Polarimetric features of the secondafitgations have also been exploited
for multipath suppression [14]. Double scattering of thevevanay change the polarization
characteristics, which can be used to differentiate batwagyets and ghosts. Finally, even an
optimized imaging geometry may help reduce ghosting [f3hé secondary scatterer is known,
the SAR trajectory can be adjusted such that very little gnés contained in the multipath
returns.

For extended targets modeled by a number of scatteringrsegteosts can appear on or in the
vicinity of the back wall due to target obstructing incidemves from reaching the back walls.
This presents a vacuum in the image along the back wall ohahge detection is applied, it
creates ghosts, which could be stronger than targets. $ncise, ghost mitigation can proceed
utilizing the respective inter-related geometry of targed ghosts. Extended targets tend, in

general, to produce blurred ghosts beyond those createaihy target model.

IV. MULTIPATH EXPLOITATION

Multipath suppression discards the energy contained imthkipath returns in order to reduce
their adverse effects on the image. Since multipath retultmmately originate from the target,

it is prudent to utilize the energy and information contdiria such indirect target returns.
Proper exploitation of the multipath returns has been shtawlead to higher signal-to-clutter

ratio (SCR), higher crossrange resolution, and extendexyjiimg regions. However, all these
imaging enhancements usually come at a price. Multipatio@afion schemes either require
prior knowledge of the scattering environment or incur eigbomputational costs. In the sequel,

we categorize multipath exploitation methods accordirifpéar multipath resolution requirements.

A. Exploitation Requiring Resolved Multipath

For resolved multipath, the radar returns are well sepdiatéast time and form the target images

and their ghosts. This category includes shadow regionimgaipp indoor settings [18], where
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multipath =

Fig. 6. Propagation paths of single and double scattereg@svav

information of hidden areas of spatially extended targetdch are not in the line-of-sight of the
radar, is obtained by exploiting target-to-target intéoarts. The proposed multipath exploitation
is a two-step procedure. First, a conventional SAR imAggis obtained using the radar returns.
The scattering centers observed in the conventional SARjénzae treated as new sources for
the double scattered multipath returns. That is, the stagteenters act as new transmitters that
can illuminate the shadow region of the targets. Next, a fireliSAR algorithm is employed

that assumes double-scattering propagation to obtain agea@t°'’'q.) as
P-1N-1

Idoubl%p) _ Z Z [(p’) (yn(t) * s(=t)],—,

pp,n)F(p,p/,n),p:0,...,P—1, )
p'=0 n=0
whereT,,, is the round-trip path between the transceiver, the firstestag center atx,, , 2, ),
and the second scattering point(at,, z,). The weighting functionF'(p, p’, n) discards an ellip-
soidal region surrounding the line-of-sight between ik antenna location and théth first
scattering center to reduce the introduction of ghosts ptaasible locations (See the left plot in
Fig. 6). Finally, the two images are normalized and supeoiseg to obtain a composite image,
which depicts significantly enhanced visible regions of theyets. For illustration, Fig. 6 also
shows the images(-) and19%°P!¥.) for a scene containing three targets of circular and rectang
shapes. Clearly, the conventional SAR image has difficalfyniaging the sides of the rectangular
target, whereas the modified SAR algorithm can reconsthetrectangular sides of the target.
The main advantage of this algorithm is an extension of tieibld target region without the
need of prior knowledge of the scene distribution or the@urding environment.

Following a similar idea, the work in [5] proposed a ghost piag approach, wherein the
ghosts in the conventional SAR image, resulting from iotevall multipath, are mapped back
onto the respective targets to obtain a ghost-free imadgeimproved SCR. Complete knowledge
of the room geometry is assumed, especially the locatiorteofnterior walls. Using this prior

knowledge, for any target position, the location of the agded ghosts (one for each interior
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Before

Fig. 7. Backprojected image using the conventional (lefi) anultipath exploitation based (right) image formation

approaches.

wall) can be predicted. The exploitation scheme works aevial. Using conventional image
formation, an image of the scene containing both real targatl ghosts is obtained. Next, for
every image pixel (and possible target location), the gnefgthe associated ghosts is mapped
back onto the target’s site. This is achieved by a 2D coniwmiuvith a space-varying kernel

H(p,r) that uses the information of the ghost locations

R—1
IMPPYp) = 3" |1(p)| = H(p, 7). (6)
r=0

The weighting and shape of the kernEl(p,r) is chosen such that the full energy of the
ghosts is utilized to boost the amplitude of the real tar@étthe same time, the ghosts are
suppressed. Finally, a composite ghost-free image withidugal SCR is obtained by a pixel-by-
pixel multiplication of the two images. Fig. 7 illustrataset result of the multipath exploitation
scheme using real data from a scene consisting of a singéet@flocated between front and back
walls. The conventional SAR image (left) shows both thedgtand the ghost due to multipath,
originating from the back wall. The ghost is clearly suppegsin the composite image (right)

obtained using the exploitation scheme.

B. Exploitation with Unresolved Multipath

The above described exploitation methods fail if the maltipreturns are not resolvable because
they would lead to overlapping targets and ghosts in the amaional SAR image. Such situations
may arise when system constraints permit use of limited Watid and/or aperture, and in the
presence of non-homogeneous front walls. However, usioggirmodeling of the multipath
returns, the additional energy and information therein stédlybe exploited to obtain an improved

scene reconstruction.
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If prior knowledge of the surrounding environment is avialdg i.e. the location and dielectric
properties of the walls, a linear inverse scattering schéased on the PO model may be
employed for exploiting multipath from walls and other splac reflectors [20]. Using Kirchhoff's

approximation, a linearized scattering equation can beiobtl as
Es(um ]{70) = // Ei(um x,z, kO)G(um z,z, kO)U(xv z)dmdz, (7)
Q

where E4(u,, ko) is the scattered field measured at thil antenna locationk, is the wave
number in free spacel;(-) is the incident field,G(-) is Green’s function for the relevant
background mediumi(z, 2) is the unknown target distribution, afiidescribes the spatial region
being interrogated. With prior knowledge of the backgrowuattering environment, Green’s
function can be calculated analytically or numerically.eTimcident field can be obtained by
the known emitted field of the transmitter and the reflecteiméction properties of the front
wall. Discretizing the region of intere$, a finite-dimensional equivalent representation of (7)

is obtained as

E; = Ajinsca0, (8)

where E; is the vectorized measured scattered fielg,scat represents the discretized linear
operator in (7), andr is the discretized and vectorized scattering space. Amasti ofo can be
achieved by finding the singular value decompositiomgfsca: and inverting only the dominant
singular values [20], [27]. Other inversion methods may lemp sparsifying regularization, as in
[21]. Sparse reconstruction based multipath exploitasipproaches are described in more detail
in Section V.

A similar method has been proposed to deal with multipathltieg from periodically struc-
tured front walls, e.g. cinder block walls [4]. The propdgatthrough the front wall is modeled
analytically and is exploited in the image formation steputitize the additional beams that are
directed towards the target by the Floquet modes of the frariit

Time-reversal methods [22]-[24] may also be applied to@kpiultipath propagation in indoor
imaging. The efficiency of this approach was first demonstray Fink [28], using acoustic waves
and first applied to multipath environments in SAR by Saraba&t al. [22]. Time reversal is
a two-step procedure. In the first step, the pulse is tratsthinto the background scene and
reflections are received by an array. This is done to obtdorrimtion of the scattering scenario
without the target of interest. In the second step, a timemad received signal is transmitted

at the receive array into the scene containing the targemtefast. In this way, the transmitted
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energy is focused at the original transmitter location. Byng this scheme, the information
of the scattering environment can be used to improve theteféearray aperture. It should be
noted that if the scattering environment is knoapriori, the first transmit receive cycle can be
executed via a simulation, thereby overcoming the otherlimiting constraint of background

scene access.

V. MULTIPATH EXPLOITATION/SUPPRESSION INSPARSERECONSTRUCTIONS

Sparse signal representation has been used successfullglfing SAR image formation prob-
lems in a variety of applications [29]. This framework is édson the observation that typical
underlying scenes usually exhibit sparsity in terms ofaiarfeatures, such as scene reflectivity.
Sparse representation was first employed for imaging odimgl interiors in [30]. As only
a few targets usually reside in the room, the complex ang#itaf the image can be sparsely
represented. The measurement model, motivated by theaeyng formulation of (1), is given
by
y = Ao, ©)

wherey is the stacked vector representing the measurements ftoiw atray element locations,
o is the sparse vectorized image of the scene, and the maAtiix the dictionary of the radar
responses under the assumed single-scattering basedqgrgett model. The scene image can be

reconstructed using the basis pursuit denoising (BPDNp&mafs
. 1
& = min || Ac — yl3 + Alols, (10)

where) is a regularization parameter which provides a trade-diivben fidelity to measurements
and noise tolerance. BPDN is a regularized least-squahesosothat favors sparse results. Other
reconstruction methods use greedy approaches to build dlution iteratively. Optionally, a
downsampling of the measurements in (9) can be done to rdtlecamount of data. However,
special care has to be taken to ensure incoherence of thdisgmpatrix and the dictionary in
order to guarantee reliable recovery.

The sparse reconstruction approach for indoor images hasdaended to exploit both interior
wall and wall ringing multipath returns in [19] under the asgtion of prior knowledge of
building layout. Using a discretized version of the rayeing signal model in (2) and assuming
knowledge of the building layout, the measurement vegtaan be expressed as a superposition

of individual linear models for each of the propagation paths

y=A0g0 4 AWsM .. 4 ABED)G(RE-1) (11)
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Fig. 8. Group sparse structure for the sub-images.

whereos (") is the vectorized image of the scene corresponding to-thepath andA(™) is the

dictionary that embodies the GO propagation model forthepath. Next, a stacked signal model

is formed
y = Ag, (12)
with a combined dictionaryd = [A(®) AM ... A(E-1)] and stacked image vectors =
T T T . _ -
[(U(O)) (a(l)) (U(R_l)) ] . The vectors can be estimated by exploiting the common

support property of theR sparse images. This property stems from the fact that thgema
o0, ..., oBE-1 describe the same underlying scene. That is, if a certamesiein, e.g.o®

has a nonzero value, the corresponding elements in the wttagres should be also nonzero.
This means that corresponding pixels in the image vectaraldhbe grouped, as shown in Fig.

8, necessitating a group sparse reconstruction approach
2 I S -
o =argmin o [[§ — A&l + A&, (13)

where

(14)

The mixed-norm term in the regularizer ensures the growgtstre in the sparse reconstruction
result. Finally, the reconstruction results for the indisé@l paths are combined non-coherently
to obtain an overall image with suppressed ghost targetsiraptbved SCR, see Fig. 9. Data

undersampling can precede the sparse reconstructionsirapiiroach as well.
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Fig. 9. Backprojected image using the full data (left), glamith conventional (center) and multipath exploitation
based (right) sparse reconstruction results. The spacs@stuction used undersampled data, specifically, onehfou

of the array elements and on eighth of the frequencies.

An alternate approach for sparsity based scene recoristiiotthe presence of multipath has
been proposed in [16]. The authors assume a convolutive Infiodmultipath, wherein the echo
waveform at each receiver is modeled as the superpositidgheotlirect impulse response and

the multipath impulse response fér targets convolved with the transmitted pulse waveferm

P-1

Yp = ZS*(gp+dp*gp)- (15)
p=0

The direct impulse respongg, is assumed to be a single spike and stronger than the indirect
returns. The multipath impulse response is the convolutibthe direct impulse responsg,

with a sparse delay vectal,. The multipath delays for a particular target are assumedteat
across the receivers. Using the above model, an iterativedgrsparse reconstruction approach
is proposed by the authors to estimate the unknown impulgeoresegy, and delay vectord,,.

The estimated direct impulse responses are then used todayhost-free image. The method
performs well, especially in the case of wall ringing mudtip. The advantage of this approach
lies in the fact that no prior knowledge is needed. However additional energy in the multipath

returns is suppressed rather than exploited for image fawma

VI. CONCLUSION

We have considered the problem of imaging building intariosing sythetic aperture radar.
The emerging TWRI technology has experienced a rising éstesver the last decade due to its
numerous civil and military applications. We have presérte overview of different approaches

to deal with multipath in indoor radar imaging scenariosltipath mitigation and exploitation are
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key to obtaining reliable information when many and/or sty@secondary scatterers are present
in the scene of interest. We have provided a balanced andletergrcount of existing methods
and discussed their respective advantages and disadeanBah conventional beamforming and
compressive sensing based methods have been presented tiM&atter assume the underlying

scene to be sparse. We bridged analysis with supportinglaiom and experimental examples.
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