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Abstract

Multipath that involves target scattering is an important phenomenon in synthetic aperture

radar (SAR). It is highly pronounced in imaging of building interiors due to the presence of

walls, ceilings, and floors surrounding the targets of interest. Multipath attributed to targets is

a special type of clutter, which can be either suppressed or exploited. The latter has been the

subject of many recent works in the area of SAR imaging and hasled to tangible improvements in

target detection and localization. In this paper, we consider state-of-the-art multipath suppression

and exploitation approaches, present their correspondinganalytical models, and highlight their

respective requirements, assumptions, and offerings. Both conventional and compressive sensing

based approaches are discussed, where the latter assumes the presence of few behind-the-wall

targets.

I. INTRODUCTION

In recent years, radar imaging of building interiors has gained much interest due to the rising

and ubiquitous use in civilian, security, and defense applications [1]–[3]. Typically, there is no

visual access to the scene, and optical, ultrasound, or thermal imaging is not effective. In this

case, sensing is performed by the electromagnetic (EM) modality and has allowed the emergence

of the area of through-the-wall radar imaging (TWRI). Indoor targets and interior building layout

are detected and characterized from a standoff distance. The radar systems may be ground-based
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or airborne and assume different modes of operations and system parameters. One mode, which

is consistent with many sensing objectives, is synthetic aperture radar (SAR). TWRI using SAR

is the only viable choice when two-dimensional (2-D) physical apertures required to achieve

the desired resolution are logistically difficult or impossible. We restrict the discussions to SAR

imaging of stationary targets. Moving targets pose a whole set of different challenges, exceeding

the scope of this article.

SAR imaging could be impaired by the many scatterers presentin a typical indoor scene. In

addition to the shortest path to the target and back to the receiver, the transmitted wave may

travel on indirect paths due to secondary reflections arising from interior walls, floor, and ceiling.

This leads to rich multipath associated with the targets, which, depending on the scattering

environment, can have different adverse effects on the image quality and interpretation. The

energy in the multipath returns may accumulate at locationswhere no physical targets reside,

thus creating “ghosts”. With increased specular and diffuse scatterings, the stationary scene can

become very cluttered, masking the true targets and disabling their detection. The significance

of multipath and ghost targets in imaging of building interiors has been shown in various works.

Dogaru and Le [3] showed the ghost phenomenon using extensive numerical EM simulations.

Others examined the same, using measurements in a lab setup [4], [5]. The radar community

also acknowledged multipath as a significant problem on a special industry day [6].

Since multipath exists and is often observed, it must be described and accounted for, using

accurate analytical models, and properly addressed in imaging techniques. Broadly, there are

two paradigms to deal with indirect propagation, namely, multipath suppression and multipath

exploitation. The key idea of the former is to characterize the multipath returns and mitigate their

effects on image formation [7]–[16]. Different propertiesof direct and indirect radar returns can

be used to distinguish between the two arrivals and attenuate, if not remove, the indirect returns.

These methods are generally straightforward to apply. However, they do not make use of the

energy and target information contained in the multipath returns. The second method, reminiscent

of the RAKE receiver in wireless communications [17], aims at exploiting the multipath and using

it for imaging enhancements [4], [5], [18]–[24]. By properly modeling the indirect propagation

paths, whether they are resolvable or not, their energy can be captured and attributed to their

respective targets, allowing an increase in target to clutter and noise ratios, and thus culminating

in an enhanced image. Further, areas in the shadow region of highly attenuative targets, which

cannot be illuminated by the radar directly, can be imaged byutilizing multipath. Although
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multipath exploitation has potential and tangible benefits, it often requires prior information or

is computationally demanding.

II. SIGNAL MODEL

A forward scattering model should be developed in order for multipath to be properly exploited

or mitigated. This requires determining the scattered fieldfrom the targets inside the building. If

the building layout and imaging geometry is known, this problem can be exactly solved by using

Maxwell’s equations [25]. However, there are two issues that render this approach impractical.

First, solving a full wave model is computationally demanding and may require vast resources.

Second, inferring the positions of the scatterers from the scattered field, requires solving an

inverse problem. Since the forward problem is nonlinear dueto the influence of the scatterers on

the surrounding field, the inverse problem is even more challenging and, for practical purposes,

impossible to solve. In order to overcome these difficulties, various linear approximations of

the forward scattering model, such as the Born approximation, Kirchoff approximation, and

Geometric Optics (GO), have been introduced, all of which yield tractable solutions to the inverse

problem [1], [26], [27]. More specifically, the Born approximation makes the weak scatterer

assumption, i.e. the electrical parameters of the scatterers do not differ much from that of the

background medium. As such, the total field inside the targetis approximated by the incident

field [26]. The Kirchhoff or Physical Optics (PO) approximation assumes perfectly conducting

targets, and the interaction with the incident field takes place on the surface of the targets only

[27]. For both Born and PO approximations, the background medium, which is the building

enclosure in the problem at hand, is described by the Green’sfunction that depicts the impulse

response of the wave equation. The GO or ray tracing approachuses local plane wave assumption

or “ray of light” to model the propagation of the wave [1]. Since the latter is the simplest and

most commonly used approximation in TWRI, we focus on ray tracing for describing the signal

model.

A. Basic Signal Model

Consider anN -element monostatic linear array of transceivers. Either all of the array elements

can be physically present or a single transceiver can be moved to different locations to synthesize

the intended aperture. For the synthetic aperture, we assume the stop-and-go approximation for

the movement pattern, i.e. the transceiver remains stationary while it transmits and receives at a

particular array position and then moves to the next location. The model may be extended to a
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bistatic or multi-input multi-output (MIMO) SAR scenario where the transmitter(s) and receiver(s)

move along different trajectories. However, this is not treated here for the sake of simplicity.

The linear array is located along thex-axis parallel to an exterior wall of thicknessd, with

its element locations denoted byun, n = 0, . . . , N − 1. At the nth array element location, a

modulated wideband pulseℜ{s(t) exp(j2πfct)} is transmitted, wheret is the fast time,s(t) is

the pulse in the complex baseband, andfc is the carrier frequency. For a scene ofP stationary

point targets behind the wall at positions(xp, zp), thenth element receives the baseband signal

yn(t), given by

yn(t) =
P−1
∑

p=0

σps (t− τpn) exp (−j2πfcτpn) + vn(t), (1)

where σp is the deterministic complex reflectivity of thepth target, andτpn is the two-way

propagation delay between thenth transceiver and thepth target. We consider additive receiver

noise vn(t), which is typically assumed to be i.i.d. complex circular Gaussian process. For

through-the-wall propagation,τpn comprises the components corresponding to traveling distances

before, through, and after the wall [1]. Note that the received signal is a superposition of the

individual direct target returns only. Target interactions with other targets and the surrounding

environment are ignored in this model. However, in indoor scenarios, such interactions are both

pronounced and measurable, and give rise to multipath propagation.

B. Multipath Propagation Model

We broadly categorize multipath returns as follows:

• Interior Wall/Floor/Ceiling Multipath: These involve indirect paths with secondary specular

reflections at a large smooth surface.

• Wall Ringing Multipath: This type involves signals that undergo multiple reflections within

the exterior wall on transit to/from the targets.

• Target-to-Target Interaction: This includes paths where the wave interacts with more than

one diffusely scattering targets.

The interior wall/floor/ceiling multipath returns can be further subdivided into the following

classes:

• First order multipath: This involves one secondary reflection either on transmit or/receive

path.

• Second order multipath: This involves two secondary reflections during the round-trip path.
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Fig. 1. Various cases for multipath in indoor-scenes. From left to right: direct propagation, one secondary reflection

at an interior wall, multiple reflections inside front wall,two secondary reflections at an interior wall, and target-target

multipath.

• Higher-order multipath: This includes multipath returns involving three or more secondary

reflections during the round-trip path.

Fig. 1 shows examples of various multipath propagation cases. As the signal weakens at each

secondary reflection, the higher-order multipath returns can usually be neglected.

Considering a maximum ofR possible propagation paths for each target-transceiver combina-

tion, including the direct path and excluding target-to-target interactions, we can extend thenth

received signal model in (1) as

yn(t) =
R−1
∑

r=0

P−1
∑

p=0

σ(r)
p s

(

t− τ (r)pn

)

exp
(

−j2πfcτ
(r)
pn

)

+ vn(t), (2)

where τ
(r)
pn is the round-trip propagation delay between thenth transceiver and thepth target

along therth path, andσ(r)
p is the complex reflectivity of thepth target when observed through

the rth path. Letr = 0 correspond to the direct path and the remainingR− 1 be the multipath

returns. The various propagation delays can be readily calculated using GO considerations [5]. The

number pathsR is a deterministic parameter that depends on the number and type of scattering

walls, which are assumed to be knowna priori. For illustration, Fig. 2 depicts an example of

an interior wall multipath. The associated propagation delay may be determined by considering

the equivalent two-way path to the corresponding virtual target. Target-to-target interactions can

be included in the multipath model of (2) by assuming additional double bounce paths between

pairs of diffusely scattering targets. Note that, in this case, the associated propagation delays not

only depend on the distances between the transceivers and the targets, but also on the separation

between the targets themselves.
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Fig. 2. Multipath propagation via reflection at an interior wall.

C. Image Formation and the Effects of Multipath

Having developed the forward scattering model, we now proceed with the inverse problem

of determining the locations of theP point targets. The conventional approach is delay-and-

sum beamforming or backprojection, which does not account for multipath propagation. As the

number targets is usually unknowna priori, the target space is discretized into a rectangular grid

of P pixels. Hence,P is the deterministic total number of possible target positions, which is

determined by the dimensions of the area being imaged and thesystem resolution. A non-existing

target is simply represented by a pixel with zero reflectivity. An estimate of the image is obtained

as [1]

I(p) =
1

N

N−1
∑

n=0

yn(t) ∗ s(−t)|
t=τ

(0)
pn

, p = 0, · · · , P − 1, (3)

which employs matched filtering of thenth received signal, followed by sampling the output at

the delay corresponding to direct propagation to the current pixel, and finally, coherently summing

the results corresponding to allN array locations.

If multipath returns are present in the received signals, the image formation process results in

ghost targets, i.e., the energy in the multipath returns is focused at locations where no physical

targets exist. Fig. 3 shows the image of a scene consisting oftwo point targets inside a room,

which was obtained by applying beamforming to data simulated using (2). In addition to the

direct returns, only first-order interior wall multipath and two wall ringing multipath returns

per target were assumed to be present in the measurements. Weobserve that the multipath via

reflections at interior walls causes ghosts within the room,whereas the wall ringing multipath

creates equally spaced copies of the target response in the downrange direction. The ghosts cause

the scene image to be highly cluttered, rendering interpretation difficult and challenging.
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Fig. 3. Beamformed image of a two target scene showing 5 ghosttargets associated with each target (R = 6

propagation paths per target).

III. M ULTIPATH SUPPRESSION

Having described the multipath model and the cluttering effects of multipath propagation, we

revert back to multipath suppression and exploitation. Theobjective of multipath suppression is

to mitigate the effects of indirect propagation on the quality of the reconstructed scene image.

A variety of multipath suppression methods have been devised [7]–[14], which can either act

directly on the raw data measurements or are implemented as apost-processing step for the SAR

image. These methods require the targets and ghosts/multipath returns to be well resolved and

can achieve ghost suppression without any prior knowledge of the scene.

A. Suppression using Ghost Properties in SAR Images

We first describe methods applicable to suppression of ghosts in SAR images resulting from

target-to-target interactions. Considering two targets separated by a distance2δ, the received signal

at thenth transceiver location would consist of three components:the two direct returns with

respective round-trip propagation delaysτ
(0)
1n and τ

(0)
2n , and a double scattering return involving

the two targets with a round-trip propagation delay ofτ
(1)
n = τ

(0)
1n +τ

(0)
2n

2 + 2δ
c

, wherec is the speed

of light in free-space. Since the conventional SAR image formation method, described in Section

II-C, is based on direct returns of single target scatterings, the additional delay associated with

the double scattering multipath results in a ghost located at a farther range than the two targets,

as shown in Fig. 5(a).

Ghosts in SAR images resulting from target-to-target interactions have very specific charac-
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Fig. 4. The support angle of SAR echoes in the wavenumber domain. Ghost target exhibits a narrower support as

compared to the real target.

teristics, which can be exploited to distinguish them from real targets. These characteristics stem

from the changes in the associated double scattering geometry with aspect angle as viewed by

the imaging system [7]. Most targets exhibit aspect dependent scattering. However, unlike the

targets, the ghost intensity takes on high values only over aportion of the synthetic aperture

(see Fig. 4), implying a smaller effective aperture for imaging of ghosts. This causes a wider

point spread function in crossrange for the ghosts as compared to a real target, and subsequently

lower crossrange resolution. Second, the phase characteristics of the ghost differ across the SAR

aperture, leading to changes in the ghost location when observed through different smaller sub-

apertures. This same characteristic causes the ghosts to bedefocused when employing the full

aperture. In order to reveal the ghost characteristics in SAR images, the full aperture is typically

split into small sub-apertures for separate imaging. The above ghost characteristics across the

sub-aperture images are effectively used for its suppression.

A simple technique for using the variation of the ghost intensity across the sub-aperture images

was proposed in [7]. For each “candidate” target, the variance of the intensity is calculated across

the sub-aperture images. Candidates with high variance areidentified as ghosts, and are attenuated

or suppressed to obtain a ghost-free image. A more sophisticated technique models the intensity

variations to distinguish between the targets and the ghosts based on their aspect dependency [8].

However, the target intensity is also a function of its orientation, which is typically unknown.

As such, the intensity variation across the various sub-aperture images can be modeled by a

hidden Markov model (HMM), where the hidden states are the possible target orientations. The

output of the HMM is the intensity profileρ ∈ RM of a certain image pixel, whereM is the

number of sub-apertures. Training data from known targets is used to estimate the state-transition

probabilities, the probability of observing a certain intensity in a given state, and the initial state
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Fig. 5. Multipath suppression using HMM based approach [8].The ghost at the highlighted position has been

suppressed.

probabilities. Thus, a specific HMM can be built for each considered target type. For notational

brevity, we consider only one target type, denoted byT1.

In the testing phase, sub-aperture images are created from the full aperture image using

directional filters. Thepth image pixel has a corresponding intensity profileρp, which may

or may not be generated by theT1 target. The trained HMM is used to evaluate the likelihood

that the observed intensity profile is generated by the giventarget. The likelihood is given by

P(ρp|T1) =
∑

all q

P(ρp|q, T1)P(q|T1), (4)

where P(ρp|q, T1) is the probability thatρp was generated by state sequenceq given targetT1,

P(q|T1) is the probability that state sequenceq occurs given targetT1, and the summation is

carried out over all possible state sequencesq. If the pixel corresponds to the target, the likelihood

should be high, whereas the value should be low if it corresponds to a multipath ghost. The pixel

in the ghost-mitigated image is obtained by multiplying theoriginal full aperture image pixel

with the obtained likelihood value,

I(p)mitigated= P(ρp|T1)I(p).

Hence, only targets that fit the considered model with a high likelihood are retained and the

ghosts are suppressed. The performance of the approach is illustrated in Fig. 5. The ghost is

strongly visible in the original image. However, it has beensuppressed by about 15 dB in the

processed image.

A different class of algorithms exploits the differences inthe phase history of the sub-aperture
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images [9]. As explained above, the ghost targets exhibit a different phase history when viewed

from different aspect angles, which depends on the distance2δ between the two scattering centers.

This is exploited for a SAR image reconstruction scheme thatgenerates a separate image for

each assumedδ. The true scatterer positions are then contained in the direct path image with

δ = 0. This approach can be combined with a scheme that exploits the drift of ghost targets with

aspect angle [10]. Drifting and non-drifting target candidates are separated using the Fourier

transform of a sub-aperture image pair. Non-drifting targets are retained, whereas drifting targets

are suppressed. An issue with the described approach is thatthe phase changes have to be observed

over a large number of aspect angles. Hence, a large apertureand antennas with a large azimuth

beamwidth are required. This may work against the power constraints of the transmit chain.

One way to overcome the large synthetic aperture constraintis to exploit the nonlinearity in

the phase delays of the ghosts directly in the raw data [11]. Under far-field assumptions, real

targets exhibit a linear phase shift when viewed from a shifted aperture. In contrast, the ghosts

have an additional nonlinear term in the phase history, which can be exploited to cancel multipath

returns and obtain a ghost-free image.

All of the aforementioned methods have been mainly developed under the assumption of far-

field conditions, which are mostly applicable to airborne platforms. For ground-based systems,

the building resides usually in the near-field, and may be observed from different sides. This

gives rise to another approach for ghost suppression in TWRI[12]. An image is generated for

each vantage point used to interrogate the building interior. After image registration, the primary

reflections, i.e., the true targets, stay at the same location in all images. However, multipath

returns place ghosts at different locations, since the multipath reflection geometry changes with

the vantage point. Thus, multiplicative fusion of the registered images retains the overlapping

true targets and mitigates the non-overlapping ghosts. This approach is conceptually similar to

[9], [10]. However, the drifts are much larger as the vantagepoints have a large separation. We

note that, as the secondary specular reflection geometry is afunction of the vantage point or

aspect angle, the drift-based methods described above are also applicable to specular multipath

cases.

B. Other Methods for Multipath Suppression

In this section, we briefly discuss multipath suppression methods that do not fit in the above

considered class of algorithms. One possibility is a colocated MIMO based approach [13]. In

MIMO radar imaging, orthogonal waveforms are transmitted from a transmit array and the scene
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reflections are received, using a receive array. Exploitingthe orthogonality of the transmitted

waveforms, the returns can be associated with the respective transmitter. From the propagation

model, we know that the angle of departure (AOD) equals the angle of arrival (AOA) for the

direct path. However, in the multipath propagation case, particularly so for specular multipath,

the transmit and receive paths are different and, consequently, the AOA is different from the

AOD. This effect can be exploited by using spatial filtering on the transmit and receive signals.

By retaining only the signal components with equal AOA and AOD, the multipath returns

can be filtered out. Polarimetric features of the secondary reflections have also been exploited

for multipath suppression [14]. Double scattering of the wave may change the polarization

characteristics, which can be used to differentiate between targets and ghosts. Finally, even an

optimized imaging geometry may help reduce ghosting [15]. If the secondary scatterer is known,

the SAR trajectory can be adjusted such that very little energy is contained in the multipath

returns.

For extended targets modeled by a number of scattering centers, ghosts can appear on or in the

vicinity of the back wall due to target obstructing incidentwaves from reaching the back walls.

This presents a vacuum in the image along the back wall or, if change detection is applied, it

creates ghosts, which could be stronger than targets. In this case, ghost mitigation can proceed

utilizing the respective inter-related geometry of targetand ghosts. Extended targets tend, in

general, to produce blurred ghosts beyond those created by point target model.

IV. M ULTIPATH EXPLOITATION

Multipath suppression discards the energy contained in themultipath returns in order to reduce

their adverse effects on the image. Since multipath returnsultimately originate from the target,

it is prudent to utilize the energy and information contained in such indirect target returns.

Proper exploitation of the multipath returns has been shownto lead to higher signal-to-clutter

ratio (SCR), higher crossrange resolution, and extended imaging regions. However, all these

imaging enhancements usually come at a price. Multipath exploitation schemes either require

prior knowledge of the scattering environment or incur higher computational costs. In the sequel,

we categorize multipath exploitation methods according totheir multipath resolution requirements.

A. Exploitation Requiring Resolved Multipath

For resolved multipath, the radar returns are well separated in fast time and form the target images

and their ghosts. This category includes shadow region imaging in indoor settings [18], where
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Fig. 6. Propagation paths of single and double scattered waves.

information of hidden areas of spatially extended targets,which are not in the line-of-sight of the

radar, is obtained by exploiting target-to-target interactions. The proposed multipath exploitation

is a two-step procedure. First, a conventional SAR imageI(·) is obtained using the radar returns.

The scattering centers observed in the conventional SAR image are treated as new sources for

the double scattered multipath returns. That is, the scattering centers act as new transmitters that

can illuminate the shadow region of the targets. Next, a modified SAR algorithm is employed

that assumes double-scattering propagation to obtain an imageIdouble(·) as

Idouble(p) =
P−1
∑

p′=0

N−1
∑

n=0

I(p′) (yn(t) ∗ s(−t)|t=τpp′n
)F (p, p′, n), p = 0, . . . , P − 1, (5)

whereτpp′n is the round-trip path between the transceiver, the first scattering center at(xp′ , zp′),

and the second scattering point at(xp, zp). The weighting functionF (p, p′, n) discards an ellip-

soidal region surrounding the line-of-sight between thenth antenna location and thep′th first

scattering center to reduce the introduction of ghosts at implausible locations (See the left plot in

Fig. 6). Finally, the two images are normalized and superimposed to obtain a composite image,

which depicts significantly enhanced visible regions of thetargets. For illustration, Fig. 6 also

shows the imagesI(·) andIdouble(·) for a scene containing three targets of circular and rectangular

shapes. Clearly, the conventional SAR image has difficulty in imaging the sides of the rectangular

target, whereas the modified SAR algorithm can reconstruct the rectangular sides of the target.

The main advantage of this algorithm is an extension of the visible target region without the

need of prior knowledge of the scene distribution or the surrounding environment.

Following a similar idea, the work in [5] proposed a ghost mapping approach, wherein the

ghosts in the conventional SAR image, resulting from interior wall multipath, are mapped back

onto the respective targets to obtain a ghost-free image with improved SCR. Complete knowledge

of the room geometry is assumed, especially the locations ofthe interior walls. Using this prior

knowledge, for any target position, the location of the associated ghosts (one for each interior
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Fig. 7. Backprojected image using the conventional (left) and multipath exploitation based (right) image formation

approaches.

wall) can be predicted. The exploitation scheme works as follows. Using conventional image

formation, an image of the scene containing both real targets and ghosts is obtained. Next, for

every image pixel (and possible target location), the energy of the associated ghosts is mapped

back onto the target’s site. This is achieved by a 2D convolution with a space-varying kernel

H(p, r) that uses the information of the ghost locations

Imapping(p) =
R−1
∑

r=0

|I(p)| ∗H(p, r). (6)

The weighting and shape of the kernelH(p, r) is chosen such that the full energy of the

ghosts is utilized to boost the amplitude of the real target.At the same time, the ghosts are

suppressed. Finally, a composite ghost-free image with improved SCR is obtained by a pixel-by-

pixel multiplication of the two images. Fig. 7 illustrates the result of the multipath exploitation

scheme using real data from a scene consisting of a single reflector located between front and back

walls. The conventional SAR image (left) shows both the target and the ghost due to multipath,

originating from the back wall. The ghost is clearly suppressed in the composite image (right)

obtained using the exploitation scheme.

B. Exploitation with Unresolved Multipath

The above described exploitation methods fail if the multipath returns are not resolvable because

they would lead to overlapping targets and ghosts in the conventional SAR image. Such situations

may arise when system constraints permit use of limited bandwidth and/or aperture, and in the

presence of non-homogeneous front walls. However, using proper modeling of the multipath

returns, the additional energy and information therein maystill be exploited to obtain an improved

scene reconstruction.
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If prior knowledge of the surrounding environment is available, i.e. the location and dielectric

properties of the walls, a linear inverse scattering schemebased on the PO model may be

employed for exploiting multipath from walls and other specular reflectors [20]. Using Kirchhoff’s

approximation, a linearized scattering equation can be obtained as

Es(un, k0) =

∫∫

Ω

Ei(un, x, z, k0)G(un, x, z, k0)σ(x, z)dxdz, (7)

whereEs(un, k0) is the scattered field measured at thenth antenna location,k0 is the wave

number in free space,Ei(·) is the incident field,G(·) is Green’s function for the relevant

background medium,σ(x, z) is the unknown target distribution, andΩ describes the spatial region

being interrogated. With prior knowledge of the backgroundscattering environment, Green’s

function can be calculated analytically or numerically. The incident field can be obtained by

the known emitted field of the transmitter and the reflection/refraction properties of the front

wall. Discretizing the region of interestΩ, a finite-dimensional equivalent representation of (7)

is obtained as

Es = Alinscatσ, (8)

whereEs is the vectorized measured scattered field,Alinscat represents the discretized linear

operator in (7), andσ is the discretized and vectorized scattering space. An estimate ofσ can be

achieved by finding the singular value decomposition ofAlinscat and inverting only the dominant

singular values [20], [27]. Other inversion methods may employ a sparsifying regularization, as in

[21]. Sparse reconstruction based multipath exploitationapproaches are described in more detail

in Section V.

A similar method has been proposed to deal with multipath resulting from periodically struc-

tured front walls, e.g. cinder block walls [4]. The propagation through the front wall is modeled

analytically and is exploited in the image formation step toutilize the additional beams that are

directed towards the target by the Floquet modes of the frontwall.

Time-reversal methods [22]–[24] may also be applied to exploit multipath propagation in indoor

imaging. The efficiency of this approach was first demonstrated by Fink [28], using acoustic waves

and first applied to multipath environments in SAR by Sarabandi et al. [22]. Time reversal is

a two-step procedure. In the first step, the pulse is transmitted into the background scene and

reflections are received by an array. This is done to obtain information of the scattering scenario

without the target of interest. In the second step, a time reversed received signal is transmitted

at the receive array into the scene containing the target of interest. In this way, the transmitted
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energy is focused at the original transmitter location. By using this scheme, the information

of the scattering environment can be used to improve the effective array aperture. It should be

noted that if the scattering environment is knowna priori, the first transmit receive cycle can be

executed via a simulation, thereby overcoming the otherwise limiting constraint of background

scene access.

V. MULTIPATH EXPLOITATION /SUPPRESSION INSPARSERECONSTRUCTIONS

Sparse signal representation has been used successfully for solving SAR image formation prob-

lems in a variety of applications [29]. This framework is based on the observation that typical

underlying scenes usually exhibit sparsity in terms of certain features, such as scene reflectivity.

Sparse representation was first employed for imaging of building interiors in [30]. As only

a few targets usually reside in the room, the complex amplitude of the image can be sparsely

represented. The measurement model, motivated by the ray-tracing formulation of (1), is given

by

y = Aσ, (9)

wherey is the stacked vector representing the measurements from all N array element locations,

σ is the sparse vectorized image of the scene, and the matrixA is the dictionary of the radar

responses under the assumed single-scattering based point-target model. The scene image can be

reconstructed using the basis pursuit denoising (BPDN) as follows

σ̂ = min
σ

1

2
‖Aσ − y‖22 + λ‖σ‖1, (10)

whereλ is a regularization parameter which provides a trade-off between fidelity to measurements

and noise tolerance. BPDN is a regularized least-squares solution that favors sparse results. Other

reconstruction methods use greedy approaches to build the solution iteratively. Optionally, a

downsampling of the measurements in (9) can be done to reducethe amount of data. However,

special care has to be taken to ensure incoherence of the sampling matrix and the dictionary in

order to guarantee reliable recovery.

The sparse reconstruction approach for indoor images has been extended to exploit both interior

wall and wall ringing multipath returns in [19] under the assumption of prior knowledge of

building layout. Using a discretized version of the ray-tracing signal model in (2) and assuming

knowledge of the building layout, the measurement vectory can be expressed as a superposition

of individual linear models for each of theR propagation paths

y = A(0)σ(0) +A(1)σ(1) + · · · +A(R−1)σ(R−1), (11)
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Fig. 8. Group sparse structure for the sub-images.

whereσ(r) is the vectorized image of the scene corresponding to therth path andA(r) is the

dictionary that embodies the GO propagation model for therth path. Next, a stacked signal model

is formed

y = Ãσ̃, (12)

with a combined dictionaryÃ = [A(0) A(1) · · · A(R−1)] and stacked image vectors̃σ =
[

(

σ(0)
)T (

σ(1)
)T

· · ·
(

σ(R−1)
)T

]T

. The vector̃σ can be estimated by exploiting the common

support property of theR sparse images. This property stems from the fact that the images

σ(0), . . . ,σ(R−1) describe the same underlying scene. That is, if a certain element in, e.g.,σ(0)

has a nonzero value, the corresponding elements in the otherimages should be also nonzero.

This means that corresponding pixels in the image vectors should be grouped, as shown in Fig.

8, necessitating a group sparse reconstruction approach

ˆ̃σ = argmin
σ̃

1

2
‖ȳ − Ãσ̃‖22 + λ‖σ̃‖2,1, (13)

where

‖σ̃‖2,1 : =
P−1
∑

p=0

∥

∥

∥

∥

[

σ(0)
p , σ(1)

p , . . . , σ(R−1)
p

]T
∥

∥

∥

∥

2

=
P−1
∑

p=0

√

√

√

√

R−1
∑

r=0

σ
(r)
p

(

σ
(r)
p

)

∗

.

(14)

The mixed-norm term in the regularizer ensures the group structure in the sparse reconstruction

result. Finally, the reconstruction results for the individual paths are combined non-coherently

to obtain an overall image with suppressed ghost targets andimproved SCR, see Fig. 9. Data

undersampling can precede the sparse reconstruction in this approach as well.
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Fig. 9. Backprojected image using the full data (left), along with conventional (center) and multipath exploitation

based (right) sparse reconstruction results. The sparse reconstruction used undersampled data, specifically, one fourth

of the array elements and on eighth of the frequencies.

An alternate approach for sparsity based scene reconstruction in the presence of multipath has

been proposed in [16]. The authors assume a convolutive model for multipath, wherein the echo

waveform at each receiver is modeled as the superposition ofthe direct impulse response and

the multipath impulse response forP targets convolved with the transmitted pulse waveforms

yp =
P−1
∑

p=0

s ∗ (gp + dp ∗ gp). (15)

The direct impulse responsegp is assumed to be a single spike and stronger than the indirect

returns. The multipath impulse response is the convolutionof the direct impulse responsegp

with a sparse delay vectordp. The multipath delays for a particular target are assumed constant

across the receivers. Using the above model, an iterative greedy sparse reconstruction approach

is proposed by the authors to estimate the unknown impulse responsesgp and delay vectorsdp.

The estimated direct impulse responses are then used to forma ghost-free image. The method

performs well, especially in the case of wall ringing multipath. The advantage of this approach

lies in the fact that no prior knowledge is needed. However, the additional energy in the multipath

returns is suppressed rather than exploited for image formation.

VI. CONCLUSION

We have considered the problem of imaging building interiors using sythetic aperture radar.

The emerging TWRI technology has experienced a rising interest over the last decade due to its

numerous civil and military applications. We have presented an overview of different approaches

to deal with multipath in indoor radar imaging scenarios. Multipath mitigation and exploitation are
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key to obtaining reliable information when many and/or strong secondary scatterers are present

in the scene of interest. We have provided a balanced and complete account of existing methods

and discussed their respective advantages and disadvantages. Both conventional beamforming and

compressive sensing based methods have been presented, where the latter assume the underlying

scene to be sparse. We bridged analysis with supporting simulation and experimental examples.
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