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method. In order to further improve practicability in realistic scenarios, a reconstruction method based
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I. INTRODUCTION

The ability to “see” through walls or visually opaque obstacles may be obtained via through-

the-wall radar imaging (TWRI). This emerging technology applies the radar principle, i.e.,

transmitting and receiving electromagnetic (EM) waves to reveal the location of behind-the-wall

objects. Due to the numerous applications in firefighting, search and rescue, and police missions

as well as for situational awareness in urban areas, it has received much research interest in the

recent decade [1]–[9].

With much progress made in this area over the last decade, one of the remaining challenges

in TWRI is dealing effectively with the high amount of multipath in indoor environments [10],

[11]. The EM wave does not only propagate along the shortest path between the antenna and

the target, but may also travel on various indirect paths. These indirect paths mainly arise due to

secondary reflections at interior building walls, floor, and ceiling. In the image formation process,

multipath propagation leads to the appearance of ‘’ghost” targets, which are energy accumulations

at locations that do not correspond to true targets in the scene. The rich indoor multipath

environment has been primarily seen as a nuisance in TWRI, as it clutters the reconstructed

scene and renders interpretation difficult. However, multipath returns can potentially be utilized

to provide more information about the target [12]–[14].

Multipath exploitation in radar imaging was proposed by Kidera et al. [15] to reveal shadowed

parts of a scene. This idea has also been applied to the removal and exploitation of multipath

ghosts in TWRI in [12]. Making use of the sparsity in typical TWRI and urban sensing scenes,

ghost-free images were reconstructed using multipath exploitation within the compressive sensing

(CS) framework in [14], [16], [17]. However, these multipath exploitation methods leverage

prior information of the indoor/urban scattering environment to remove the ghost targets and

improve the image quality. Inaccurate knowledge of interior building layout and the room

geometry can lead to severe impairments in the effectiveness of such multipath exploitation

approaches. In ground-based surveillance, the image impairments would depend on the employed

physical or synthetic aperture as well as whether EM sensing is performed using co-located or

distributed radar system configurations. Both configurations can be defined using man-portable

radar modules equipped with a limited number of transmitters and receivers. Such a modular

approach is emerging as an effective and flexible alternative to vehicle-mounted systems.
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In this paper, we perform joint exploitation of the multipath returns and the sparsity of the

behind-the-wall scene for a modular multistatic radar system comprising several man-portable

TWRI modules. Both co-located and distributed configurations are considered. We assume that

the radar modules cooperate with each other and their measurements are combined in a central

processing station. We consider stationary targets and assume that the front wall reflections have

been mitigated. The received signal model and the reconstruction problem is formulated such that

the combined measurements can be fully utilized to form an image. In contrast to the co-located

case, the measurements from a distributed setup need to be combined in a non-coherent manner

as the target reflectvity usually changes with aspect and bistatic angles. To this end, we extend the

group sparse reconstruction approach for multipath exploitation, originally proposed in [14], to

exploit the structure in the sparse solution of the image reconstruction problem for the co-located

and distributed configurations. The dictionaries for both configurations are analyzed analytically

to predict the reconstruction performance. Further, we propose a parametrization of the wall

locations in the signal model to accommodate uncertainties in the knowledge of the scattering

environment. This leads to a joint optimization problem to simultaneously solve for the wall

locations and perform a ghost-free scene reconstruction at the central processing station. However,

the optimization problem is highly non-linear and non-convex in the wall parameters. This is

addressed by adopting a nested approach, wherein the convex scene reconstruction problem

is solved for fixed wall locations in an interactive fashion, with the wall locations updated at

each step. We investigate various non-linear and non-convex optimization methods and evaluate

their performance using numerical simulations and measured data from a semi-controlled lab

experiment.

The main contributions of this paper can be summarized as follows:

• We propose a modular approach for TWRI using man-portable small aperture radar modules

and analyze the corresponding dictionaries in terms of their impact on sparse reconstruction

performance.

• A parametric approach to sparse reconstruction in the presence of multipath propagation and

wall location uncertainties is proposed for both distributed and co-located configurations.

Various methods for solving the joint non-convex optimization problem are evaluated.

It is noted that the proposed multipath exploitation approach in the presence of wall location
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uncertainties is also applicable to translational motion via change detection imaging. In this

case, by coherently subtracting two sets of measurements taken at different time instants, the

equivalent stationary scene would depict the initial and final positions of targets in the image. The

sudden partial motion of a large scatterer, e.g. the human torso and limbs, also has an equivalent

stationary scene that was modeled and sparsely reconstructed in [18]. Further, related sparsity

based concepts have been used to estimate deviations in the flight path for improved motion

correction in airborne synthetic aperture radar (SAR) imaging [19]–[21]. Airborne SAR faces

a similar problem, as images become de-focused if uncertainties in the platform motion exist.

Ohnon and Cetin [19] treat these uncertainties as phase errors and propose a joint sparsity-based

SAR imaging and phase error correction method. Wei et al. [20] model the platform position

errors in azimuth and propose an iterative scheme that estimates the position errors and obtains

a CS reconstruction of the SAR image. Yang et al. [21] model platform position errors in all

directions and propose a sparsity-based method to jointly recover the motion errors and the SAR

image. Compressive sensing (CS) in the context of multiple-input multiple-output air surveillance

radar has been studied for the co-located and distributed cases in [22], [23]. Therein, efficient

sparse reconstruction method are proposed to reconstruct the targets using a co-located [22] and

distributed [23] radar configuration, however, no multipath effects or uncertainties in the array

locations are considered. To the best of our knowledge, multipath modeling and exploitation

in sparse image reconstruction both with and without wall location uncertainties using small

aperture modular systems has not been addressed in prior works in the context of TWRI.

The remainder of the paper is organized as follows. In Section II, we discuss the multipath

signal models for co-located and distributed placements of the radar modules. Furthermore, the

resulting dictionaries are analyzed to establish theoretical performance bounds on the sparse

scene reconstruction. In Section III, we propose sparse reconstruction approaches for co-located

and distributed TWRI systems. These are combined with a method to jointly estimate interior

wall locations and reconstruct the scene in order to deal with wall position uncertainties. The

effectiveness of the proposed algorithms is demonstrated using simulated and measured data in

Sections IV, respectively. We conclude the paper in Section V.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). (·)T

and (·)H , respectively, denote the transpose and conjugate transpose of a matrix or vector, whereas

diag(·) and blkdiag(·) represent a diagonal matrix and a block diagonal matrix, respectively.
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‖ · ‖2 and ‖ · ‖1,2, respectively, denote the Euclidean and mixed `1-`2 norms. In the context of

compressive sensing, z̄ is a measurement vector, Φ represents a measurement or downsampling

matrix, Ψ denotes a dictionary, and σ is the unknown sparse vector of interest, i.e., the image.

Moreover, we define the sensing matrix A = ΦΨ.

II. SIGNAL MODEL

We establish a multistatic pulsed radar model with different transmit and receive arrays. We

assume a modular concept, i.e. the transmit and receive arrays consist of several sub-arrays.

Thus, each radar module has a limited number of transmitters and receivers that operate fully

coherently. The measurements from all modules are communicated to a central processing unit

where they are fused to reconstruct the scene being interrogated. The radar modules may be

deployed such that sensing through walls is performed based on co-located or distributed aperture

configurations. In the co-located case, the modules are closely-spaced so that the target is viewed

with the same aspect angle and the measurements from the various modules can be combined

coherently. On the other hand, in the distributed case, the modules are placed distant apart and the

targets’ aspect angles may vary widely across the modules. Therefore, a coherent combination of

the measurements from the various modules is no longer feasible. In the sequel, we first describe

the measurement model for a single module and then extend it to multiple radar modules.

A. Signal Model Based on a Single Module

Each module consists of an M -element transmit array and an N -element receive array. We

assume a sequential operation of the transmitters, i.e. the waveforms are orthogonal by virtue

of time multiplexing.

Let the two-dimensional (2-D) scene of interest be discretized into a uniform grid of P points,

with xp = (xp, yp), p = 0, . . . , P − 1 being the position of the pth grid point. The complex

reflectivity associated with the pth grid point is denoted by σp, with σp = 0 representing the

absence of a point target at the pth grid point. With a small number of targets, only a few

of the grid points assume non-zero values. The transmitted wideband pulse is expressed as

<{s(t) exp(j2πfct)}, where t is the fast time, s(t) is the pulse in the complex baseband, and

fc is the carrier frequency. The sequential operation of the M transmitters results in a temporal

spacing of integer multiples of Tr between their pulses. Neglecting the front wall returns and
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the multipath contributions, the received signal corresponding to transmitter m = 0, . . . ,M − 1

and receiver n = 0, . . . , N − 1 is given by

zmn(t) =
P−1∑
p=0

σps (t−mTr − τpmn) e−j2πfc(mTr+τpmn), (1)

where τpmn is the bistatic propagation delay from the mth transmitter to the pth target and back

to the nth receiver. The received signal zmn(t) is sampled uniformly at NT time steps with

sampling interval T resulting in an NT ×1 vector zmn. The sampling interval is chosen to attain

the Nyquist rate of the wideband pulse s(t). After discretization and vectorization of (1), we

obtain

z = Ψ(0)σ(0), (2)

where z is the result of stacking the received signal vectors {zmn,m = 0, . . . ,M − 1, n =

0, . . . , N − 1} and σ(0) = [σ0, . . . , σP−1]T . The direct path dictionary Ψ(0) is defined as[
Ψ(0)

]
i+nNT +mNTN,p

= s (ti −mTr − τpmn) e−j2πfc(mTr+τpmn), (3)

where i = 0, . . . , NT − 1,m = 0, . . . ,M − 1, n = 0, . . . , N − 1, p = 0, . . . , P − 1.

Whereas the front wall contribution may be removed by a suitable wall clutter mitigation

method [24]–[26], the multipath contribution should be properly modeled. We employ the

geometric optics multipath model from [14], [27] in order to describe the received multipath

returns. We restrict ourselves to multipath originating from secondary scattering at interior walls.

The wall locations are parametrized as prior knowledge of exact wall locations is usually not

available. Modeling R− 1 additive multipath contributions in the received signal, we obtain

z = Ψ(0)σ(0) + Ψ(1)(w)σ(1) + · · ·+ Ψ(R−1)(w)σ(R−1), (4)

where Ψ(r)(w), r = 1, . . . , R−1 are the dictionaries under multipath propagation, w is the vector

of wall positions, and σ(r) is the reflectivity vector or sub-image for the rth path. The multipath

dictionaries Ψ(r)(w) can be calculated using (3), with τpmn replaced by the corresponding path

and wall location dependent propagation delays τ (r)
pmn(w). The propagation delays for indirect

paths involving secondary reflections at interior walls can be calculated using the image source

principle [14]. That is, the indirect path can be reflected about the interior wall, yielding an

alternative antenna-target geometry involving a virtual target, as shown in Fig. xx. The delay
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associated with the indirect path is the same as that of the path from the virtual target to the

antenna.

We assume a rectangular room aligned with the coordinate system; hence, the location of each

wall can be described by a single parameter. That is, downrange coordinates specify the locations

of walls parallel to the horizontal axis, whereas crossrange coordinates are sufficient for walls

that are perpendicular to the horizontal axis. In a typical scenario, w contains three elements

corresponding to the crossrange or downrange positions of the two side walls and the back wall

enclosing the room. Note that a path and, thus, the corresponding dictionary are only affected by

an element in w if the path involves secondary scattering at the respective interior wall. As the

target scattering occurs under different aspect or bistatic angles, the radar cross section (RCS)

may change from one path to another. Further, any additional losses on the multipath can be

absorbed into the respective reflectivity vector. For a more detailed treatment of how to obtain

the multipath model, refer to [14], [27]. Finally, we stack all sub-images in a PR × 1 vector

σ̃ =
[(
σ(0)

)T (
σ(1)

)T
· · ·

(
σ(R−1)

)T ]T
and concatenate the dictionaries corresponding to the R

paths to form a composite dictionary Ψ̃(w) = [Ψ(0) Ψ(1)(w) · · · Ψ(R−1)(w)] ∈ CNTMN×PR,

resulting in

z̄ = Φz + n̄ = ΦΨ̃(w)σ̃ + n̄, (5)

where Φ represents a possible downsampling operation, and n̄ is the measurement noise vector,

which is typically modeled as complex circular Gaussian. A common choice for Φ is a random

mixing scheme in the time domain and/or skipping array elements in the spatial domain [28],

[29]. If no downsampling in time or space is desired, Φ can be set as the identity matrix.

Note that the model is linear in the unknown reflectivity vector. However, it is non-linear in

the unknown wall positions.

B. Signal Model Based on Multiple Radar Modules

Consider the case where a number S of the above described multistatic pulsed radar modules

are deployed. Each transmitted pulse is assumed to be received simultaneously by all receivers

from all units. Hence, the total number of measurements is increased S2-fold. Two cases can

be distinguished, namely, the co-located and the distributed configurations. In the co-located

configuration, the modules are positioned next to each other at the same standoff distance from

June 5, 2015 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 8

the front wall, emulating a multistatic radar system with much longer transmit and receive array

apertures. The resulting system views the scene approximately from the same angle, thereby

permitting the RCS changes to be neglected and all of the measurements to be coherently

combined. The distributed case offers the additional flexibility of deploying the radar modules

widely separated with arbitrary standoff distances either along the front wall or surrounding the

scene of interest. As such, the aspect and/or bistatic angles and, in turn, the RCS changes across

the units. Therefore, the acquired measurements cannot be combined coherently.

In the sequel, the signal models for the two cases are developed. We consider measurement

vectors {z̄sTxsRx ; sTx, sRx = 0, . . . , S − 1}, where sTx and sRx are the indices of the transmitting

and receiving modules, respectively. Likewise, the dictionaries Ψ̃sTxsRx(w) are indexed by the

transmitting and receiving modules, whereas the wall position vector w is universal. Finally, the

spatial downsampling operation for the transmitting module sTx is denoted as ΦTx
s , while ΦRx

s

represents the downsampling matrix for the receiving module sRx, which includes not only the

spatial downsampling of the N receivers but also the linear mixing scheme for downsampling

in the time domain. An additive noise vector n for the full received signal is also considered.

Using the above notation, the signal model in the co-located case can be expressed as

z̄0 0

z̄0 1

...

z̄0 S−1

...

z̄S−1 S−1


=



ΦTx
0 ΦRx

0 Ψ̃0 0(w)

ΦTx
0 ΦRx

1 Ψ̃0 1(w)
...

ΦTx
0 ΦRx

S−1Ψ̃0 S−1(w)
...

ΦTx
S−1Φ

Rx
S−1Ψ̃S−1 S−1(w)


σ̃ + n. (6)

Note that a common reflectivity vector σ̃ is sufficient for all combinations of the various modules,

as the target RCS is assumed to be the same in this case.
In contrast to the co-located configuration, a separate reflectivity vector σ̃sTxsRx for each

combination of sTx and sRx has to be introduced in the distributed case. This accounts for
the RCS change that is inherent in a distributed aperture scenario. Hence, we obtain the signal
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model 

z̄0 0

z̄0 1

...

z̄0 S−1
...

z̄S−1 S−1


= bd



ΦTx
0 ΦRx

0 Ψ̃0 0(w)

ΦTx
0 ΦRx

1 Ψ̃0 1(w)
...

ΦTx
0 ΦRx

S−1Ψ̃0 S−1(w)
...

ΦTx
S−1Φ

Rx
S−1Ψ̃S−1 S−1(w)





σ̃0 0

σ̃0 1

...

σ̃0 S−1
...

σ̃S−1 S−1


+ n, (7)

where bd(·) denotes the block diagonal matrix operation. Note that the number of unknowns has

increased S2-fold as compared to the co-located case. However, this increase can be compensated

by exploiting the structure contained in the combined vector of unknowns. Essentially, each

transmit-receive module pair observes the same scene of interest, potentially from a different

vantage point. As the positions of the radar modules are assumed to be known, the image grid

can be chosen, such that the individual sub-images are represented in the same global coordinate

system. Hence, the locations of the targets in this global coordinate system are invariant. This

results in a group sparse structure, and all σ̃sTxsRx vectors share a common support or sparsity

pattern which will be detailed in a later section.

C. Analytical Comparison of the Dictionaries

In order to compare the co-located and distributed cases, we analyze the two dictionaries in the

respective models (6) and (7) in more detail. In both cases, the dictionary matrices are composed

of the same blocks ΦTx
sTxΦRx

sRxΨ̃sTxsRx , sTx, sRx = 0, . . . , S−1. For notational convenience, a linear

index for the S2 blocks is used, i.e., q = 0, . . . , Q − 1, Q = S2, and the dictionary blocks are

represented by

A(q) = ΦTx
sTxΦRx

sRxΨ̃sTxsRx , sTx =
⌊
q

S

⌋
,

sRx = q mod S, q = 0, . . . , Q− 1.

Hence, the dictionary in the co-located model (6) can be expressed as

Aco-loc =
[(
A(0)

)T
, . . . ,

(
A(Q−1)

)T ]T
(8)

and the one for the distributed model (7) as

Adistr = bd(A(0), . . . ,A(Q−1)). (9)
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First, we compare the two dictionaries in terms of their coherence. For a dictionary A, the

coherence is defined as [30]

µ(A) = max
k,l 6=k

|aHk al|
‖ak‖2‖al‖2

, (10)

where ak denotes the k-th column of A and (·)H denotes the Hermitian transpose. In other
words, the coherence of a dictionary can be seen as the maximum correlation between any two
of its columns. Without loss of generality, we assume that the columns of the sub-matrices A(q)

in (8) and (9) are normalized, i.e. ‖a(q)
k ‖2 = 1,∀q = 0, . . . , Q − 1, k = 0, . . . , P − 1. Further,

we define the coherence values of the sub-matrices as µ(A(q)) = µq, q = 0, . . . , Q− 1. For the
co-located case, the coherence is given by

µ(Aco-loc)

= max
k,l 6=k

∣∣∣∣(a(0)
k

)H
a
(0)
l + · · ·+

(
a
(Q−1)
k

)H
a
(Q−1)
l

∣∣∣∣∥∥∥∥(a(0)
k

)T
, . . . ,

(
a
(Q−1)
k

)T∥∥∥∥
2

∥∥∥∥(a(0)
l

)T
, . . . ,

(
a
(Q−1)
l

)T∥∥∥∥
2

≤
max
k,l 6=k

∣∣∣∣(a(0)
k

)H
a
(0)
l

∣∣∣∣+ · · ·+ max
k,l 6=k

∣∣∣∣(a(Q−1)
k

)H
a
(Q−1)
l

∣∣∣∣
√
Q
√
Q

=
1

Q

Q−1∑
q=0

µq. (11)

In essence, the overall dictionary coherence is the average of the individual coherences of the

sub-matrices.

For the distributed case, we obtain

µ(Adistr) = max
q

max
k,l 6=k

∣∣∣∣(a(q)
k

)H
a

(q)
l

∣∣∣∣∥∥∥(a(q)
k

)∥∥∥
2

∥∥∥(a(q)
l

)∥∥∥
2

= max
q
µq, (12)

which implies that the overall dictionary coherence is the maximum of the individual coherences

of the sub-matrices. Clearly, µ(Adistr) ≥ µ(Aco-loc). Furthermore, the distributed configuration

suffers from the Q-fold increase in the ambient dimension and in the number of non-zero elements

in the solution which puts it at a disadvantage compared to the co-located case. However, there

is an important underlying structure of the solution of equation (7) which should be recognized.

Since all sub-vectors σ̃sTxsRx in (7) share the same sparsity pattern, rather than calculating the

coherence of Adistr, we should determine the block-coherence of the dictionary as proposed in

[31]. In so doing, we capture the advantage of exploiting the block-structure of the solution.
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The block-coherence of a dictionary A is defined as [31]

µB(A) = max
k,l 6=k

1

d
ρ(AH

k Al), (13)

where d denotes the block size, ρ(·) is the spectral norm, i.e. the maximum eigenvalue of the

matrix argument, and Al is the sub-matrix of A that contains all columns belonging to the l-th

block. The definition of block-coherence (13) assumes that the group sparse dictionary atoms

reside in adjacent columns. However, for the problem at hand, a group consists of all columns

associated with a certain target for any radar unit pair. As these columns are not adjacent to

each other in Adistr, the dictionary needs to be rearranged. The permuted dictionary is defined

as

Ãdistr = [blkdiag(a
(0)
0 , . . . ,a

(Q−1)
0 ), . . . , blkdiag(a

(0)
P−1, . . . ,a

(Q−1)
P−1 )], (14)

which obeys the block-structure as assumed in (13). This yields the block-coherence in the

distributed configuration as

µB(Ãdistr)

= max
k,l 6=k

1

Q
ρ
(
bd(a

(0)
k , . . . ,a

(Q−1)
k )Hbd(a

(0)
l , . . . ,a

(Q−1)
l )

)
= max

k,l 6=k

1

Q
ρ
(

diag
((
a

(0)
k

)H
a

(0)
l , . . . ,

(
a

(Q−1)
k

)H
a

(Q−1)
l

))
= max

k,l 6=k

1

Q
max
q

(∣∣∣∣(a(0)
k

)H
a

(0)
l

∣∣∣∣ , . . . , ∣∣∣∣(a(Q−1)
k

)H
a

(Q−1)
l

∣∣∣∣)
=

1

Q
max
q
µq =

1

Q
µ(Adistr), (15)

which is an improvement by a factor of Q as compared to the conventional coherence.

Finally, a remark on the relation between the dictionary coherence and radar parameters, such

as transmit pulse, array geometry or scene discretization, is in order. It has been shown that the

dictionary coherence is closely related to the radar ambiguity function (AF) [32]. In the far-field,

the AF can be easily calculated and the values only depend on the transmit pulse, delay, and

Doppler. However, in the near-field and bistatic radar case, the AF always depends on the radar

geometry. For the considered multipath exploitation scenario, the room geometry also needs to

be taken into account, as multipath affects the coherence of the dictionary. These factors render

the derivation of the analytic expressions or bounds for the coherence values quite challenging.
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Instead, we compute the coherence and provide the corresponding values for the simulation

examples in Section IV.

Having derived the coherence values in (11), (12) and (15), we next compare the reconstruction

guarantees for the corresponding cases. For the noise-free signal model, an upper limit on the

sparsity for successful scene reconstruction is given as [30], [33]

K <
1

2
(µ−1 + 1), (16)

where K is the sparsity level of the scene. A similar condition for block sparse reconstruction

can be expressed as [31]

K <
1

2d
(µ−1

B + d). (17)

For the considered configurations, we obtain the following upper bounds on the number of targets

(or sparsity of the scene) for successful scene recovery,

Kco-loc <
1

2
(µ(Aco-loc)

−1 + 1) (18)

Kdistr,nonblk <
1

2Q
(µ(Adistr)

−1 + 1) (19)

Kdistr,blk <
1

2Q
(µB(Ãdistr)

−1 +Q) =
1

2
(µ(Adistr)

−1 + 1). (20)

It is clear that without considering the block structure for the distributed case, the maximum

number of targets is reduced by approximately a factor of Q from the co-located to the distributed

configuration. However, when exploiting the group structure, the maximum number of targets

Kdistr,blk is of the same order as for the co-located case. Further, note that equations (18)-(20)

do not hold exactly in the presence of noise. However, they are expected to give a reasonable

indication of the reconstruction performance. This will be supported by simulation in Section

IV.

III. SPARSE SCENE RECONSTRUCTION UNDER KNOWN AND UNCERTAIN WALL POSITIONS

In this section, we first briefly review the sparsity based approach for scene reconstruction

with a single radar module under known wall locations. Next, we present the method to deal

with multiple radar modules for known wall locations. Subsequently, we propose the sparse

reconstruction method under wall location uncertainties.
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A. Single Module and Known Wall Locations

Given the measurements z̄ of a single unit in (5), we aim at recovering the scene σ̃ using

sparse reconstruction. As the same physical scene is observed via all R paths, the vectorized

scene σ̃ exhibits a group sparse structure, with the group extending across the R paths for each

target location [16]. Employing a group sparse reconstruction approach results in a mixed `1-`2

norm optimization problem [14], [16]

ˆ̃σ = arg min
σ̃
‖z̄ −ΦΨ̃(w)σ̃‖2

2 + λ‖σ̃‖1,2, (21)

where

‖σ̃‖1,2 =
P−1∑
p=0

∥∥∥∥[σ(0)
p , σ(1)

p , . . . , σ(R−1)
p

]T ∥∥∥∥
2
, (22)

and λ is a regularization parameter. The optimization problem in (21) can be solved using

SparSA [34] or other available schemes [31], [35]. Once a solution ˆ̃σ is obtained, the individual

sub-images can be combined noncoherently to form a composite image of the scene of interest.

Note that perfect knowledge of w is assumed in this case.

B. Multiple Modules and Known Walls

In the case of multiple modules, we first express the signal models (6) and (7), corresponding

to the co-located and distributed configurations, under a common structure as

z̆ = Ă(w)σ̆ + n. (23)

The differences lie in the dimensions of the reflectivity vector σ̆ and the dictionary Ă(w) and

the size of the groups in the group sparse reconstruction. A comparison of the relevant properties

is provided in Table I. As the measurements from the various modules are coherently combined

in the co-located case, the number of unknowns and the group size does not change as compared

to the single module case. In fact, the multi-module system is equivalent to a single radar unit

with larger arrays. On the other hand, the noncoherent combining of the various measurements

in the distributed case cause both the number of unknowns and the group size to increase by a

factor of S2. As discussed in the dictionary analysis, the larger group size at least partly offsets

the increase in the number of unknowns.
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TABLE I

KEY PARAMETERS IN GROUP SPARSE RECONSTRUCTION

Single Module Co-Located Distributed

No. of transmit-receive module pairs 1 S2 S2

No. of unknown reflectivity vectors or sub-

images
1 1 S2

Group size R R RS2

For the multiple module case, we can employ the same mixed-norm reconstruction as in (21),

resulting in
ˆ̆σ = arg min

σ̆
‖z̆ − Ă(w)σ̆‖2

2 + λ‖σ̆‖1,2. (24)

Note that the regularization term ‖σ̆‖1,2 depends on the number and structure of the groups.

Hence, it differs for the distributed and the co-located cases.

C. Unknown Wall Locations

In practice, precise prior knowledge of the interior wall locations w is usually not available.

The walls locations rather have to be estimated from the returns using building layout estimation

techniques, such as [36], [2, Ch. 2, p. 49]. These estimates are subject to errors that can be on

the order of TWRI system wavelengths. Multipath exploitation requires accurate knowledge of

the room layout in order to deliver high quality images. In the presence of wall location errors,

two mechanisms lead to degradation of the reconstructed image quality. First, the returns from

a specific multipath are coherently combined in the measurement model. Since the wall location

errors cause the expected multipath delays to deviate from the actual delays, the coherence of the

multipath returns is lost, resulting in a mismatch between the dictionary Ă(w) and the received

signal. Second, wall location errors may lead to a misalignment of the various sub-images in

the signal model, thereby violating the group sparse structure of σ̆. The perfect alignment of

the sub-images is only guaranteed if the multipath delays are equal to the assumed ones.

In order to deal with the aforementioned issues, it is imperative to take wall position uncer-

tainties into account in the reconstruction process. To this end, we propose a joint optimization

approach for image reconstruction and wall position estimation, i.e., a joint minimization over
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the reflectvity vector σ̆ and the wall position vector w,

min
w,σ̆
‖z̆ − Ă(w)σ̆‖2

2 + λ‖σ̆‖1,2. (25)

Note that the reconstruction problem (25) is now a non-convex optimization problem as the

dictionary has a nonlinear dependence on the wall locations. In fact, in the near-field imaging

case, there is not even a closed-form solution for the delays contained in the matrix [37], which

renders the problem very difficult to solve directly. However, it is always possible to express

(25) as a nested optimization problem [38, Ch. 4, p. 133]. Choosing to optimize over σ̆ first

and then over w, (25) can equivalently be posed as [27]

min
w

min
σ̆
‖z̆ − Ă(w)σ̆‖2

2 + λ‖σ̆‖1,2. (26)

The overall optimization problem is still non-convex, but it now consists of a convex part and a

non-convex part. More specifically, the inner optimization over σ̆ is convex, which is exactly the

same as the reconstruction problem (24) and can be solved efficiently. The outer minimization

is non-convex; however, the dimension of the solution space is much smaller and, thus, easier

to search. In a typical room, the number of unknown interior wall locations is at the most

three, whereas the number of grid points is several orders of magnitude larger. Note that (26)

can be seen as a highly-parametrized dictionary learning problem. The parameters w should

be learned, such that the sparsest representation of the observed scene is achieved. The high

degree of parametrization comes from the physical aspects of wave propagation in the indoor

environment, thereby restricting the number of degrees of freedom. Further, although the nested

optimization problem is posed for the multiple module case, it is still applicable to the single

module based reconstruction under wall location uncertainties as well. This is because the single

unit module is a special case of the co-located multiple module configuration with S = 1.

The outer nonconvex problem in (26) can be solved by general nonlinear optimization methods.

Since there is no closed-form method to compute the dictionary, it is not feasible to find an

analytic solution for the gradient of the problem. As such, possible candidates are, among

others, Quasi-Newton (QN) methods using finite-difference gradients [39] or heuristic methods,

such as particle swarm optimization (PSO) [40], [41]. The benefit of the the Quasi-Newton

method is its guaranteed convergence. However, the solutions of the inner convex optimization

problem must be very accurate in order to prevent erroneous finite-difference estimates of the
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gradient for QN methods. Provided that the estimates of the gradient are sufficiently accurate,

the objective value decreases at every iteration. As the objective function in (26) is bounded

below, the algorithm will always converge to a local minimum. Since the objective function

is non-convex and, therefore, may have many local minima, finding a local minimum is not

equivalent to finding the global minimum. In general, we cannot make any claims about the

“goodness” of the local minimum found. On the other hand, being a heuristic method, PSO has

no performance guarantees. However, it does provide a certain probability of overcoming local

minima and descending closer to the global minimum. We support these considerations with

numerical results using simulated and measured data in Section IV.

A remark on the computational complexity of the proposed reconstruction approach is in

order. The computational complexity lies mainly in calculation of the propagation delays for the

dictionaries and in evaluating the matrix-vector multiplications in equations (6) and (7) or their

adjoint versions. In order to solve one instance of (24), the delays should be calculated once,

whereas the matrix-vector multiplications are carried out multiple times due to the iterative nature

of the available solvers. For simplicity, we compare the QN method with PSO by counting the

number of mixed-norm problems (24) that need to be solved. Based on extensive simulations,

we found that PSO usually required roughly ten times the number of solved sub-problems as

compared to QN method. The detailed results are provided in Section IV. In general, the wall

error correction method results in much higher numerical cost as compared to the known wall

location case.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

Simulations were performed for a simple rectangular room enclosed by four homogeneous

walls. The size of the room is 4 m by 4 m, i.e., the walls are located 2 m away in crossrange

from the center of the room. The walls are modeled with thickness d = 20 cm and relative

permittivity εr = 7.66, which is typical of concrete. We considerS = 2 radar modules, each

being a wideband real aperture pulsed radar with a uniform linear array of N = 3 receivers

and an inter-element spacing of 10 cm. The central element of each receive array also acts

as a transmitter, i.e., M = 1. We examine three different scenarios to compare co-located and

distributed placements of the modules. Access to the outside perimeter of the room from up to
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two different sides is assumed. When one module is transmitting, both modules simultaneously

record the returns with their respective receive arrays. All measurements are finally assumed to

be available at a single data processing center where the scene reconstruction is carried out.

Each module is oriented parallel to the wall facing it and is positioned at a stand-off distance

of 3 m from the wall. Each radar module transmits modulated Gaussian pulses, centered at

fc = 2 GHz, with a relative bandwidth of 50%. At each element of the receive arrays, T = 150

fast time samples are collected in the relevant interval, covering the target and multipath returns

with a sampling rate of fs = 4 GHz. For each array, each side wall is assumed to cause 3

different multipath returns; multipath associated with the back wall is not considered. For each

side wall, we observe two different first-order multipath returns. A first-order multipath involves

only one secondary reflection at an interior wall, which could take place either on the way from

the transmitter to the target or from the target back to the receiver. Also, we consider one second-

order multipath for each side wall, where a secondary reflection takes place at the same interior

wall on both legs of the round-trip path. In total, there are R = 7 paths that are considered

in the received signal corresponding to each transmit-receive pair. The multipath returns are all

considered to be 6 dB weaker than the direct path. Further, we assume that the returns from

the front wall have been properly suppressed. In all the simulations, complex circular Gaussian

noise with 20 dB signal-to-noise ratio (SNR) is added to the simulated measurements. Further,

as we are focusing on the benefit of sparse reconstruction rather than reduction in the number

of measurements, we do not employ any downsampling operation in the simulations.

The imaged region extends 5 m each in crossrange and downrange and is centered at (0 m,5 m),

which is the center of the room.The scene is spatially discretized into P = 64×64 pixels. Errors

in positions of the front and back walls are not considered, since the multipath returns are

assumed to be due to secondary reflections at the side walls only. The initial estimate of the

locations of the side walls is drawn from a uniform distribution. The distribution is centered

around the true wall locations and extends to errors of ±0.5 m. In essence, we are assuming

that a building layout estimation technique has been applied to the data beforehand yielding

the estimates of the side wall locations, which are within a 0.5 m error margin. The specific

error margin is chosen in accordance with the specifications of the VisiBuilding Program by

the U.S. Defense Advanced Research Projects Agency [42]. As such, the search space of the

proposed dictionary learning method is limited by box constraints centered around the initial
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Fig. 1. Scene geometries for Scenario A.

estimates of the wall locations. We use the Matlab implementation of a Quasi- Newton method

and a particle swarm optimization toolbox for Matlab [43] for solving the outer non-convex

optimization problem in the simulations, whereas SparSA [34] is used to solve the inner convex

problem. Note that the optimal choice of the regularization parameter λ is still an open problem

and has not been considered in this work. A common heuristic λ = λnorm‖Ă(w)H z̆‖∞ has been

used, with λnorm = 0.3. The specific scene layout in terms of the TWRI module placements

and the number and locations of the targets in the room are described below for each of the

considered scenarios separately.

1) Scenario A: In Scenario A, eight point targets of equal reflectivity are considered at specific

locations in the room, as illustrated in Fig. 1. We consider both co-located and distributed

configurations. For the distributed configuration, the two modules are located on opposing sides

of the room, as shown in Fig. 1a, whereas both modules are placed next to each other facing the

front wall in the co-located case. Example reconstructions of the scene under various conditions

are depicted in Fig.2. We observe that the scene is reconstructed almost perfectly for both

configurations, if prior knowledge of the exact wall locations is available, refer to Figs. 2a,d.

However, if the initial estimates of the side wall positions are set to 1.6 m and -1.7 m with

respect to the y-axis of the coordinate system, image reconstruction fails completely for both

distributed and co-located configurations, see Figs. 2b,e. This validates the need for the proposed

wall correction method, whose applications to the considered scene and radar configurations yield

the images in Figs. 2c,f. Evidently, the PSO approach is able to enhance the image quality, with
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(a) Benchmark, distributed (b) Wall error, distributed (c) PSO wall correction, distributed

(d) Benchmark, co-located (e) Wall error, co-located (f) PSO wall correction, co-located

Fig. 2. Reconstruction results for Scenario A: Opposing walls versus same wall placement.

the result being on par with the known wall location or benchmark case. The estimated wall

positions are 1.999 m and -2.003 m for the distributed case and 1.999 m and -2.001 m for the

co-located case. Hence, the estimation error is in the millimeter range for both configurations.

The coherence of the dictionary has been computed for both the co-located and the distributed

configurations, refer to Table II. The individual coherence values are listed for each module pair,

i.e. the indices of the transmitting and receiving module. Observe that the distributing the radar

modules has a slight advantage as reflected in the lower row of Table II. Using (11) and (15),

the coherence for the overall radar imaging system can also be calculated. For the co-located

case, we obtain µ(Aco-loc) = 0.1415, whereas the distributed case yields µB(Ãdistr) = 0.1413.

Hence, the final coherence values are approximately equal. This is because the coherence in

the distributed configuration is dominated by the least favorable module pair, which in turn

corresponds to a co-located array.

In order to obtain a quantitative measure for the reconstruction performance, a full reference
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TABLE II

SCENARIO A: COHERENCE VALUES FOR MODULE PAIRS

Modules 0;0 0;1 1;0 1;1

co-loc 0.5670 0.5662 0.5662 0.5654

dist 0.5654 0.4272 0.4272 0.5654

image quality metric is used. We compare the ideal image, i.e., the ground truth, with the

reconstructions using the Earth Mover’s Distance (EMD), which computes the amount of “dirt”

or image intensity that has to be moved to get from one image to the other [44]. We normalize

all images to have a maximum intensity of one; further, the pixel distance is also normalized to

one and thresholded at five. That is, if the strongest pixel is off by one, the resulting EMD is also

one. We use a fast EMD implementation by Pele and Werman as proposed in [45]. The mean

and standard deviation of the EMD for 50 Monte Carlo runs are listed in Table III for the various

considered cases. Apparently, the distributed setup fails to reconstruct the scene reliably, as the

error and the variance are relatively large not only for the wall location correction methods but

also the benchmark case. In the co-located case, the wall correction methods almost achieve the

same image quality as the benchmark reconstruction, where the PSO method is outperforming

the QN method.

TABLE III

SCENARIO A: EMD COMPARISON ACROSS 50 MONTE CARLO RUNS.

Wall error Benchmark QN corr. PSO corr.

dist co-loc dist co-loc dist co-loc dist co-loc

mean 161.69 61.54 19.01 3.89 28.50 5.63 56.89 3.94

median 149.33 57.59 6.31 3.83 11.03 3.77 5.48 3.85

std. dev. 88.20 25.26 69.75 0.48 31.44 4.62 337.68 0.50

2) Scenario B: Scenario B compares co-located and distributed placements of two modules

along the front wall. The number of targets for this case has been reduced to four. The targets

are placed in pairs, with one target directly in front of the other for each pair. However, for now,

we do not consider any shadowing, i.e. the wave can travel directly to the rear targets and is

not assumed to be blocked by the targets in the front. The scene layout is illustrated in Fig. 3.
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Fig. 3. Scene geometries for Scenarios B and C.

(a) Benchmark, distributed (b) Wall error, distributed (c) PSO wall correction, distributed

(d) Benchmark, co-located (e) Wall error, co-located (f) PSO wall correction, co-located

Fig. 4. Reconstruction results for Scenario B: Widely-spaced versus closely-spaced placement without shadowing.

Corresponding example reconstructions for the various considered cases are shown in Fig. 4. As

expected, the sparse reconstruction fails for erroneous wall locations, whereas the proposed wall

location correction scheme based on the PSO method yields almost perfect images of the scene
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for both distributed and co-located cases. This performance is also reflected by the high-accuracy

of the wall locations estimates; 2.001 m and -1.999 m for the distributed case and 1.998 m and

-2.000 m for the co-located case. The above qualitative observations are also confirmed by the

quantitative EMD results summarized in Table III. As expected from the theoretical dictionary

analysis, the distributed case is slightly inferior to the co-located case. Note that for some noise

realizations the reconstruction fails, leading to outliers in the EMD values. Hence, the median

may give a better indication of the average or expected performance.

TABLE IV

SCENARIO B: EMD COMPARISON ACROSS 50 MONTE CARLO RUNS.

Wall error Benchmark QN corr. PSO corr.

dist co-loc dist co-loc dist co-loc dist co-loc

mean 51.98 36.50 1.64 1.39 5.57 1.62 4.98 1.42

median 45.31 36.55 1.59 1.41 1.95 1.42 1.56 1.40

std. dev. 28.71 19.51 0.42 0.24 5.72 0.94 17.45 0.34

3) Scenario C: Scenario C was designed to evaluate the impact of target shadowing on the

imaging performance of distributed and co-located configurations. The layout of the scene is

exactly the same as in Scenario B; however, we include shadowing of the two rear targets. In

particular, the line-of-sight between the two rear targets and the radar module located at zero

crossrange (right module in Fig. 3a and the left module in Fig. 3b) is assumed to be blocked.

This means that any path involving this line of sight is unavailable, whereas indirect propagation

to the centered module is still observable. In total, 11 paths out of 28 (7 paths for 2 by 2

modules) are blocked in this scenario. This introduces two problems in the data measurements.

First, the total energy returned from the shadowed targets is lowered leading to a decreased

SNR. Second, the structural assumptions on the sparse solutions are violated. Since a number of

transmit-receive combinations capture a zero reflectivity, the common support assumption of the

reflectivity vectors corresponding to various transmit-receive module pairs is no longer satisfied

for the distributed configuration, whereas the assumption of invariant target reflectivity for all

combinations of the various modules is no longer valid for the co-located case.

Fig. 5 shows the same selection of example results as in Fig. 4. Comparing Figs. 5a,d and

Fig. 4a,d, it is evident that the intensity of the shadowed targets is decreased even for perfectly

June 5, 2015 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 23

(a) Benchmark, distributed (b) Wall error, distributed (c) PSO wall correction, distributed

(d) Benchmark, co-located (e) Wall error, co-located (f) PSO wall correction, co-located

Fig. 5. Reconstruction results for Scenario C: Widely-spaced versus closely-spaced placement including shadowing.

known side walls. We observe that the co-located configuration shows weak reconstructions

for both of the shadowed targets for benchmark as well as wall correction methods, as seen in

Figs. 5d,f. On the other hand, the benchmark and wall corrected reconstructions for the distributed

case in Fig. 5a,c depict the shadowed targets about 6 dB stronger than in the co-located case.

As in the previous examples, the sparse reconstruction without wall error correction, depicted in

Figs. 5b,e, fails. Furthermore, accurate wall location estimation results are obtained: 2.000 m and

-2.005 m for the distributed and 2.000 m and -1.999 m for the co-located case. It appears that

violation of the softer group sparsity constraint is less damaging than the violation of the invariant

target reflectivity. As such, despite the theoretical advantages of the co-located configuration

under ideal conditions, the distributed configuration stands a better chance of locating targets in

shadowing situations.

These observations are confirmed by the EMD based Monte Carlo results, summarized in

Table V. For known wall locations and PSO-based wall error correction, median reconstruction

June 5, 2015 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 24

29.2 cm

3.4 m

62 cm

x

y

Fig. 6. Scene geometry for the lab experiment.

performance in the distributed case slightly outperforms a co-located placement of the units.

The inferior performance of the distributed layout in the mean EMD is attributed to outliers in

the reconstruction results. The rather small difference in the EMD between the distributed and

co-located cases can be explained by the working principle of the metric. In case of a target

intensity mismatch in the reconstructed image, the difference in intensity is penalized. Hence, a

difference of 6 dB in the target amplitude does not result in a large difference in the EMD.

TABLE V

SCENARIO C: EMD COMPARISON ACROSS 50 MONTE CARLO RUNS.

Wall error Benchmark QN corr. PSO corr.

dist co-loc dist co-loc dist co-loc dist co-loc

mean 45.08 35.01 4.16 3.97 7.28 4.07 3.22 3.97

median 41.78 31.83 3.10 3.96 3.34 3.98 3.11 3.98

std. dev. 23.26 21.85 7.15 0.26 9.07 0.59 0.59 0.25

B. Experimental Results

In this section, we present experimental results for a wideband real aperture pulse-Doppler

radar with M = 1 transmitter and a uniform linear array with N = 8 receivers and and inter-

element spacing of 6 cm. This is equivalent to a co-located configuration of two modules, each

with a single transmitter and a 4-element uniform linear array of receivers, but with only one of

the transmitters in operation. The data has been collected in a semi-controlled environment at

the Radar Imaging Lab, Villanova University. The transmit waveform is a modulated Gaussian
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(a) Benchmark (b) Wall error (c) PSO wall correction

Fig. 7. Reconstruction result using experimental data with one unknown side wall.

pulse with center frequency fc = 3 GHz and 100% relative bandwidth. We recorded 768 fast

time samples at a sampling rate fs = 7.68 GHz and then gated out the early and late returns

to clean the data, resulting in T = 153 samples over the interval of interest. The transmitter

and the receive array were placed on the same baseline with a lateral spacing of 29.2 cm and

the distance of the transmitter to a 0.3 m thick reinforced concrete side wall was 62 cm. The

placement of a front wall in the scene was omitted for experimental convenience. If present, the

direct scatterings from the wall could be either mitigated [46] or gated out [29]. We consider

R = 4 propagation paths, i.e. the direct path, two paths with a single reflection at the side wall

and one with double reflection at the side wall. The scene consists of a single aluminum pipe

placed at 3.4 m downrange directly in front of the transmitter. Refer to Fig. 6 for an illustration

of the scene setup.

As a reference, the benchmark result where the actual wall position has been used is shown in

Fig. 7a. The reconstruction result with an erroneous wall location is shown in Fig. 7b, whereas

the PSO based wall correction result is shown in Fig. 7c. The Quasi-Newton based method yields

similar results, omitted here for brevity. The dashed line depicts the assumed and estimated wall

locations in Fig. 7b and Fig. 7c, respectively. Similar to the simulation results, we observe that

the reconstruction fails when the assumed wall location is incorrect. Using the proposed method,

the wall location has been accurately estimated and the corresponding reconstruction yields an

image on par with the benchmark.
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V. CONCLUSION

In this paper, we presented a joint sparse image reconstruction and wall location estimation

approach for multipath exploitation in TWRI applications. By introducing a parametrized model

of the scattering environment, uncertainties in the interior wall locations could be captured and

estimated. The resulting optimization problem is convex in the unknown target reflectivities, but

non-convex in the wall parameters. An iterative scheme based on a Quasi-Newton method or

PSO was proposed to obtain a solution. Although PSO is a purely heuristic method, it showed

superior performance in the Monte Carlo simulations. The presented concept could be extended

to other parameters, such as wall thickness and permittivity; however, this would require more

efficient ways for solving the resulting optimization problem. Furthermore, we proposed and

analyzed a flexible modular imaging scheme for TWRI using several man-portable radars, each

with limited spatial aperture. The sparse reconstruction approach was extended to deal with

both co-located and distributed placements of the modules. Theoretical analysis showed that a

co-located placement is generally superior, as it allows for coherent processing of the returns.

However, in imaging scenarios where modeling assumptions are violated, a distributed sensor

layout may prove to be more robust.
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