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Abstract—Through-the-wall radar imaging utilizes electromag-
netic wave propagation to reveal the locations of obscured
targets. Indirect signal propagation paths, usually considered a
nuisance, may be used to improve the quality of through-the-wall
radar images. However, imperfect knowledge of the surrounding
scatterers, i.e. the interior walls of a building, has adverse effects
on such multipath exploitation schemes. We propose a joint scene
reconstruction and wall position estimation approach based on
compressive sensing. This enables effective and reliable utilization
of indirect propagation paths resulting in clutter-free images
of stationary indoor scenes. Simulation results demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) is an emerging
technology that reveals objects behind visually opaque ob-
stacles based on the radar principles [1], [2]. Reconstructing
highly-resolved images of the obscured scenes is usually
desired to maximize the benefits of TWRI in typical civilian
and defense applications [3]. This results in high bandwidth
requirement and use of large array apertures, leading to exces-
sive amounts of collected data. Additionally, target multipath
via interior walls give rise to spurious targets, commonly
known as ghosts, in the image. If precise prior knowledge of
the room layout is available, the additional energy contained
in the multipath returns can be used to one’s advantage.
However, in typical operational scenarios, it is usually difficult
to obtain accurate locations of the interior walls a priori. We,
therefore, propose a multipath exploitation scheme that jointly
reconstructs the image and estimates the wall locations.

Initial work dealt with multipath in TWRI by mitigating
its effects on the images [4]. Further work was based on
exploiting multipath under assumed precise knowledge of the
secondary scatterers [5]. In order to deal with the data deluge,
compressive sensing (CS) has been employed to bring efficient
sensing schemes to TWRI [6]. Recently, the two approaches
have been combined to achieve multipath exploitation in a
CS setting [7]–[9]. However, the underlying assumption of
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perfect knowledge of the secondary scatterers remains the
basis for the existing approaches. An alternate approach for CS
reconstruction in the presence of multipath which does not rely
on prior knowledge of the building layout has been proposed
in [10]. However, the additional energy in the multipath returns
is suppressed rather than exploited for image formation.

In this paper, we address uncertainties in the interior wall
locations through a hybrid approach based on CS multipath
exploitation and wall location estimation. We assume interior
walls to be either parallel or perpendicular to the front exterior
wall, with only limited information on wall positions. We
introduce additional parameters in the multipath propagation
model that represent the positions of the walls. Among all
possible propagation models, i.e., wall locations, we find
the one that yields the sparsest reconstruction subject to a
data-fidelity constraint. This results in a non-linear and non-
convex optimization problem. We propose a nested optimiza-
tion scheme that efficiently and simultaneously yields a ghost-
free reconstruction of the scene and an estimate of the wall
locations. We evaluate the performance of the proposed hybrid
approach using numerical simulations.

The remainder of the paper is organized as follows. In Sec-
tion II we establish the received signal model for the imaging
radar in a multipath environment. Section III describes the pro-
posed multipath exploitation approach. Supporting simulation
results are presented in Section IV and concluding remarks
are provided in Section V.

II. SIGNAL MODEL

Consider a wideband multistatic radar system with M
transmitters and N receivers. We assume a sequential sensing
operation, i.e., only one transmitter is active at a time and
all N receivers are recording the returns. We assume P
stationary point targets residing in a 2D area of interest,
with xp = (xp, yp) being the position of the pth target. For
simplicity, only stationary targets are considered. The model
can be extended in a straightforward manner to handle both
stationary and moving targets as described in [11].



The transmitted wideband pulses with duration T̃ can be
expressed as <{s(t) exp(j2πfct)}, where t is the fast time,
s(t) is the pulse in the complex baseband, and fc is the carrier
frequency. The M transmitters sequentially send pulses with
a temporal spacing of Tr. The radar return, measured by the
nth receiver with the mth transmitter active, is given by

zmn(t) =

P−1∑
p=0

σps (t−mTr − τpmn)

× exp (−j2πfc (mTr + τpmn))

(1)

where σp is the complex reflectivity of the pth point target and
τpmn is the bistatic propagation delay from the mth transmitter
to the pth target and back to the nth receiver.

A discrete model is generated by sampling the targets’
locations at Np points on a Cartesian grid. Each grid point
assumes a certain reflectivity. Note that zero reflectivity is
indicative of the absence of a target at a particular grid point.
The reflectivities are arranged into an Np × 1 vector σ. The
received signal zmn(t) is sampled uniformly at T time steps
with sampling interval Ts. The sampling interval should be
chosen to attain the Nyquist rate of the wideband pulse s(t).
The samples constitute a T × 1 vector zmn, which can be
expressed as

zmn = Ψmnσ, (2)

where Ψmn is the T × Np dictionary matrix of discretized
radar returns from the Np spatial grid points under the assumed
point target model of (1).

Stacking all of the received signal vectors {zmn,m =
0, . . . ,M − 1, n = 0, . . . , N − 1} results in a TMN × 1
measurement vector z and a TMN × Np dictionary matrix
Ψ. Hence, we obtain

z = Ψσ, (3)

which represents the linear model for the radar returns under
direct propagation. The modeling of multipath returns is
introduced in the following subsection.

A. Multipath Returns

In a multipath environment, the transmitted pulse may
reach the receiver via an additional reflection at a secondary
scatterer. In this work, we only deal with specular multipath
via interior walls. If the interior wall positions are known a
priori, the two-way propagation delays can be calculated using
a ray-tracing approach for direct and multipath propagation
[8]. At the receivers, the returns from all propagation paths
r = 0, . . . , R− 1 are superimposed, yielding

z = Ψ(0)σ(0)+Ψ(1)(w1)σ(1)+ · · ·+Ψ(R−1)(wR−1)σ(R−1),
(4)

where r = 0 corresponds to the direct path and the re-
maining R− 1 are the multipaths. The multipath dictionaries
Ψ(r)(wr), r = 1, 2, . . . , R − 1 depend on the interior wall
locations wr and are defined similar to the direct propagation
case, with the difference that the two-way delays must now
incorporate the specular reflection. The reflectivity vectors

σ(r) depend on the propagation path, as the target reflectivity,
in general, changes with the orientation and the bistatic angle.
In (4), we assume the same number of paths for each target
since a particular path weight can be set to zero if the
corresponding path is not available for a target. For notational
convenience, associated path losses have been absorbed into
the corresponding reflectivity vectors.

B. Reduced Data Model

The model in (4) contains the full set of measurements. By
stacking all unknown target reflectivity vectors in (4) to form
one tall vector

σ̃ =

[(
σ(0)

)T (
σ(1)

)T
· · ·
(
σ(R−1)

)T]T
∈ CNpR, (5)

and applying downsampling operation to the resulting high-
dimensional model yields

ȳ = ΦΨ̃(w)σ̃, (6)

where Ψ̃(w) = [Ψ(0) Ψ(1)(w1) · · · Ψ(R−1)(wR−1)] ∈
CTNK×NpR is the concatenated overcomplete dictionary, w
is the vector of wall locations, and the matrix Φ is a suitable
measurement matrix as described in [11] to achieve efficient
data collection.

III. GROUP SPARSE SCENE RECONSTRUCTION

We first briefly review the multipath exploitation based CS
reconstruction of the scene under precise knowledge of the
room layout [7], [8].

Given the reduced measurements ȳ in (6), we aim at re-
covering the scene σ̃ using CS reconstruction. The vectorized
scenes σ(r), corresponding to the R paths, exhibit a group
sparse structure, where the individual groups extend across the
paths for each target location [7]. Employing a group sparse
reconstruction approach results in the optimization problem
[7], [8]

σ̂(w) = arg min
σ̃
‖ȳ −ΦΨ̃(w)σ̃‖2 + λ‖σ̃‖1,2, (7)

where

‖σ̃‖1,2 =

NpNv−1∑
p=0

∥∥∥∥[σ(0)
p , σ(1)

p , . . . , σ(R−1)
p

]T∥∥∥∥
2

(8)

and λ is a regularization parameter. The optimization problem
in (7) can be solved using SparSA [12] or other available
schemes [13], [14] provided that w is known. Once a solution
σ̂(w) is obtained, the individual subimages can be combined
non-coherently to form a composite reflectivity vector.

A. Reconstruction under Wall Location Uncertainties

Inaccurate wall locations lead to degradation of the recon-
structed image. First, the returns traveling along one path are
coherently combined in the measurement model. If the actual
wall location deviates from the assumed one, the apparent
range to the target changes. As such, the assumed delays do
not match the true propagation delays, resulting in a perturbed
representation by the dictionary Ψ̃(w). Also, the target may



Fig. 1. Cost function example for the non-convex optimization problem.

fall in another image pixel as the propagation delays could
be longer or shorter than expected. This leads to the second
issue, where the same target may be reconstructed at different
locations in the respective subimages, thereby violating the
the group sparse property. Therefore, the wall locations w
need to be estimated from the measurements. This can be
accomplished by modifying the optimization problem in (7)
as

min
w,σ̃
‖ȳ −ΦΨ̃(w)σ̃‖2 + λ‖σ̃‖1,2. (9)

As a solution, we obtain a joint estimate of the wall locations
ŵ and the scene reflectivity σ̂. Note that (9) is no longer a
convex program, as the influence ofw on the dictionary is non-
linear. In the near-field case and when considering refraction in
the front wall, there is no closed-form solution for the delays.
We can pose (9) as a nested non-convex/convex problem

min
w

min
σ̃
‖ȳ −ΦΨ̃(w)σ̃‖2 + λ‖σ̃‖1,2︸ ︷︷ ︸

equivalent to (7)

. (10)

Thus, we obtain an outer minimization that minimizes the cost
function w.r.t. w and an inner minimization w.r.t. σ̃ which is
equivalent to (7). The inner problem can be solved efficiently
as described above. Fortunately, the outer problem is of small
dimension, as the size of w and the number of multipath
returns, R − 1, is usually small. If multiple paths involve
secondary reflection at the same wall, e.g., a transmit and a
receive path, the problem dimension can be further reduced.
Typically, the number of elements in w are the same as the
number of interior walls, i.e., three in a typical room.

An example of the cost function of the outer non-convex
optimization problem is plotted in Fig. 1. A typical room size
is used and reflections from both side walls are considered.
The exact scene layout is described in the following section.
The example cost function is clearly non-convex but shows
a unique minimum at the correct wall positions of -2 m and
2 m.

The outer problem can be solved by general non-linear
optimization methods. Note that it is not feasible to find an

analytic solution for the gradient of the problem. As such,
possible candidates are non-derivative Quasi-Newton methods,
derivative-free search methods [15] or genetic algorithm (GA)
based methods [16]. The solutions of (7) must be very accurate
for Quasi-Newton methods, in particular, to prevent erroneous
estimates of the gradient. For the simulation results, we use
Matlab implementations of a Quasi-Newton method and GA.

IV. SIMULATION RESULTS

Simulations were performed for a wideband real aperture
pulse-Doppler radar with M = 1 transmitter and a uniform
linear array with N = 11 receivers. A modulated Gaussian
pulse, centered around fc = 2 GHz, with a relative bandwidth
of 50% is transmitted. At the receiving side, T = 150 fast
time samples in the relevant interval, covering the target and
multipath returns, are taken at a sampling rate of fs = 4 GHz.
The receive array with interelement spacing of 10 cm is
centered around the transmitter and is located 3 m from
the front wall. The wall, which is parallel to the array, is
modeled with thickness d = 20 cm and relative permittivity
εr = 7.66. The imaged region extends 6 m in crossrange
and 4 m in downrange and is centered around a point in
the broadside direction of the array at 4 m downrange. Two
side walls are considered at true locations ±2 m that cause 3
different multipath returns each. There are in total four first-
order multipaths each involving only one secondary reflection
for the round-trip path, and two second order multipaths with
two secondary reflections per round-trip path. The multipath
returns are all considered to be 6 dB weaker than the direct
path. Hence, there are R = 7 paths that are considered in
the received signal. We neither consider any wall returns or
reverberations nor any multipath from the back wall located at
6 m downrange. The scene of interest is spatially discretized
into Np = 64 × 64 pixel grid. We consider four stationary
targets within the room. Two targets with unit reflectivity
reside at (0.5, 3.7) m and (-1.5, 3.7) m and two weaker targets
with reflectivity 0.5 are placed at (0.5, 4.7) m and (1.5, 5.5) m.
We assume all R = 7 considered paths to be available for each
of the four targets.

For the CS reconstruction, measurements from 5 randomly
chosen array elements are recorded and Gaussian mixing of
the fast time samples down to 50 is employed. Hence, only
15% of the original measurements need to be recorded, stored
and processed. We assume 2.1 m and -2.2 m as initial guess
for the side wall locations. Fig. 2a depicts the CS multipath
exploitation result without correcting the wall location error. It
is obvious that the multipath exploitation method of (7) fails to
accurately reconstruct the scene in the presence of wall loca-
tion errors of a few tens of centimeters. Majority of the targets
either appear at biased locations or are missed altogether, and
many false alarms are visible in the image. Next, we plot
the results of the proposed approach using the Quasi-Newton
method in Fig. 2b. The joint wall error correction and image
reconstruction scheme detects and correctly locates the four
targets with no false alarms. This is due to the accurate wall
location estimates of 1.996 m and -2.000 m, i.e., the residual



(a) Without wall location correction (b) Quasi-Newton based correction (c) GA based correction

Fig. 2. CS reconstruction results for various methods.

TABLE I
WALL POSITION ESTIMATION: RMSE, PROBABILITY OF CORRECT

ESTIMATION PLOC , AND AVERAGE NUMBER OF FUNCTION EVALUATIONS.

GA method Quasi-Newton method
Initial Guess RMSE Ploc # of (7) RMSE Ploc # of (7)

2.1 m, -2.2 m 1.64 m 35% 1093 0.14 m 80% 93.7
3.0 m, -0.9 m 1.51 m 35% 1064 0.90 m 25% 90.7

error is a few millimeters. Finally, the imaging result with the
proposed approach using the GA method is shown in Fig. 2c.
The two strong targets are well reconstructed. However, the
weak targets are missed. This is attributed to the less accurate
wall location estimates of 1.994 m and -2.018 m in this case.

Further, the performance of the GA and Quasi-Newton
optimization approaches is assessed using different initial
guesses over 10 independent Monte Carlo runs. We compare
the root mean squared error (RMSE) of the wall position
estimation and the probability of correct wall location Ploc.
An estimated wall location within 1 cm of the true location
is deemed correct. Also, we compute the average number of
times the inner minimization in (9) is performed to determine
the numerical complexity. The results are provided in Table I.

It is evident from Table I that the Quasi-Newton method
outperforms GA when the initial guess is close to the true
wall locations.The GA approach provided rather poor overall
accuracy irrespective of the initial guess. Further, we observe
that the GA approach takes about 1000 and the Quasi-Newton
approach around 100 function evaluations. Hence, the im-
proved reconstruction performance of the proposed approach
comes at the cost of much higher numerical complexity.

V. CONCLUSION

Based on a multipath propagation model for indoor targets
in TWRI, we proposed a CS based reconstruction approach
that jointly exploits target-wall multipath and removes wall
location uncertainties. The proposed approach enables us to
reap the benefits of multipath exploitation even if the room
layout is not precisely known beforehand. Supporting simu-
lation results were provided which not only demonstrated the
need for accurate wall position estimates but also validated the

improved performance of the proposed method in the presence
of wall location uncertainties.
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