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ABSTRACT

In this paper, we consider multipath exploitation and sparse
reconstruction in a network of distributed multistatic radar
units for stationary target localization behind walls. Mul-
tipath exploitation leverages prior information of the indoor
scattering environment to eliminate ghosts targets. However,
uncertainties in interior wall positions severely impair the ef-
fectiveness of multipath exploitation. We develop a multipath
signal model for the distributed radar network configuration,
which parameterizes the wall locations, and perform joint op-
timization for simultaneously recovering the target and wall
positions. Supporting simulation results are provided, which
validate the effectiveness of the proposed method.

Index Terms— Multipath exploitation, distributed radar
network, sparse reconstruction, target localization

1. INTRODUCTION

With much progress made in through-the-wall radar imaging
(TWRI) over the last decade, one of the remaining challenges
is dealing effectively with the rich multipath indoor environ-
ment [1, 2]. Signal propagation not only occurs along the di-
rect path between the antenna and the target, but also along
various indirect paths involving secondary reflections at inte-
rior building walls, floor, and ceiling. Such multipath returns
can result in ghost targets or energy accumulation at locations
that do not correspond to true targets in the scene. Differ-
ent properties of direct and indirect radar returns can be used
to identify and suppress the indirect returns [3, 4]. Alterna-
tively, the energy contained in the multipath returns can be
utilized for enhanced target detection and localization, while
simultaneously eliminating the ghost targets. The latter is the
underlying principle of multipath exploitation [5–8].

Multipath exploitation, in general, requires prior informa-
tion of the indoor scattering environment. Inaccuracies in the
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knowledge of interior building layout and the room geome-
try can lead to severe impairments in the effectiveness of the
multipath exploitation schemes. In ground-based operations,
these impairments depend on the employed antenna aperture
as well as whether RF sensing is performed using co-located
or distributed system configurations. In this paper, we con-
sider a distributed network of multistatic radar units for sta-
tionary target localization. Sequential operation of the trans-
mitters from all the radar units is assumed and each transmit-
ted pulse is received simultaneously by all receivers from all
radar units. The data from all transmit and receive pairs are
transmitted to a central processing unit, where the acquired
measurements are non-coherently combined due to varying
target radar cross section (RCS) across the units. We develop
a parameterized multipath propagation model with the posi-
tions of the walls represented as parameters and solve a joint
optimization problem to simultaneously perform a ghost-free
sparse scene recovery and wall location estimation at the cen-
tral processing unit.

Multipath exploitation in the presence of wall uncer-
tainties was first proposed for TWRI in [9]. However, a
co-located configuration of multiple transmitters and re-
ceivers was assumed therein, thereby permitting the radar
returns corresponding to all the transmitters and receivers
to be coherently combined for each propagation path. For
ground-based operations, deployment of a network of multi-
static radar units, each with a limited number of transmitters
and receivers, can provide an effective and agile alternative to
vehicle-mounted systems. In such cases, it is more appealing
to define distributed configurations since it may be difficult to
deploy precise co-located configurations.

The remainder of the paper is organized as follows. In
Section 2, we establish the received signal model for the dis-
tributed network of multistatic radars in a multipath environ-
ment. Section 3 describes the optimization problem for mul-
tipath exploitation in the presence of wall uncertainties. Sup-
porting simulation results are provided in Section 4. Section 5
concludes the paper.



2. SIGNAL MODEL

2.1. Single Multistatic Radar Unit

Consider a wideband multistatic coherent radar withM trans-
mitters and N receivers. Sequential use of theM transmitters
with simultaneous reception at all N receivers is assumed.
Let the 2-D target space be discretized into a grid of P points,
with xp = (xp, yp) and σp denoting the position and complex
reflectivity of the pth grid point. A zero value of σp represents
the absence of a point target at the pth grid point. For a sparse
scene, only few of the grid points assume non-zero values.

Let the transmitted wideband pulse be expressed as
<{s(t) exp(j2πfct)}, where s(t) is the pulse in the com-
plex baseband, and fc is the carrier frequency. The sequential
operation of the transmitters results in a temporal spacing
of Tr between the pulses. Let zmn be the NT × 1 vector
obtained by sampling the direct radar return, corresponding
to the (m,n)th transmitter-receiver pair, at NT time steps
with sampling interval Ts. Stacking the direct return vectors
{zmn,m = 0, . . . ,M − 1, n = 0, . . . , N − 1}, we obtain the
MNNT × 1 vector

z = Ψ(0)σ(0), (1)

where σ(0) is the P × 1 vector of target reflectivities corre-
sponding to the direct path and Ψ(0) is theMNNT×P direct
path dictionary matrix, defined as[
Ψ(0)

]
i+nNT +mNTN,p =

s (ti −mTr − τpmn) · exp (−j2πfc (mTr + τpmn)) ,

(2)

Here, τpmn is the bistatic propagation delay from the mth
transmitter to the pth target and back to the nth receiver, i =
0, . . . , NT − 1, m = 0, . . . ,M − 1, n = 0, . . . , N − 1, and
p = 0, . . . , P − 1.

Modeling R − 1 additive multipath contributions in the
received signal, we obtain

z =Ψ(0)σ(0)+Ψ(1)(w1)σ(1)+· · ·+Ψ(R−1)(wR−1)σ(R−1),

where Ψ(r)(wr), r = 1, . . . , R− 1 are the dictionaries under
multipath propagation, wr are the wall locations and σ(r) are
the reflectivity vectors for each path.

Finally, we concatenate the dictionaries as Ψ̃(w) =
[Ψ(0) Ψ(1)(w1) · · · Ψ(R−1)(wR−1)] ∈ CNTNK×PR and
stack the image vectors corresponding to the various paths in

a PR × 1 vector σ̃ =
[(
σ(0)

)T (
σ(1)

)T · · · (σ(R−1)
)T ]T

,
obtaining

z̄ = Ψ̃(w)σ̃ + n̄, (3)

where w is the vector of all wall positions.
Note that the front wall contributions are assumed to have

been removed by a suitable wall clutter removal method [10–
13] and are, thus, not included in the signal model.

2.2. Distributed Network Model

Assume that a number S of the multistatic radar units de-
scribed above are distributed around the scene of interest.
Each transmitted pulse is received simultaneously by all re-
ceivers from all units. Hence, the total number of measure-
ments is increased S2-fold. We denote the measurement vec-
tors as {z̄sTxsRx , sTx, sRx = 0, . . . , S − 1}, where sTx and sRx

are the indexes of the transmitting and receiving units, respec-
tively. Likewise, the dictionaries Ψ̃sTxsRx(w) depend on the
transmitting and receiving units, whereas the wall position
vector w is universal. An additive noise vector n for the full
received signal is considered. In order to account for the RCS
change that is inherent in a distributed configuration, a sepa-
rate reflectivity vector σ̃sTxsRx for each combination of sTx and
sRx is introduced. Therefore, we obtain the signal model for
the distributed network of S multistatic radars as

z̆ = Ψ̆(w)σ̆ + n, (4)

where

z̆ =



z̄0 0

z̄0 1

...
z̄0 S−1

...
z̄S−1 S−1


, σ̆ =



σ̃0 0

σ̃0 1

...
σ̃0 S−1

...
σ̃S−1 S−1


, (5)

Ψ̆(w) = blkdiag



Ψ̃0 0(w)

Ψ̃0 1(w)
...

Ψ̃0 S−1(w)
...

Ψ̃S−1 S−1(w)


(6)

and blkdiag(·) denotes the block diagonal matrix operation.

3. SPARSE SCENE RECONSTRUCTION UNDER
WALL UNCERTAINTIES

In practice, precise prior knowledge of the interior wall loca-
tions w is usually not available. The walls locations rather
have to be estimated from the returns using building layout
estimation techniques, such as [13–15]. These estimates are
subject to errors that will certainly be on the order of TWRI
system wavelengths. Multipath exploitation requires accurate
knowledge of the room layout in order to deliver high quality
reconstructions. Wall location errors lead to a mismatch be-
tween the signal model and the received signal, resulting in
performance degradation [9]. As such, it is imperative to take
wall position uncertainties into account during the reconstruc-
tion process.



To this end, we propose a joint scheme for reconstruction
of the target space and estimation of the wall positions. As the
same target scene is observed via all propagation paths and by
all distributed radar units, the reflectivity vector σ̆ exhibits a
group sparse structure. As such, the joint scene reconstruction
and wall parameter estimation problem can be posed as the
mixed-norm nested optimization problem

min
w

min
σ̆
‖z̆ − Ψ̆(w)σ̆‖22 + λ‖σ̆‖1,2. (7)

where ‖ ·‖1,2 denotes mixed `1-`2 norm and λ is a regulariza-
tion parameter. The mixed norm optimization problem, which
results due to the group sparse nature of σ̆, can be solved
in an iterative fashion. The group encompasses one location
across all paths and all distributed radar units. We note that
the inner optimization over σ̆ is a convex optimization prob-
lem, which can be solved by using SparSA [16] or other avail-
able schemes [17,18]. The outer minimization is non-convex.
However, the dimension of the solution space is much smaller
and, thus, easier to search. In a typical scenario, the number
of unknown wall locations is two to four, whereas the number
of image pixels is several orders of magnitude larger. Non-
derivative Quasi-Newton methods, Genetic Algorithm based
methods [19], or Particle Swarm Optimization (PSO) [20] can
be used to solve the outer minimization. In order to improve
the convergence for such methods, the search space should be
limited to a feasible region. We assume that we have initial
estimates of the wall locations, which are within a 0.5 m er-
ror margin. These initial estimates are assumed to have been
obtained by a prior surveillance operation for building layout
determination. The error margin of 0.5 m is chosen in ac-
cordance with the VisiBuilding Program by the DARPA [21].
Hence, the search space is limited by box constraints centered
around each initial wall location estimate.

4. SIMULATION RESULTS

Simulations were performed for a simple rectangular room
enclosed by four homogeneous walls. The size of the room is
4 m by 4 m, i.e. the walls are located 2 m away from the center
of the room. The walls are modeled with thickness d = 20 cm
and relative permittivity εr = 7.66, which is typical of con-
crete. Access to the outside perimeter of the room from the
front and back sides is assumed. Two multistatic radar units
are located at 3 m standoff distance on opposing sides of the
room, as shown in Fig. 1. Each of the S = 2 multistatic radar
units has a uniform linear array with N = 3 receivers and
an inter-element spacing of 10 cm. The central element also
acts as a transmitter, i.e., M = 1. When one unit is transmit-
ting, both units simultaneously record the returns with all of
their receivers. All measurements are finally assumed to be
available at a single data processing center where the scene
recovery is carried out.

Each unit is oriented parallel to the wall facing it and
transmits modulated Gaussian pulses, centered around fc =

4 m

4 m

3 m

3 m

x

y

Fig. 1. Scene geometry.

2 GHz, with a relative bandwidth of 50%. At each receiver,
T = 150 fast time samples are collected in the relevant inter-
val, covering the target and multipath returns with a sampling
rate of fs = 4 GHz. For each array, each side wall is assumed
to cause 3 different multipath returns. Multipath associated
with the back and front walls is not considered. For each side
wall, we observe two different first order multipath returns.
A first order multipath involves only one reflection at an inte-
rior wall, which could take place either on the way from the
transmitter to the target or from the target back to the receiver.
Also, we consider one second-order multipath for each wall,
where a secondary reflections takes place on both ways. In to-
tal, there are R = 7 paths that are considered in the received
signal corresponding to each transmit-receive pair. The mul-
tipath returns are all considered to be 6 dB weaker than the
direct path.

We also consider additive complex circular Gaussian
noise. We consider two scenarios, one with perfect wall po-
sition estimates and the other with errors in the estimates of
the side wall locations. Errors in positions of the front and
back walls are not considered in this example, since the mul-
tipath returns are assumed to be due to secondary reflections
at the side walls only. The target space extends 5 m each
in crossrange and downrange and is centered at the center
of the room. The target space is spatially discretized into
P = 64 × 64 grid points. Eight targets of equal reflectivity
are considered at specific locations in the room, as illustrated
in Fig. 1.

We first performed scene reconstruction assuming perfect
knowledge of the wall positions. That is, we only solved the
inner optimization problem in (7) once with the true wall po-



Fig. 2. Benchmark - No wall errors.

Fig. 3. Sparse Reconstruction with wall errors.

sitions used for the w vector. This benchmark reconstruc-
tion result is shown in Fig. 2. The current and subsequent
reconstruction results are all shown on a 40 dB scale. We
observe that the scene is reconstructed almost perfectly when
prior knowledge of the exact wall locations is available. How-
ever, if the initial wall location estimates are set to 1.6 m and
-1.7 m with respect to the y-axis of the coordinate system,
scene reconstruction fails completely, as shown in Fig. 3. This
highlights the need for the proposed wall correction method.
Next, we used a particle swarm optimization toolbox for Mat-
lab [20] to solve the proposed nested optimization problem.
The resulting reconstruction is provided in Fig. 4. It is evi-
dent that the proposed approach is able to vastly improve the
reconstruction quality over Fig. 3, with the result being on
par with the known wall location or benchmark case. The
estimated wall positions are 1.999 m and -2.003 m, with the
estimation error in the millimeter range.

Fig. 4. Sparse Reconstruction with PSO based wall position
estimates.

5. CONCLUSION

In this paper, we presented a joint sparse scene reconstruc-
tion and wall location estimation approach for multipath ex-
ploitation in a distributed network of multistatic radars for
through-the-wall radar sensing applications. A network of
distributed multistatic radar unit provides more flexibility and
ease of deployment over both co-located configurations and
vehicle-borne TWRI systems. By introducing a parametrized
model of the scattering environment, uncertainties in the inte-
rior wall locations were captured in the signal model. The re-
sulting joint optimization problem is convex in the unknown
target reflectivities, but non-convex in the wall parameters,
and can be solved in an iterative manner. Supporting simula-
tion results were provided, which validated the performance
of the proposed nested optimization approach for target local-
ization using a distributed radar network.
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