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Abstract—Compressive sensing (CS) based multipath exploita-
tion has been successfully applied to stationary indoor scenes
in through-the-wall radar imaging (TWRI). The benefits of
using significantly reduced data are also desirable for moving
targets. Hence, we bring CS based multipath exploitation to
the non-stationary target domain and are able to treat moving
and stationary targets simultaneously. In general, multipath
propagation has adverse effects on the image quality. However, by
using proper modeling, multipath can be used to one’s advantage.
In this paper, we apply CS to both stationary and moving
targets under interior wall scatterings. Assuming knowledge of
the room geometry, we develop an effective method that solves
the inverse problem of joint localization and velocity estimation
of the targets in an indoor multipath environment from a few
measurements. We also propose a computationally inexpensive
scheme that first locates the targets using sparse reconstruction
and subsequently estimates the velocity vectors. Effectiveness of
the proposed methods is demonstrated using both simulated and
experimental data.

Index Terms—Compressive sensing (CS), sparse reconstruc-
tion, multipath exploitation, through-the-wall radar imaging
(TWRI), Doppler, moving targets.

I. INTRODUCTION

Radar imaging of building interiors has gained much interest
due to the rising use in civilian, security, and defense applica-
tions [1]–[9]. Through-the-wall radar imaging (TWRI) has the
ability to reveal stationary and moving targets behind walls,
thereby greatly improving situational awareness in urban areas
for the said applications.

The TWRI objective of acquiring precise information on
target location and velocity is challenged by multipath prop-
agation due to secondary reflections at interior walls. This
results in heavy multipath associated with the target. Specular
multipath causes “ghosts” in the imaged scene which stem
from the energy being focused at non-target locations. Also,
the front wall may cause additional ghosts due to multiple
reflections inside the wall. This so-called wall ringing multi-
path leads to a sequence of target replicas, equally spaced in
range, located behind the target. Instead of treating multipath
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as clutter, it is prudent to utilize the energy and information
contained in these additional target returns. This is usually
referred to as multipath exploitation. Another issue is the
large amount of data that needs to be acquired, stored and
processed to obtain highly resolved images of the scene using
conventional approaches, such as backprojection. This calls
for an efficient, logistically viable data acquisition scheme to
reduce the recording time and system cost.

The above outlined challenges have been addressed in part
by prior work. The problem of efficient data collection in
TWRI was first addressed in [10] and further developed in
[11]–[13] through the use of compressive sensing (CS). In
these works, an accurate image of a sparse scene of stationary
targets was reconstructed using only a fraction of the original
measurements. CS has been examined for moving targets in
the context of TWRI in [14], showing similar advantages.
A CS based method that reconstructs locations and Doppler
of the targets in a two-step approach was proposed in [15].
However, none of these contributions has considered multipath
propagation. Multipath exploitation in backprojection based
radar imaging was first attempted in [16], wherein multipath
returns were used to reveal information of hidden target areas,
which were not in the line-of-sight of the radar. Following
a similar idea, the work in [17] made use of the energy
in the ghost targets resulting from secondary reflections at
known interior walls to generate a ghost-free image with
improved signal-to-clutter ratio (SCR). Multipath modeling
and exploitation has further been considered as an inverse
scattering problem in [18], [19]. Multipath exploitation within
the CS framework was addressed in [20], [21] for sparsely-
populated stationary indoor scenes. By using proper modeling
under known wall locations, sparse reconstruction in this case
yielded an image where ghosts were eliminated and their
energy was added to the real targets.

In this paper, we bring CS based multipath exploitation
to a general sparse indoor scene of stationary and moving
targets. Assuming knowledge of the building layout, a forward
linear multipath model based on ray-tracing for multistatic
operation is developed, which is then used by a group sparse
reconstruction approach for the underlying indoor scene. Our
model is quite similar to the multi-input multi-output (MIMO)
setup in [22], but cast in terms of multipath. We show that
multipath propagation provides Doppler velocity diversity,
which yields reconstruction benefits and improved velocity
resolution capability. Furthermore, a two-step location and ve-
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locity estimation method is proposed that extends the method
of [15] to environments rich in multipath. In this scheme,
subsequent to sparse reconstruction of the target locations,
the Doppler information from different propagation paths is
combined to obtain both crossrange and downrange velocity
estimates with high accuracy. We demonstrate the effectiveness
of the proposed multipath exploitation approaches through
simulation and experimental results. In particular, we study
the trade-off between computational complexity and recon-
struction performance.

It is noted that moving target localization and velocity
estimation can also be achieved through tracking. Tracking
has been recently considered for TWRI applications in [23],
wherein the targets are detected and their locations are tracked
in consecutive images. However, motion or Doppler informa-
tion in the measurements was not utilized in [23]. Tracking
based methods should not be seen as alternatives to our
proposed approach but rather as complementing each other.
A tracking scheme would benefit from additional velocity
estimates in each image. Conversely, the proposed CS-based
approach does not take target dynamics into account and, thus,
can benefit from a tracking method.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the multipath-free model for a wideband
multistatic pulsed radar. Multipath propagation is incorporated
in the model in Section III. In Section IV, the compressive
sensing based image reconstruction method is proposed and
the multipath-based target velocity estimation procedure is
described. Subsequently, in Section V, we provide supporting
simulation and experimental results. Finally, we conclude this
paper in Section VI.

II. SIGNAL MODEL

In this section, we describe the signal model for a wideband
multistatic pulsed radar system with M transmitters and N re-
ceivers located parallel to the x-axis. We consider a sequential
sensing operation, i.e., only a single transmitter is active at a
time and all N receivers are recording the returns. The model
essentially follows [14].

Let the transmit signal be a modulated wideband pulse of
duration Tp given by <{s(t) exp(j2πfct)}, where t is the
fast time, s(t) is the pulse in the complex baseband, and fc
is the carrier frequency. We assume that the targets follow
a translatory or linear motion with constant velocity in a
two-dimensional (2D) space. Stationary targets are included
as a special case of moving targets with zero velocity. Let
K wideband pulses be transmitted by each transmitter with
a pulse repetition interval (PRI) of Tr. The pulse index
k = 0, . . . ,K − 1 is referred to as slow time. The PRI is
assumed to be sufficiently small and the multiplexing of the
transmitters sufficiently fast, such that i) the indoor scene can
be considered approximately stationary during the sequential
use of the M transmitters, i.e., over an interval of length MTr,
and ii) the movement of the indoor targets is approximately
of constant velocity and slow enough so that the targets do
not move out of a range cell during the observation interval
of length KMTr. Considering a scene of P point targets and

using the aforementioned assumptions, we can establish that
the p-th target at pulse k is located at position

xp(k) = (xp + vxpkMTr, yp + vypkMTr), (1)

where (xp, yp) is the target position at t = 0 and (vxp, vyp)
is the target velocity vector. With the mth transmitter active,
the emitted pulse travels through the wall to the target scene
and the reflections are measured at the receive array. The
baseband received signal corresponding to the mth transmitter,
nth receiver, kth pulse, and pth target can be expressed as

zpmnk(t) = σps (t− kMTr −mTr − τpmn(k))

× exp (−j2πfc (kMTr +mTr + τpmn(k))) ,
(2)

where σp is the reflectivity of the pth point target and τpmn(k)
is the bistatic two-way delay between the mth transmitter, pth
target, and the nth receiver. In TWRI, as the transmitted waves
are refracted twice at the front and back interfaces of the
front wall and the backscattered wave is subject to the same
double refraction before reaching the receiver, the delays can
be computed using geometric considerations and Snell’s law
[24]. Assuming that the P targets do not interact with each
other, the total baseband signal received by the nth receiver,
corresponding to the kth pulse and the mth transmitter, is the
superposition of all P target returns,

zmnk(t) =

P−1∑
p=0

zpmnk(t). (3)

Note that the delays and the received signal generally depend
on the slow time index k. However, if the velocity of the p-th
target is zero, i.e., the stationary case, the delays do not change
with k.

The measurements {zmnk(t),m = 0, . . . ,M − 1, n =
0, . . . , N − 1, k = 0, . . . ,K − 1} can be discretized and
vectorized to obtain a linear model of the system in matrix-
vector form. The target space is assumed to be discretized
into a grid with size Nx×Ny and similarly, the velocities are
sampled on a discrete grid with size Nvx × Nvy = Nv . In
this 4D space, targets with any possible location or velocity
are described by their reflectivities, whereas a non-existing
target is represented by a zero reflectivity. Hence, in total, we
have NxNyNv possible target states, which can be stacked into
an NxNyNv × 1 vector σ. The choice of the grid resolution
is critical for sparse reconstruction. First, the computational
complexity of the reconstruction scales with the number of
grid points. Second, the density of the grid limits the accu-
racy of the location and velocity estimates. Third, the grid
spacing determines the coherence of the dictionary matrix
[25]. The latter yields a hard upper limit on the number of
grid points as the reconstruction fails if the coherence is too
high. A lower limit is reached when the grid is too coarse
to accurately represent the targets, referred to as dictionary
mismatch. Accuracy and computational complexity need to be
traded off depending on the particular application and available
resources. The received signal zmnk(t) is sampled uniformly at
T time steps with sampling interval Ts. The sampling interval
should be chosen to attain the Nyquist rate of the wideband
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pulse s(t). The samples can be stacked into a T × 1 vector
zmnk, which, using (1) and (2), can be expressed as

zmnk = Ψmnkσ, (4)

where Ψmnk are the dictionary matrices obtained by discretiz-
ing the right hand side of (2), and are given by

[Ψmnk]i,p = s (ti − kMTr −mTr − τpmn(k)) (5)

× exp (−j2πfc (kMTr +mTr + τpmn(k))) ,

i = 0, . . . , T − 1, p = 0, . . . , NxNyNv − 1.

Stacking of the received signal vectors zmnk corresponding
to all K pulses for all MN transmitter-receiver pairs results
in a TMNK × 1 measurement vector z as

z = Ψσ, (6)

where Ψ is a TMNK×NxNyNv dictionary matrix given by

Ψ =
[
ΨT

0 0 0 ΨT
1 0 0 · · · ΨT

M−1 0 0 ΨT
0 1 0 · · · (7)

ΨT
M−1 N−1 0 ΨT

0 0 1 · · · ΨT
M−1 N−1 K−1

]T
.

Note that the linear model in (6) does not take multipath
propagation into account. This will be treated in detail in
Section III.

Besides multipath propagation, there is clutter caused by
signal reflections from the front and interior walls. These
type of returns originate from stationary building features and
are not associated with indoor targets of interest. In realistic
scenarios, the front wall radar returns can be very strong and
may mask the behind-the-wall targets. As such, we incorporate
the clutter returns in the received signal model. We consider
two types of clutter, namely, wall returns and corner returns.
The incident wave is reflected at any wall-air interface, for
instance, at the front wall or a parallel interior wall, thereby
causing wall returns. Further, any corner formed by two
perpendicular walls acts as a dihedral reflector, resulting in
corner returns. Since the walls and corners are stationary, the
clutter does not change from pulse to pulse, i.e., it is invariant
in the slow time domain.

Owing to their flat and smooth surfaces at the frequencies
typically employed for TWRI, the walls reflect EM waves in
a specular manner. As such, the signal propagates along a
path with equal angles of incidence and reflection at the wall
surface. Considering Nw exterior and interior walls, parallel
to the array baseline, the wall returns can be described as

zwall
kmn(t) =

Nw−1∑
b=0

σwall
b s

(
t− kMTr −mTr − τwall

bmn

)
× exp

(
−j2πfc

(
kMTr +mTr + τwall

bmn

))
,

(8)

where σwall
b is the reflectivity of the bth wall and τwall

bmn is the
two-way propagation delay between the mth transmitter, the
bth wall and the nth receiver. The delay is independent of the
slow time index k and can be determined from the specular
nature of the reflections and geometric considerations [14].
Additionally, the returns from Nc corners can be expressed as

zcorner
kmn (t) =

Nc−1∑
u=0

σcorner
umn s (t− kMTr −mTr − τ corner

umn )

× exp (−j2πfc (kMTr +mTr + τ corner
umn )) ,

(9)

where σcorner
umn is the reflectivity of the uth corner and τ corner

umn is
the two-way propagation delay between the mth transmitter,
the uth corner and the nth receiver. Note that, similar to the
wall returns, the delay is independent of the slow time index
k. However, the corner reflectivity depends on the transmitter
and the receiver locations. The delay can be calculated in the
same way as for point targets, while the reflectivity is given
by [26]

σcorner
umn =

(
j2
√
π

λ

)1/2

2Lu

× sinc

[
4πLu
λ

(cos(ψt
um − ψ̃u)− cos(ψr

un − ψ̃u))

]
(10)

×

sin
(
ψt

um+ψr
un−2ψ̃u

2

)
, ψr

un, ψ
t
um ∈ [ψ̃u, ψ̃u + π

4 ]

cos
(
ψt

um+ψr
un−2ψ̃u

2

)
, ψr

un, ψ
t
um ∈ [ψ̃u + π

4 , ψ̃u + π
2 ],

where Lu is the length of the sides of the uth corner, ψ̃u
is the orientation angle of the uth corner, ψt

um, ψ
r
un are the

respective angles of incidence and reflection, λ = c/fc is the
wavelength, and c is the speed of light. Note that the angles
are measured counterclockwise from the positive x-axis.

The overall radar return is, therefore, composed of target,
wall, and corner returns and is given by

ztotal
kmn(t) = zkmn(t) + zwall

kmn(t) + zcorner
kmn (t), (11)

which can be vectorized in the same fashion as described
above for zkmn(t).

Due to the dominance of exterior wall clutter in TWRI,
several wall mitigation techniques have been proposed in the
literature. These include spatial filtering [27] and subspace
projection [28] methods, which have been successfully applied
in conjunction with compressive sensing and sparse scene
reconstruction [10], [11], [29]. Both of these methods also
remove the contributions of interior parallel walls as long as
they are not shadowed by the contents of the building. In
the sequel, we assume that the wall clutter has been properly
mitigated. Further, we ignore the corner clutter and consider
only the target returns for extending the received signal model
to multipath propagation. However, in Section V, in addition to
reconstruction examples based on target direct and multipath
returns, we provide examples including the corner clutter
to illustrate its effect on the performance of the proposed
multipath exploitation scheme.

A. Conventional Image Formation

Conventional image formation for TWRI is carried out using
backprojection or delay-and-sum beamforming (DSBF) [30],
[31]. The complex image value Iq(k), corresponding to the
qth spatial grid point (xq, yq) and slow time index k, is
obtained by summing delayed copies of the MN received
signals corresponding to the kth pulse, followed by applying
a matched filter with impulse response s∗(−t) to the result,
and then sampling the filtered data [31],
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Iq(k) =
1

MN

M−1∑
m=0

N−1∑
n=0

zmnk(t+ τqmn(k)) ∗ s∗(−t)|t=0 ,

q = 0, 1, . . . , NxNy − 1 (12)

where τqmn is the focusing delay for the mth transmitter, nth
receiver and the qth spatial grid point.

To obtain an overall image, Iq(k), k = 0, 1, . . . ,K − 1
cannot be simply combined coherently, as moving targets will
be blurred and possibly mislocated. Instead, we can include
the linear velocity model in the beamforming approach. We
discretize the target space, as explained above, into a four-
dimensional (4D) grid with two spatial and two velocity
dimensions. Hence, we obtain an image value Ip at the pth
space-velocity grid point (xp, yp, vxp, vyp) by a summation
over the K pulses

Ip =
1

KMN

K−1∑
k=0

M−1∑
m=0

N−1∑
n=0

zmnk(t+ τpmn(k)) ∗ s∗(−t)|t=0 ,

p = 0, 1, . . . , NxNyNv − 1 (13)

where τpmn(k) is the focusing delay for the (m,n)th
transmitter-receiver pair and the pth space-velocity grid point
for the kth pulse. Thus, we obtain a set of 2D spatial images,
each matched to a particular velocity vector. Equivalently, (13)
can be obtained by taking the adjoint of (6)

σ̂ = ΨHz, (14)

where σ̂ contains vectorized spatial images corresponding to
all considered velocities.

Note that the DSBF resolution is limited by the point spread
function or Rayleigh resolution [32]. Further, DSBF provides
severely degraded image quality in the case of missing or
undersampled data. As such, sparse reconstruction is used
for image formation from a few measurements. This will be
detailed in the following sections and performance comparison
with the velocity-matched beamforming will also be provided.

III. MULTIPATH PROPAGATION

Target multipath corresponds to indirect propagation paths,
involving reflections at one or more secondary reflectors en
route to the target of interest. Such secondary reflections can
occur at interior walls, floor, and ceiling as well within the
front wall. We only deal with interior wall multipath returns
in this work. Floor/ceiling multipath is not considered as it
is often weak, if not present, when using antennas with a
narrow elevation beamwidth. We note, however, that this type
of multipath can be treated in essentially the same manner as
interior wall multipath. Multiple reflections within the front
wall or wall ringing multipath has been treated in [20] for
stationary scenes and can be similarly incorporated in this
work.

The interior wall multipath returns can be classified into the
following categories:
• First order multipath, which involves direct propagation

to the target on transmit and one secondary reflection at

an interior wall on the way back to the receiver, or vice
versa. This is the dominant case of multipath in TWRI.

• Second order multipath, wherein the signal undergoes two
secondary reflections on the round-trip path to the target
. Two cases can further be distinguished:

– Quasi-monostatic, which involves one specular re-
flection on transmit and one on receive, both occur-
ring at the same interior wall. Note that this corre-
sponds to scattering at the target with a very small
bistatic angle, as compared to first order multipath,
when using a bistatic transmitter-receiver pair with a
small baseline.

– Bistatic, wherein the secondary reflections take place
at two different walls. Both reflections can take place
on transmit only, on receive only, or one on transmit
and one on receive paths to the target.

• Higher-order multipath, which involves three or more
secondary reflections during the round-trip path.

In the following, we will only consider the first two cate-
gories of interior wall multipath. As the signal is attenuated
at each secondary wall reflection, the higher-order multipath
returns are sufficiently weak to be safely neglected. Assuming
that the quasi-monostatic reflection from indoor targets is
stronger than bistatic scattering, we only take the quasi-
monostatic second order multipath into consideration. As we
are assuming perfect knowledge of the building layout, i.e.,
location, thickness, and permittivity of the front wall as well as
the locations of the interior walls, we can accurately describe
the multipath returns. In practice, exact prior knowledge of
the room layout and wall properties may not be available.
Hence, methods should be devised that take uncertainties in
these parameters into account. A first step towards multipath
exploitation under uncertainties in wall locations has been
attempted in [33]. Using a ray tracing model, we will now
calculate the exact delays corresponding to each considered
path. The derivation follows essentially from [17], [20], [24].

A. Propagation Delays Due to Interior Wall Multipath

Interior wall multipath can be described by making use of
the notion of a virtual target, as illustrated in Fig. 1, where
the front wall has been ignored in the geometry for simplicity.
We also do not explicitly state the dependence of the target
location, propagation delay, and other associated parameters
on the slow time index k in this section for simplicity of
notation. The scene in Fig. 1 consists of a target located at
xp = (xp, yp) and an interior side wall, which is parallel to
the y-axis and located at x = w1. Now, consider propagation
along the path P ′ from the target to a receiver via secondary
reflection at the interior wall. Because of the specular nature
of the interior wall reflection, a virtual target can be assumed
to be present at the mirror image x′p = (2w1 − xp, yp) of the
point xp. Then, the receive path P ′ involving the secondary
reflection is equivalent to the direct path P̃ ′ between the virtual
target and the receiver. Hence, the calculation of the one-way
propagation delay associated with path P ′ can be carried out
by using the direct propagation path P̃ ′. Note that the case of



IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING 5

Fig. 1. Multipath propagation via reflection at an internal wall.

Fig. 2. Example for three possible partial return paths.

the path from the transmitter to the target or reflection from a
different wall can be treated in a similar manner.

With the mth transmitter active, the delay corresponding to
the one-way path between receiver n and target p, is denoted
by τ (P

′)
pmn, which is equivalent to τ (P̃

′)
pmn. When ignoring the front

wall, the delay τ (P̃
′)

pmn can simply be calculated as the Euclidean
distance between the receiver n and the virtual target at x′p
divided by the propagation speed. If the front wall is present,
the double refraction at the front wall interfaces has to be
taken into account, which can be accomplished using Snell’s
law [24]. It is noted that the same principle can be used for
multipath via any interior wall.

B. Received Signal Model

Considering the aforementioned multipath mechanisms, we
can formulate the model that describes the radar return under
multipath propagation. To reiterate, the front wall response is
not considered and we assume that the measurements contain
only the target returns, as mentioned in Section II.

Any round-trip path P can be described as a combination of
two one-way paths, namely, the path P ′′ from the transmitter
to the scattering target and the path P ′ from the target back
to the receiver. Either of the two one-way paths can assume
different forms, e.g., it could be the direct propagation to the
target or involve a single reflection at an interior wall. We
assume that there exist R1 return paths between the target and
the receiver, which will be denoted as P ′r1 , r1 = 0, . . . , R1−1.
The same observation holds for the one-way transmit paths,
which are denoted by P ′′r2 , r2 = 0, . . . , R2−1. Therefore, there
exist a total of R1R2 round-trip paths. However, as mentioned
earlier, we are only considering direct round-trip propagation
and first-order and quasi-monostatic second-order multipath
returns. As such, a maximum of R < R1R2 combinations are
considered for the round-trip path P , i.e., Pr, r = 0, . . . , R−1.
A function can be established that maps the index r of the
round-trip path to a pair of indices of the one-way paths,

Fig. 3. Round-trip paths between transceiver and target for the partial paths
shown in Fig. 2

r 7→ (r1, r2). In the following, we will consider P0 as the
direct round-trip path, i.e., the case without any secondary
reflections. This model is illustrated in Figure 2, which depicts
three possible return paths, namely, direct propagation and
secondary reflections from a side wall and the back wall.
Three equivalent one-way paths will also be present for the
propagation from the transmitter to the target. As a result, we
obtain a total of nine round-trip paths, depicted in Figure 3, by
combining three transmit paths and three return paths. Paths
P1,P2,P3 and P6 correspond to first order multipath, P4 and
P8 are quasi-monostatic second order multipath, while round-
trip paths P5 and P7 are bistatic second order multipath. The
latter are ignored in the model.

With the rth round-trip path Pr consisting of the one-way
paths P ′r1 and P ′′r2 , the corresponding round-trip delay τ

(r)
pmn

between the mth transmitter, nth receiver, and p-th target can
be expressed as

τ (r)pmn = τ
P′

r1
pmn + τ

P′′
r2

pmn. (15)

where the one-way path delays τ
P′

r1
pmn and τ

P′′
r2

pmn can be com-
puted using the method described in Section III-A.

Further, at each reflection and refraction along the rth
round-trip path, the traveling wave will undergo some atten-
uation and possibly a phase shift, which is captured by the
associated complex amplitude Γ

(r)
pmn. The complex amplitudes

for the R paths depend on the dielectric properties of the front
and interior walls and the corresponding angles of incidence
and refraction. A detailed derivation can be found in [17], [20].
Assuming that the transmit and receive arrays are co-located
and have sufficiently small extents as compared to the distance
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to the scene, the incident, refraction, and reflection angles
associated with a particular path do not vary much across the
arrays. As such, the dependence of Γ

(r)
pmn on transmiter m and

receiver n can be ignored, i.e., Γ
(r)
pmn ≈ Γ

(r)
p . Additionally,

as the direct round-trip path return from a target is typically
the strongest path compared to the associated multipath, the
corresponding complex amplitudes are normalized w.r.t. the
direct path in order to avoid over-parameterization,

g(r)p =
Γ
(r)
p

Γ
(0)
p

, r = 0, . . . , R− 1, p = 0, . . . , NxNyNv − 1.

(16)
Hence, we assign a single complex path weight g(r)p to the
rth possible path corresponding to the pth target state and a
transmitter/receiver combination, with the direct path having
the weight g(0)p = 1.

We are now in a position to formulate the target signal
model under multipath propagation. The received signal is
expressed as a superposition of delayed and weighted ver-
sions of the transmitted signal corresponding to all possible
propagation paths r = 0, . . . , R− 1. That is,

z = Ψ(0)σ(0)+G(1)Ψ(1)σ̄(1)+ · · ·+Ψ(R−1)G(R−1)σ̄(R−1),
(17)

where G(r) = diag(g
(r)
0 , g

(r)
1 , . . . , g

(r)
NxNyNv−1), r =

0, . . . , R−1 are the path weight matrices, and the dictionaries
Ψ(r), r = 0, . . . , R − 1 are defined according to (5) and (7)
with τpmn replaced by τ (r)pmn. Note that, in (17), we assume an
individual target state vector σ̄(·) for each path, as the phase
and amplitude of the target reflectivity change in general with
the bistatic angle and target orientation. Further, we assume
the same number of paths for each target state, as a particular
path weight can be set to zero if the corresponding path is not
available for that target state.

For notational convenience, the path weights can be ab-
sorbed into the target state vectors as σ(r) = G(r)σ̄(r), as the
weighting imposes only a per target state scaling. The resulting
linear measurement model takes the form

z = Ψ(0)σ(0) + Ψ(1)σ(1) + · · ·+ Ψ(R−1)σ(R−1). (18)

Note that (18) is a generalization of the single path propagation
model in (6). If the number of propagation paths is set to
1, then the two models are equivalent. Further note that the
measurement model (18) does not make any assumptions
about the resolvability of the various multipath arrivals. If the
multipath returns are resolvable and successful association can
be made between each signal component and its respective
propagation path, the model would be similar to multipath-
free widely-separated MIMO operation as used in [34]. Since
resolving and associating multipath components is difficult in
practice, we employ the additive model (18).

C. Apparent Doppler Velocity

In order to study the effect of multipath and motivate its
exploitation, we examine the information contained in the
multipath returns [35]. A target at initial position (xp, yp)
moving with uniform velocity (vxp, vyp) has different apparent
Doppler velocities when observed via different propagation

Fig. 4. Alternate multipath geometry with a virtual receiver and the corre-
sponding constant range ellipse.

paths. In case of direct propagation and a monostatic setup,
this is the radial velocity component with respect to the
location of the transceiver. Intuitively, in a monostatic radar,
the locus of equal range is a circle which is also the trajectory
of zero Doppler. Thus, only velocities perpendicular to this
circle, i.e., radial velocities, can be observed. For a bistatic
setup, the trajectory of zero Doppler velocity forms an ellipse
with the interrogating transmitter/receiver pair as foci and the
observable velocity component is the normal to this ellipse.

If the transmitted pulse travels along an indirect path, the
apparent Doppler velocity changes. In order to determine the
form of the apparent Doppler velocity under multipath prop-
agation, we consider an alternate transmitter/receiver/target
geometry for the multipath by reflecting the physical trans-
mitter and/or receiver locations about the secondary reflector
(interior wall). For first order multipath, either the transmitter
or receiver location is mirrored depending on whether the
secondary reflection occurrs on transmit or receive. On the
other hand, both the transmitter and receiver locations will be
mirrored for second order quasi-monostatic multipath propa-
gation. The mirrored locations constitute a virtual transmitter
and a virtual receiver. We can now cast the multipath as
direct propagation to/from these virtual antenna locations. As
such, for apparent Doppler velocity corresponding to multipath
propagation, the normal velocity component with respect to the
ellipse formed by the virtual transmitter/receiver is a relevant
measure. Hence, the observed Doppler velocity of the target
under multipath propagation is the projection of the target
velocity onto this normal. An example scenario is depicted
in Fig. 4, where multipath occurs on the return path only. The
signal travels along path P ′′ from the physical transmitter (Tx)
to the target and along path P ′ back to the physical receiver
(Rx) via reflection at the interior wall. The return path can
equivalently be described by direct propagation along path
P̃ ′ to a virtual receiver (vRx) that has been constructed as
described above. Now, the normal to the ellipse formed by
the physical transmitter (Tx) and the virtual receiver (vRx)
needs to be considered for the apparent Doppler velocity. This
velocity may also be approximated using propagation delays.
Depending on the transmitter m, the receiver n, the path r,
and averaging over the full CPI, the apparent Doppler velocity
for the pth target may be expressed as

v
(r)
D,pmn =

1

K − 1

K−2∑
k=0

c
τ
(r)
pmn(k + 1)− τ (r)pmn(k)

Tr
. (19)
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(a) (b) (c)

Fig. 5. Apparent Doppler velocity for a target moving with velocity (1, 0)m/s for (a) the direct path, (b) first order multipath via right side wall, and (c)
second order multipath via right side wall.

Hence, for each target, we obtain R apparent Doppler
velocities, which are the projections of the target velocity
vector on the respective normal directions. These will be
exploited to obtain an estimate of the full target velocity
vector. Note that for sufficiently small arrays, the apparent
Doppler velocity does not change with the transmit/receive
array elements and, hence, only depends on the propagation
path as well as the target location and velocity.

For illustration, we simulate a target at an arbitrary location
within three walls, moving with a velocity (vxp, vyp) = (1, 0)
m/s. That is, the target is solely moving in the crossrange di-
rection. At each assumed target position, the apparent Doppler
velocity is color coded in Fig. 5. The surrounding walls are
also superimposed on the figure. The velocity pattern is only
shown for a single transmitter/receiver pair located at the cen-
ters of the transmit and receive arrays. In the direct propagation
case, shown in Fig. 5a, we observe the expected pattern, with
zero velocity along broadside and gradually increasing velocity
for angles deviating from broadside. However, the pattern is
different for indirect paths, reaching the target via reflection at
the right side wall, as shown in Figs. 5b,c. Fig. 5b corresponds
to a first order multipath that involves direct propagation on
transmit and a secondary reflection at the right side wall on
receive, whereas Fig. 5c involves a secondary reflection at the
right side wall on both transmit and receive. The patterns in
Figs. 5b,c are shifted and distorted as compared to Fig. 5a.
In particular, the zero velocity line is shifted as compared
to that in Fig. 5a. Hence, we obtain additional information
on target motion through the first and second order multipath
returns. If properly modeled, as described earlier, this property
is exploited to improve the velocity estimation.

IV. COMPRESSIVE SENSING BASED SCENE
RECONSTRUCTION

Benefits of CS are realized when the radar return is un-
dersampled in all four dimensions, i.e., fast time, slow time
and transmit/receive elements. For the latter two, most savings
are achieved by random omission of some elements, leading
to sparse transmit and receive arrays. Random undersampling
of slow time does not lead to any benefits in terms of time
or cost savings, as long as the first and the last pulses are
retained in the CPI. However, reducing the number of pulses

within the CPI leads to power savings, which may be desirable
in portable applications. Various methods are available to
compressively sample in the fast time. Here, we adopt a
random mixing scheme in which each pulse is correlated with
a set of random signals and only the corresponding correlation
result is sampled. For a detailed discussion of this scheme, the
reader is referred to [14], [36].

The compressively sampled version of the radar return in
(18) can be expressed as

z̄ = Φz = Φ(Ψ(0)σ(0) + Ψ(1)σ(1) + · · ·+ Ψ(R−1)σ(R−1)),
(20)

where J is the number of reduced measurements, and the
measurement matrix Φ ∈ RJ×TMNK represents the under-
sampling operation. With the aforementioned undersampling
considerations, reducing the number of samples along transmit
elements to Md, along receive elements to Nd, along slow time
to Kd, and along fast time to Td, is achieved by a measurement
matrix constructed as [14]

Φ =(Φ1 ⊗ INdKdTd) · (Φ2 ⊗ IMKdTd) · (Φ3 ⊗ IMNTd)

· diag(Φ
(0)
4 , . . . ,Φ

(MNK−1)
4 ), (21)

where ⊗ denotes Kronecker product and Ia is an identity
matrix of dimension a. The total number of reduced mea-
surements is given by J = TdMdNdKd � TMNK. Each of
the matrices Φ1 ∈ RMd×M , Φ2 ∈ RNd×N and Φ3 ∈ RKd×K

consists of randomly chosen rows from an identity matrix,
while random mixing in fast time is achieved by Gaussian
random matrices Φ

(i)
4 ∈ RTd×T with entries drawn form

a standard normal distribution. Other random matrices, e.g.,
drawn from a Bernoulli distribution, can also be considered to
achieve a good trade-off between ease of implementation and
performance, see [36].

A. Group Sparse Scene Reconstruction With Joint Velocity
Estimation

In order to account for all propagation paths, a high-
dimensional model is constructed using (20) as

z̄ = ΦΨ̃σ̃ (22)

where Ψ̃ = [Ψ(0) Ψ(1) · · · Ψ(R−1)] ∈ CMNKT×NxNyNvR

is the concatenated overcomplete dictionary for all possible
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paths and the unknown target state vectors are stacked into a
single tall vector

σ̃ =

[(
σ(0)

)T (
σ(1)

)T
· · ·

(
σ(R−1)

)T]T
. (23)

Given the reduced measurements z̄ in (22), we aim at re-
covering the target state information σ̃ using sparse recon-
struction. If no multipath propagation is present, this can be
achieved by standard `1-norm minimization, as considered in
[14]. However, this method is suboptimal in the presence of
multipath. Similar to [20], we exploit multipath by utilizing
the group sparse structure in the target state information. More
specifically, the target state vectors corresponding to each path
exhibit a group sparse structure, where the individual groups
extend across the paths for each target state. Note that the
apparent Doppler velocity for a particular target may differ
when observed through different paths. This is captured in
the model through different delays τ

(r)
pmn(k), which are a

function of slow time and are all calculated based on the same
coordinate system. In this way, the reconstruction benefits
from the additional diversity in the received signal due to
different Doppler velocities corresponding to the same target.

The group sparse reconstruction of the unknown vector σ
is achieved by solving the mixed `2/`1-norm minimization
problem

σ̂ = arg min
σ̃
‖z̄ −ΦΨ̃σ̃‖22 + µ‖σ̃‖1,2, (24)

where

‖σ̃‖1,2 =

NxNyNv−1∑
p=0

∥∥∥∥[σ(0)
p , σ(1)

p , . . . , σ(R−1)
p

]T∥∥∥∥
2

(25)

and µ is a regularization parameter. The convex optimization
problem (24) can be solved using SparSA [37], BOMP [38], or
other available schemes [39], [40]. In the sequel, we contrast
the optimization based approach SparSA and the greedy
method BOMP. SparSA obtains a near-optimum solution for
(24) at the cost of high numerical complexity, whereas the
BOMP finds a sub-optimal solution at significantly lower
computational cost.

Once a solution σ̂ is obtained, a composite target state
vector corresponding to the scene can be obtained by non-
coherent combination of the state vectors corresponding to the
various paths as

[σ̂comb]p =

∥∥∥∥[σ(0)
p , σ(1)

p , . . . , σ(R−1)
p

]T∥∥∥∥
2

, (26)

where p = 0, . . . , NxNyNv − 1. The final recovery result
contains the information about the location and the trans-
latory motion of all targets in the scene. Stationary targets
are included in the spatial image corresponding to the zero
velocity case. For an in-depth treatment of the group-sparse
reconstruction approach, the reader is referred to [20].

Note, that the model (22) and the reconstruction problem
(24) apply to a wide range of TWRI sensor configurations.
For example, for highly aspect-dependent targets, the arrays
can be split into multiple sub-arrays and multiple models of
the form (22) are stacked vertically to accommodate the new

set of measurements and corresponding images. In this case,
the groups extend over all paths and sub-arrays. Similarly,
one can deal with frequency-dependent targets by splitting
the pulse into various sub-pulses covering only parts of the
full bandwidth and adjusting the model in the same fashion
as described above. These extensions come at the cost of
higher computational complexity and degraded reconstruction
performance as a much larger number of unknowns has to
be recovered. However, they provide additional flexibility for
challenging radar deployment/logistics or target types.

B. Group Sparse Scene Reconstruction With Subsequent Ve-
locity Estimation

We further propose a two-step method that first estimates
the target locations based on compressive sensing and sub-
sequently performs velocity estimation using conventional
Doppler processing. In so doing, we extend the approach by
Dang and Kilic [15] to account for and exploit multipath
propagation. Instead of reconstructing the full 4D target state
vector as in (24), we solve a 2D reconstruction problem for
each slow time index individually. As the returns at a single
slow time do not contain any velocity information, only the
spatial information of the scene is reconstructed. For each
z̆(k), a scene reflectivity vector σ̂(r)(k) is reconstructed by
solving

σ̂(r)(k) = arg min
σ(r)(k),r=0,...,R−1

‖z̆(k)−
R−1∑
r=0

Φ̆Ψ̆(r)σ(r)(k)‖22

+ µ

NxNy−1∑
p=0

∥∥∥∥[σ(0)
p (k), σ(1)

p (k), . . . , σ(R−1)
p (k)

]T∥∥∥∥
2

, (27)

where k = 0, . . . ,K − 1. The downsampling matrix Φ̆ ∈
RTdMdNd×TMN is constructed in the same manner as described
above. However, no downsampling in the slow time domain is
performed. The measurement vectors are formed by stacking
the returns corresponding to all transmitters and receivers
for each pulse as z(k) = [zT0 0 k, . . . ,z

T
M−1 N−1 k]T , k =

0, . . . ,K − 1 and z̆(k) = Φ̆z(k). The reduced dictionaries
Ψ̆(r) ∈ RMNT×NxNy are part of the full dictionaries Ψ(r)

corresponding to k = 0 and zero target velocity. Note that
despite solving K different CS problems, the corresponding
computational load is much lower as the number of unknowns
is greatly reduced (by the potentially large number of velocity
bins Nv). An intermediate image containing target location
reconstruction can then be formed by a non-coherent summa-
tion over all paths and pulses. At this point, a target detection
step should be carried out to select only Np targets with sig-
nificant amplitude to maintain the computational complexity
at a manageable level in the subsequent velocity estimation
procedure.

In step 2 of the method, the velocity vector for each target
is estimated by further processing of the sparse scene recon-
struction result. For each of the Np targets, we obtain KR
complex values, one for every combination of propagation path
and pulse, denoted by b(r)p = [σ̂

(r)
p (0), . . . , σ̂

(r)
p (K − 1)]T ∈

CK , p = 0, . . . , Np − 1, r = 0, . . . , R − 1. The apparent
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Doppler velocity of the target causes a phase progression along
the slow time dimension k. The amount of phase progression
per pulse encodes the Doppler velocity and depends on the
location/velocity of the target as well as the propagation path.
We take the discrete-time Fourier transform of b(r)p along the
slow time to obtain the Doppler information B(r)

p (ω) for the
detected targets. Assuming only a single target per location
cell, we can determine the apparent Doppler velocities for
each target and path by finding the peaks in the Fourier-
transformed slow time vectors. Hence, for each target, we
obtain R apparent Doppler velocities

v
(r)
D,p =

c

πfc
arg max

ω
B(r)
p (ω) (28)

that correspond to the projections onto the normal velocity
vectors as discussed in Section III-C. Finally, we can express
the linear relationship between the target velocity vectors and
the Doppler velocities as[
v
(0)
D,p, . . . , v

(R−1)
D,p

]T
= Vp

[
vpx
vpy

]
, p = 0, . . . , Np − 1, (29)

where the rows of Vp contain the normal velocities for each
path at the location of the pth target. The over-determined
linear equation system (29) can be solved using a least squares
approach to obtain a velocity estimate (vpx, vpy)T . Note that
the exploitation of multipath enables an estimate of the full
target velocity vector, whereas a single path may only deliver
a scalar Doppler speed.

The described velocity estimation method can be extended
to multiple targets within a single location resolution cell.
In this case, multiple apparent Doppler velocities need to be
extracted from each path. This, however, results in resolution
and target association issues. First, multiple Doppler velocities
may only be determined provided that they are sufficiently
distinct and can be resolved in the Fourier-transformed slow
time. Second, the association of the found velocities to the
targets is not obvious. In the case of a few targets per cell
and a few paths, a combinatorial search may be feasible.
That is, every possible association is attempted and the result
with the lowest estimation residual is chosen to be the correct
velocity estimate. The final result of this two-step method is a
reconstructed image of the scene and corresponding velocity
estimates for the detected targets.

Note that despite involving K different sparse reconstruc-
tion problems, the two-step approach has a much lower com-
putational load compared to the sparsity-based joint location
and velocity estimation approach. Typical sparse reconstruc-
tion schemes have at least linear complexity in the number
of unknowns [37]. As such, the complexity of the joint
estimation approach is O(NxNyNvR), while that for solving
K sparse reconstruction problems in the two-step approach is
O(KNxNyR). Further, the computational load of the least-
squares step in the latter approach is negligible. Hence, an
overall reduction of complexity by a factor Nv/K is achieved
for the two-step approach. This is supported by empirical
results of the computational complexity as discussed in the
following section.

Fig. 6. Delay and sum beamforming result using full data.

V. RESULTS

We present simulation and experimental results to deom-
strate the effectiveness of the proposed multipath exploitation
approaches. The setups are chosen such that they represent
a realistic wideband pulsed TWRI system. The multipath
environment is modeled to mimic a typical room behind a
concrete exterior wall. In all simulation examples, independent
and identically distributed complex circular Gaussian receiver
noise with a signal-to-noise ratio of 10 dB is added to the
measurements before applying the downsampling operation.
All reconstruction results are shown on a 60 dB scale.

A. Simulation Results

Simulations were performed for a wideband pulse-Doppler
multistatic radar with a 4-element uniform linear array of
length 1 m. Each array element can be used for both trans-
mission and reception, leading to M = N = 4. A modulated
Gaussian pulse, centered around fc = 2 GHz, with a relative
bandwidth of 50% is transmitted. The PRI is set to 10 ms and
K = 15 pulses are processed coherently. At the receiving
side, T = 150 fast time samples in the relevant interval,
covering the target and multipath returns, are taken at a
sampling rate of fs = 4 GHz. The front wall is modeled with
d = 20 cm thickness and relative permittivity εr = 7.66, and
is located parallel to the array at a distance of 3 m. Two side
walls are considered at ±2 m in crossrange, each of which
causes 3 different multipath returns per target. There are, in
total, four first order multipath returns and two second order
quasi-monostatic multipath returns per target, which are all
considered to be 6 dB weaker than the direct path. Hence,
in total, there are R = 7 paths per target contributing to the
received signal. We assume that the returns from the front
wall have been properly suppressed. We neither consider any
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wall returns nor any multipath from the back wall located
at 6 m downrange. Stationary clutter, if included, would be
reconstructed as part of the zero-velocity spatial image. If the
depiction of stationary targets and clutter is not desired, either
a simple moving target indicator method can be employed or
the reconstructed targets with zero velocity can be masked
out in the final image. For the two-step method, a threshold
for minimum speed of interest should be set to avoid recon-
structions of the stationary targets and clutter. The imaged
region extends 6 m in crossrange and 4 m in downrange and
is centered at a point 4 m in downrange along the broadside
direction of the array. The scene is spatially discretized into
an Nx × Ny = 32 × 32 pixel grid. The target velocities are
discretized on an Nvx × Nvy = 5 × 7 grid, spanning target
velocity components ranging from −0.9 m/s to 0.9 m/s.

1) Imaging Results: We consider two stationary targets
residing at spatial coordinates (0.5, 3.7) m and (−1.5, 3.7) m
and two moving targets at (0.5, 4.7) m and (−1.5, 4.7) m,
respectively. The moving targets are assumed to be 8 dB
weaker than the stationary targets and possess respective
velocities (−0.45, 0) m/s and (0, 0.3) m/s. At first, no returns
from the room corners are considered. We assume that all
targets are visible via all R = 7 possible paths. We first show
the conventional beamforming results using full measurements
in Fig. 6, where the beamformer for each spatial image has
been matched to the corresponding velocity pair according
to (14). The resulting image appears very cluttered due to
the multipath responses and the moving targets cannot be
discerned. We present in Fig. 7 the multipath exploitation
based sparse reconstruction using 7% of the full Nyquist
sampled measurements, averaged over 20 Monte Carlo runs.
The downsampling parameters of (21) are set to Td = 20,
MdNd = 8 and Kd = 15, performing linear measurements
using a Gaussian random mixing matrix in fast time. The
selection of the downsampling parameters is constrained by
three factors. First, the coherence of the dictionary determines
the performance of the reconstruction algorithms. Second, the
assumed sparsity of the scene yields a lower limit on the
reduced number of measurements. Third, the SNR of the
received signal affects the CS result. Due to noise folding, the
effective SNR in the measurements decreases for decreased Td
[41]. Therefore, the selection of the downsampling factor in
the fast time must be cognizant of the noise level.

We contrast three different algorithms: group sparse CS
(GSCS) with joint location and velocity estimation using a)
an optimization-based approach (SparSA) and b) a greedy ap-
proach (BOMP); c) the two-step approach with SparSA in the
location reconstruction and least-squares method for velocity
estimation. The regularization parameter in the SparSA recon-
struction is set to µ = µnorm‖(ΦΨ̃)H z̆‖∞, with µnorm = 0.1.
Note that the optimal choice of the regularization parameter
µ is still an open problem and has not been considered in this
work. For the BOMP, we assume a sparsity level of 20 nonzero
groups which is an overestimate of the true sparsity level. In
each case, a composite image is shown, where the magnitudes
are accumulated over velocities for the group sparse methods
and over the slow time for the two step approach. The
velocity estimates for the four strongest targets are indicated

on the spatial scene reconstructions using arrows. The group
sparse reconstruction using SparSA, shown in Fig. 7, features
perfect reconstruction of the target positions and velocities.
The ghost targets have been suppressed and only a few very
weak clutter pixels remain. Greedy reconstruction using the
BOMP also successfully locates the targets and determines
their velocities, but exhibits strong clutter along the side walls,
as depicted in Fig. 7b. As the BOMP is a greedy method,
a locally optimal choice of an image pixel is performed in
each iteration. Locations along the side wall are special in
the sense that four propagation paths coincide, namely, the
direct path and the three indirect paths via the respective
wall. The almost perfect correlation of the corresponding
dictionary elements may lead to a false selection in the BOMP.
The result of the two-step approach is provided in Fig. 7c,
which generally shows larger background noise and lower
signal-to-clutter ratio. The four targets and the corresponding
velocities are accurately reconstructed nonetheless. To evaluate
the numerical complexity, we compare the average runtime of
the following three algorithms: joint estimation using SparSA,
joint estimation using BOMP, and the two-step approach with
SparSA employed in the first step. A single core of a 2.8 GHz
CPU was used for the calculations. The average runtime of
the joint estimation using SparSA was 170.3 min, while those
for joint estimation using BOMP and the two-step approach
were 11.1 min and 5 min, respectively. Both BOMP-based
joint estimation and the two-step method are one order of
magnitude faster than the joint estimation using SparSA, with
the two-step approach being the fastest due to its much reduced
CS problem size.

Next, the impact of the corner returns on the performance
of the proposed schemes is evaluated. The above simulation is
repeated with the returns from the two corners in the back of
the room included in the received signal. The corner returns
are modeled according to (9) with Nc = 2 and Lu = 2 m,
u = 0, 1. The averaged images along with velocity estimates
for the 50 strongest targets are presented in Fig. 8. The CS
multipath exploitation result using SparSA is shown in Fig. 8a.
The target locations and velocities are depicted correctly, but
strong clutter is now visible at the two considered corners of
the room. Since the corner reflectivity varies across the various
transmitter-receiver pairs, the imaged corners are smeared in
space and velocity. Similar results are achieved using the
BOMP, see Fig. 8b. However, the clutter along the side walls
is more pronounced and the relative amplitude of the targets
is weak. Finally, the imaging result of the two-step approach
in Fig. 8c is similar to the SparSA reconstruction, but the
velocity reconstruction for the two moving targets fails. Also,
the velocity estimates for the stationary corner reflections are
significantly off.

2) Velocity estimation: We carry out another simulation
which specifically focuses on velocity estimation. First, we
show that the additional information on the target velocity con-
tained in the multipath returns can be exploited to improve the
velocity resolution. We employ the proposed CS reconstruction
scheme from Sec. IV-A using SparSA to resolve two targets
with similar velocities. The targets are fixed at 4 m downrange
in the broadside direction of the array, while the room and
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(a) (b) (c)

Fig. 7. CS reconstruction using 7% of the measurements for (a) GSCS using SparSA, (b) GSCS using BOMP, and (c) the two-step approach.

(a) (b) (c)

Fig. 8. CS reconstruction including corner using 7% of the measurements for (a) GSCS using SparSA, (b) GSCS using BOMP, and (c) the two-step approach.

system parameters are kept the same as in the previous exam-
ples. Both targets reside in the same range/crossrange cell, but
move in opposing crossrange directions. The target velocities
differ by only 0.8 m/s. The 11 × 11 velocity grid covers
range/crossrange velocities between ±1 m/s. We present the
results in Fig. 9 for exploiting different numbers of multipath
returns: i) the direct propagation path only (R = 1), ii)
direct and first order multipath returns only (R = 5), iii)
a second order multipath in addition to the direct and first
order multipath returns (R = 6), and iv) all seven paths
per target as described above. It is evident that the velocity
resolution capability improves with the incorporation of an
increasing number of multipath returns. If only the direct
path is available, the two moving targets cannot be resolved,
as seen in Fig. 9a. If all four first order multipath returns
are included and exploited, the two targets are resolved, but
neighboring clutter pixels may render the velocity estimation
difficult, see Fig. 9b. Finally, when either six or seven paths are
available and exploited, the two moving targets are resolved
with accurate velocity estimates, as evident in Figs. 9c,d.

In order to compare the velocity resolution performance for
the proposed methods as a function of the number of exploited
multipath returns, we use the same setup as in the previous
example. However, we vary the velocity difference between
the two targets from 0.4 m/s to 2 m/s in steps of 0.4 m/s. We
repeat the experiment 100 times and use a simplistic detection

scheme to obtain an upper bound on the performance assuming
that the number of targets is known a priori. More specifically,
for the reconstruction with joint velocity estimation, we choose
the two strongest pixels and check if they correspond to
the true target velocities. While in real life this detection
scheme is not feasible, it serves as a suitable metric to provide
a fair comparison for the examined cases. To quantify the
performance of the two-step approach, i.e., reconstruction with
subsequent velocity estimation, we calculate the root mean
squared error (RMSE) of the velocity estimate. Furthermore,
the detection rate is calculated, where an RMSE smaller
than the velocity grid spacing, i.e., 0.2 m/s means successful
detection. Fig. 10 summarizes the velocity estimation perfor-
mance results. For various amounts of multipath, the detection
performance for reconstruction with SparSA, BOMP, and the
two-step method is shown in Figs. 10a-c, whereas Fig. 10d
depicts the RMSE of the velocity estimation of the two-step
method along with the 0.2 m/s threshold (dotted line). Note
that the two-step method requires more than one propagation
path to estimate the velocity vectors, hence, the case R = 1 is
missing for this approach. We observe that without multipath
exploitation, none of the methods is able to resolve closely-
spaced velocities, while the resolution capabilities improve
with increasing number of exploited multipath returns. For
R = 7, all methods are able to separate velocity differences
of 1.2 m/s and beyond. This is also reflected by the estima-
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(a) (b) (c) (d)

Fig. 9. CS reconstruction results for (a) direct path only (R = 1), (b) 1st order paths only (R = 5), (c) one 2nd order path (R = 6), and (d) all paths
(R = 7).

(a) (b) (c) (d)

Fig. 10. Crossrange velocity resolution success for various amounts of multipath employing (a) CS using SparSA, (b) CS using BOMP, and (c) the two-step
method. (d) RMSE for veocity estimation using the two-step method.

tion error plot of the two-step method, shown in Fig. 10d,
wherein exploitation of more paths results in a lower RMSE.
Furthermore, the resolution performance of the three methods
scales with the computational complexity. While the two-step
approach is computationally inexpensive, it performs rather
poorly as compared to the other two methods, see Fig. 10c.
When using the joint reconstruction with BOMP, refer to
Fig. 10b, the performance improves at the expense of an
increased computational complexity, whereas the numerically
demanding SparSA reconstruction in Fig. 10a clearly provides
the best performance. The results in Fig. 10 confirm that it
is advantageous to exploit the information contained in the
multipath returns for improved scene reconstruction.

3) Receiver Operating Characteristic Curves: Finally, we
compare different scenarios and algorithms for TWRI by sim-
ulating the receiver operating characteristic (ROC) curves. We
use the same multistatic radar geometry and scene setup with
four targets as described in Section V-A1. The ROC curves
for the considered multi-target scene have been calculated in
the following manner. Simple amplitude detection is used to
first form a binary image. A target pixel is considered to be
correctly detected if the detected pixel coincides with the true
target state or lies in one of the eight immediate neighboring
pixels. This must be fulfilled for both the location and the
velocity. Several detected pixels within this neighborhood are
treated as one. A false alarm event is defined as a pixel
detected outside the immediate neighborhood of any target.
This corresponds to an unwanted clutter or ghost pixel in the
image. The simulation results are averaged over 20 Monte
Carlo runs and the corresponding ROC curves are averaged
on a common false alarm axis. The realizations of the receiver

(a) (b)

Fig. 11. ROC curves for various CS reconstruction methods (a) without and
(b) including corner returns. The legend applies to both plots.

noise as well as the random downsampling matrices change
across the various Monte Carlo runs.

In the first simulation, we consider only the target returns
and do not include the room corner returns in the received
signal. The undersampling parameters are selected as Td = 20,
MdNd = 2, and Kd = 15 and the following algorithms and
multipath environments are considered:
• DP, SparSA: Only the direct path is modeled, i.e. R =

1 and conventional CS reconstruction using SparSA is
employed.

• MP, SparSA: All R = 7 paths are modeled. CS based
multipath exploitation using SparSA is employed.

• MP, BOMP: All R = 7 paths are modeled. CS based
multipath exploitation using BOMP is employed.

• MP, two-step: All R = 7 paths are modeled. Two-step
multipath exploitation is employed.

Fig. 11a depicts the corresponding ROC curves. Considering
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3 m

29.2 cm

2 m

62 cm

Fig. 12. Scene layout of a human (ellipse) walking diagonally towards the
radar. Smaller stationary object (circle) resides at a closer downrange.

the multipath scenario, reconstruction using the optimization
based approach (“MP, SparSA”) performs best, followed by the
two-step approach and the BOMP. Note that for the two-step
approach, only the target location performance is considered
in the ROC while velocity estimation is neglected, which may
explain the advantage over the BOMP. The two reconstructions
based on SparSA depict similar performance. Therefore, when
exploited, multipath is neither disadvantageous nor advanta-
geous in this simulation scenario.

In a second simulation, corner returns are added to the
received signal. The number of used transceiver-pairs has
been increased to MdNd = 8 to accommodate for the
reduced sparsity in the reconstruction. The resulting ROC
curves are presented in Fig. 11b. The locations of the corners
are considered stationary targets when calculating the ROC.
In this case, multipath is clearly a benefit rather than a
nuisance. By exploiting the power of the target multipath,
the detection performance can be improved in a scenario with
strong stationary clutter. Both the SparSA and BOMP based
multipath exploitation algorithms outperform reconstruction
without multipath. The two-step approach, however, seems to
suffer significantly from the corner clutter. Note that due to
the reduced sparsity of the scene, the two SparSA methods
fail to reconstruct all targets leading to an ROC that saturates
at PD < 0. This can be avoided by properly tuning the
regularization parameter. However, we kept the same level of
regularization throughout the results to maintain comparability.

B. Experimental Results

We present experimental results for a wideband real aperture
pulse-Doppler radar with M = 1 transmitter and a uniform
linear array with N = 8 receivers. The data has been
recorded at the Radar Imaging Lab, Villanova University, in a
semi-controlled lab environment. The transmit waveform is
a modulated Gaussian pulse, covering the frequency range
from 1.5 to 4.5 GHz. We recorded 768 fast time samples
at a sampling rate fs = 7.68 GHz and subsequently gated
out the early and late returns to clean the data, resulting in
T = 153 samples. The transmitter was placed 62 cm away
from a side wall and the receive array (element spacing 6 cm)

Fig. 13. Delay and sum beamforming result of the walking human using full
data

Fig. 14. CS reconstruction of the walking human using 20% of the
measurements.

was placed on the other side of the transmitter at a distance
(to the first receive array element) of 29.2 cm on the same
baseline. No front wall was present in the scene. A total of
R = 4 possible propagation paths are expected, namely, the
direct path, two first order and one second order multipath via
the side wall. The scene of interest is spatially discretized into
a Nx × Ny = 32 × 64 pixel grid. The target velocities are
discretized on an Nvx × Nvy = 5 × 7 grid spanning target
velocity components between ±0.6 m/s. A scenario with a
human walking diagonally towards the radar was recorded.
All of the above mentioned propagation paths are expected to
be observed for the human. Refer to Fig. 12 for an illustration
of the scene layout.

We first show the conventional beamforming results using
full measurements in Fig. 13, where the beamformer for each
spatial image has been matched to the corresponding target
velocity. The expected position of the human is marked with
a circle. It is evident that although both the human and the sta-
tionary target have been properly localized, the corresponding
target velocities cannot be discerned from the beamformed
images. Group sparse reconstruction using SparSA with 20%
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of the full Nyquist measurements is shown in Fig. 14. The
downsampling parameters of (21) are set to Td = 50, Nd = 5
and Kd = 15. In order to account for the higher amount of
clutter and noise in the experimental data, the downsampling
factor in the fast time domain has been decreased as compared
to that used in the simulations. For the same reason, we in-
crease the regularization parameter to µnorm = 0.3. The human
as a moving target is recovered with approximately correct
location and velocities, with the direction of the movement
consistent with the ground truth. There is some leakage in
the neighboring velocity cell, owing to the high coherence in
the measurement matrix and also due to the complex nature of
torso and limb movements. Additionally, some residual clutter
in the stationary image can be observed. This is attributed to
a small stationary objects present in the scene (see Fig. 12).
Group sparse reconstruction using BOMP and the two-step
approach were also used for scene reconstruction (correspond-
ing images are omitted for brevity). BOMP-based approach
failed to accurately reconstruct the scene and exhibited a much
higher amount of clutter. The reconstruction results using the
two-step approach also exhibited larger background noise and
lower signal-to-clutter ratio.

VI. CONCLUSION

In this paper, we presented a forward linear model un-
der multipath propagation for simultaneous localization of
stationary and moving targets behind walls. We considered
multistatic radar operation, with time-division multiplexing of
the transmitters for data acquisition. Based on the presented
model, we proposed a group sparse reconstruction approach
to solve the inverse problem under reduced data volume. In
this way, we are able to recover the locations and velocities of
indoor targets from much fewer than Nyquist measurements
without multipath ghosting effects. We also proposed a com-
putationally inexpensive two-step scheme that first obtains the
target locations via sparse reconstruction and subsequently
exploits multipath to estimate the target velocity vector us-
ing conventional Doppler processing. Supporting simulation
and experimental results are provided, which demonstrate
that highly-resolved, ghost-suppressed target information is
obtained from few measurements using the proposed schemes.

It is noted that the proposed method is intended for real-
time location and velocity estimation of targets. However,
existing conventional processing hardware is not capable of
solving CS reconstruction problems fast enough for joint
location and velocity estimations. The two-step approach is
an attempt to reduce the computational complexity of sparsity-
based localization and velocity estimation, thus rendering real-
time implementations feasible.

REFERENCES

[1] M. Amin, Ed., Through-the-Wall Radar Imaging. Boca Raton, FL:
CRC Press, 2011.

[2] M. Amin, Ed., Compressive Sensing for Urban Radar. Boca Raton,
FL: CRC Press, 2015.

[3] C. Le, T. Dogaru, L. Nguyen, and M. Ressler, “Ultrawideband (UWB)
radar imaging of building interior: Measurements and predictions,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 47, no. 5, pp.
1409–1420, May 2009.

[4] F. Soldovieri and R. Solimene, “Through-wall imaging via a linear
inverse scattering algorithm,” IEEE Geoscience and Remote Sensing
Letters, vol. 4, no. 4, pp. 513–517, Oct. 2007.

[5] M. Dehmollaian and K. Sarabandi, “Refocusing through building walls
using synthetic aperture radar,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 46, no. 6, pp. 1589–1599, Jun. 2008.

[6] F. Ahmad, M. Amin, and P. Zemany, “Dual-frequency radars for target
localization in urban sensing,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 45, no. 4, pp. 1598–1609, Oct. 2009.

[7] C.-P. Lai and R. Narayanan, “Ultrawideband random noise radar design
for through-wall surveillance,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 46, no. 4, pp. 1716–1730, Oct. 2010.

[8] C. Debes, J. Hahn, A. Zoubir, and M. Amin, “Target discrimination and
classification in through-the-wall radar imaging,” IEEE Transactions on
Signal Processing, vol. 59, no. 10, pp. 4664–4676, Oct. 2011.

[9] M. Leigsnering, M. Amin, F. Ahmad, and A. Zoubir, “Multipath
exploitation and suppression for SAR imaging of building interiors:
An overview of recent advances,” IEEE Signal Processing Magazine,
vol. 31, no. 4, pp. 110–119, Jul. 2014.

[10] Y.-S. Yoon and M. Amin, “Compressed sensing technique for high-
resolution radar imaging,” in Proceedings of SPIE Signal Processing,
Sensor Fusion, and Target Recognition XVII, vol. 6968, no. 1, Orlando,
FL, Mar. 2008, p. 69681A.

[11] M. Leigsnering, C. Debes, and A. Zoubir, “Compressive sensing in
through-the-wall radar imaging,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech
Republic, May 2011, pp. 4008–4011.

[12] Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging
based on compressive sensing,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 48, no. 3, pp. 1408–1415, Mar. 2010.

[13] F. Ahmad and M. G. Amin, “Through-the-wall human motion indi-
cation using sparsity-driven change detection,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 51, no. 2, pp. 881–890, Feb. 2013.

[14] J. Qian, F. Ahmad, and M. G. Amin, “Joint localization of stationary
and moving targets behind walls using sparse scene recovery,” Journal
of Electronic Imaging, vol. 22, no. 2, p. 021002, Jun. 2013.

[15] V. Dang and O. Kilic, “Joint DoA-range-doppler tracking of moving
targets based on compressive sensing,” in IEEE International Symposium
on Antennas and Propagation and USNC-URSI Radio Science Meeting,
Memphis, TN, Jul. 2014, pp. 141–142.

[16] S. Kidera, T. Sakamoto, and T. Sato, “Extended imaging algorithm based
on aperture synthesis with double-scattered waves for UWB radars,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 12,
pp. 5128–5139, Dec. 2011.

[17] P. Setlur, M. Amin, and F. Ahmad, “Multipath model and exploitation
in through-the-wall and urban radar sensing,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 49, no. 10, pp. 4021–4034, Oct.
2011.

[18] G. Gennarelli, G. Riccio, R. Solimene, and F. Soldovieri, “Radar imaging
through a building corner,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 52, no. 10, pp. 6750–6761, Oct. 2014.

[19] G. Gennarelli and F. Soldovieri, “Radar imaging through cinderblock
walls: Achievable performance by a model-corrected linear inverse
scattering approach,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 52, no. 10, pp. 6738–6749, Oct. 2014.

[20] M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath
exploitation in through-the-wall radar imaging using sparse reconstruc-
tion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50,
no. 2, pp. 920–939, Apr. 2014.

[21] G. Gennarelli, I. Catapano, and F. Soldovieri, “RF/microwave imaging of
sparse targets in urban areas,” IEEE Antennas and Wireless Propagation
Letters, vol. 12, pp. 643–646, May 2013.

[22] Y. Yu, A. Petropulu, and H. Poor, “MIMO radar using compressive
sampling,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,
no. 1, pp. 146–163, Feb. 2010.

[23] X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking
for through-the-wall radars,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 50, no. 2, pp. 1403–1415, Apr. 2014.

[24] F. Ahmad and M. Amin, “Multi-location wideband synthetic aperture
imaging for urban sensing applications,” Journal of the Franklin Insti-
tute, vol. 345, no. 6, pp. 618–639, Sep. 2008.

[25] L. Potter, E. Ertin, J. Parker, and M. Cetin, “Sparsity and compressed
sensing in radar imaging,” Proceedings of the IEEE, vol. 98, no. 6, pp.
1006–1020, june 2010.

[26] J. Jackson, B. Rigling, and R. Moses, “Canonical scattering feature
models for 3D and bistatic SAR,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 46, no. 2, pp. 525–541, Apr. 2010.



IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING 15

[27] Y.-S. Yoon and M. Amin, “Spatial filtering for wall-clutter mitigation
in through-the-wall radar imaging,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 47, no. 9, pp. 3192–3208, Sep. 2009.

[28] F. H. C. Tivive, A. Bouzerdoum, and M. G. Amin, “An SVD-based
approach for mitigating wall reflections in through-the-wall radar imag-
ing,” in IEEE Radar Conference (RADAR), Kansas City, MO, May 2011,
pp. 519–524.

[29] E. Lagunas, M. G. Amin, F. Ahmad, and M. Nájar, “Joint wall
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