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Abstract—Through-the-wall radar imaging utilizes electromag-
netic wave propagation to reveal the locations and velocities of
obscured targets. For a pulsed radar operation, conventional
Doppler processing can only estimate the radial velocity com-
ponent of the indoor moving targets. We show that multipath
propagation provides additional Doppler information that allows
estimation of the full target velocity vector. We propose a
computationally efficient two-step approach that obtains the
target locations using sparse reconstruction and estimates the
velocities by utilizing the Doppler information in the various
propagation paths. We support our findings by simulation and
experimental results.

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) has gained atten-
tion due to its ability to acquire accurate information of scenes
behind walls or other opaque obstacles using electromagnetic
(EM) wave propagation [1]–[4].

In many TWRI applications, it is desirable to determine both
the locations and the velocities of the targets. Resolving the
full target velocity vectors is usually not feasible in single-site
radar deployment as only the velocity component perpendic-
ular to the trajectory of constant range, i.e. the Doppler shift,
is observable. However, multipath propagation can provide
additional information about the targets’ movements because
the observed Doppler shift changes with the propagation path
of the signal. As such, multipath exploitation can enable
accurate resolution of the full velocity vectors by utilizing
the Doppler diversity provided by the multipath target returns.
Further, highly resolved scene reconstructions are desirable
in TWRI applications, which require use of large apertures
and bandwidth leading to huge amounts of acquired data. In
order to tackle the data deluge, compressive sensing (CS) has
been applied to TWRI [5]. Joint reconstruction of stationary
and moving targets without consideration of multipath [6] and
including multipath exploitation [7] have been addressed in
terms of CS in TWRI. However, the latter is computationally
very demanding.

In this paper, we propose a two-step approach to locate
targets and estimate their velocities in an indoor multipath
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environment. Our scheme is based on the efficient approach
originally proposed in [8] for reconstruction of stationary
and moving targets in a multipath free environment. We
build on the aforementioned scheme by taking the multipath
returns into account in the signal model. In the first step, we
utilize a CS based method [9] to reconstruct a sparse image
of the scene and to separate the returns from the various
paths. This reconstruction is carried out individually for each
pulse in the coherent processing interval (CPI). In the second
step, Doppler processing of the localized targets is performed
across the pulses for each path. Hence, we obtain as many
Doppler velocities estimates for each target as the number of
available propagation paths. Using least-squares estimation,
we can then determine the full velocity vector for each
target from the Doppler information contained in the various
paths. We present analytic, simulation and experimental results
to demonstrate the low computational complexity and the
effectiveness of the proposed two-step approach.

The remainder of the paper is organized as follows. The
signal model is introduced in Section II. In Section III, we
describe the proposed method for efficient target localization
and velocity estimation. Simulation and experimental results
are presented in Section IV. Section V concludes the paper.

II. SIGNAL MODEL

In this section, we describe the signal model for an ultra-
wideband multistatic pulsed radar system with a single trans-
mitter and N receivers. For simplicity, we consider the single
transmitter case; however, the model can be readily extended
to the case of multiple transmitters with the assumption of
time-multiplexed operation.

We assume P point targets located in a two-dimensional
(2D) area of interest, with xp = (xp, yp) being the position
vector of the pth target. A wideband pulse, s(t), in the complex
baseband with carrier frequency fc is transmitted. The pulse
travels through the exterior wall to the P point targets and is
reflected back to the receive array. The baseband radar return
received by the nth receiver is given by

zn(t) =

P−1∑
p=0

σps (t− τpn) exp (−j2πfc (τpn)) (1)



where σp is the complex reflectivity of the pth point target
and τpn is the bistatic propagation delay from the transmitter
to the pth target and back to the nth receiver.

A discrete version of the signal model is generated by sam-
pling the target space at Np points, which can be stacked into
a vector σ. Each grid point assumes a certain reflectivity, with
the absence of a target at a particular grid point represented
by zero value for the corresponding reflectivity. The signals
zn(t), n = 0, 1, . . . , N − 1, are also sampled uniformly at NT

time steps resulting in vectors zn, n = 0, 1, . . . , N − 1, each
of length NT . The resultant discretized linear measurement
model can be expressed as

z = Ψσ, (2)

where z contains the stacked measurements zn from the N
receivers and Ψ is the dictionary obtained by discretizing the
right hand side of (1).

At this point, we consider two extensions to the above linear
measurement model. First, we consider slowly moving targets
with linear motions. We assume that the motions are slow
enough that the targets are approximately stationary during
a single pulse. Also, the targets are assumed to stay within
the same range cell over a CPI of K pulses. This leads to
a change of the phases in the individual reflectivity vectors
σ(k) and, hence, to individual measurement vectors z(k)
for each pulse k = 0, . . . ,K − 1. Note that due to the
slow motion assumption, the phase progression in σ(k) is
approximately linear for each target. Second, we introduce an
additive multipath model as described in [9]. Each possible
propagation path r = 0, . . . , R − 1 leads to an additive
component, yielding

z(k) = Ψ(0)σ(0)(k)+Ψ(1)σ(1)(k)+· · ·+Ψ(R−1)σ(R−1)(k).
(3)

Note that r = 0 corresponds to the direct path and r =
1, 2, . . . , R− 1 are the multipaths. The multipath dictionaries
Ψ(r), r = 1, 2, . . . , R− 1 account for the two-way delays due
to indirect propagation from the transmitter to the target space
and back to the receivers. Note that we assume an individual
target state vector σ(r)(k) for each path as the phase and
amplitude of the target reflectivity, in general, change with the
bistatic and aspect angles. Further, an additional subsampling
step, consistent with the nature of the CS framework, can be
introduced in (3) to reduce the number of temporal and spatial
measurements.

III. TWO-STEP LOCATION AND VELOCITY ESTIMATION

A. Group Sparse Location Estimation

Given the measurements z(k) in (3) corresponding to the
kth radar pulse, we first aim at recovering the target state
vectors σ(r)(k) using sparse reconstruction. The vectorized
scenes σ(r)(k), corresponding to the R paths, exhibit a group
sparse structure, where the individual groups extend across
the paths for each target location. Employing group sparse

reconstruction results in the optimization problem [9], [10]

σ̂(r)(k) = arg min
σ(r)(k),r=0,...,R−1

‖z(k)−
R−1∑
r=0

Ψ(r)σ(r)(k)‖22

+ λ

Np−1∑
p=0

∥∥∥∥[σ(0)
p (k), σ(1)

p (k), . . . , σ(R−1)
p (k)

]T∥∥∥∥
2

,

(4)

where k = 0, . . . ,K − 1 and λ is a regularization parameter.
The optimization problem in (4) can be solved using SparSA
[11] or other available schemes [12], [13].

Essentially, group sparse reconstruction provides a scheme
to associate the acquired target returns with the various
propagation paths. Once the reflectivity vectors σ̂(r)(k) are
reconstructed by solving (4) for all k = 0, . . . ,K − 1, an
intermediate image containing target location estimates can
be formed by a non-coherent summation over all paths and
pulses. At this point, a target detection step should be carried
out to select only Ndetect targets with significant amplitude.
This keeps the computational complexity of the subsequent
velocity estimation procedure as low as possible.

B. Multipath-Aware Velocity Estimation

The velocity vector for each target is estimated by further
processing of the sparse reconstruction results. For each of the
Ndetect targets, we obtain KR complex amplitudes, one for
every combination of propagation path and pulse, denoted by
b
(r)
p = [σ̂

(r)
p (0), . . . , σ̂

(r)
p (K−1)]T ∈ CK , p = 0, . . . , Ndetect−

1, r = 0, . . . , R−1. The Doppler velocity of the target causes
a phase progression along the slow time dimension k. The
amount of phase progression per pulse encodes the Doppler
velocity and depends on the location/velocity of the target as
well as the propagation path. We take the discrete-time Fourier
transform of b(r)p along the slow time to obtain the Doppler
information B

(r)
p (ω) for the targets. Assuming only a single

target per location cell, we can find the Doppler velocities
for each target and path by finding the peaks in the Fourier-
transformed slow time vectors. Hence, for each target, we
obtain R Doppler velocities

v
(r)
D,p =

c

πfc
argmax

ω
B(r)

p (ω) (5)

that correspond to the projections onto the normal velocity
vectors. The direction of the normal vector is perpendicular to
the constant range trajectory of the respective target and path.
This is the same concept as the radial velocity component in
a monostatic radar.

The linear relationship between the target velocity vector
and the Doppler velocities can be expressed as[
v
(0)
D,p, . . . , v

(R−1)
D,p

]T
= Vp

[
vpx
vpy

]
, p = 0, . . . , Ndetect−1, (6)

where the rows of Vp contain the normal velocities for each
path at the location of the pth target. The over-determined
linear equation system (6) can be solved using a least squares
approach to obtain a velocity estimate (v̂px, v̂py)

T . Note that



the exploitation of multipath enables an estimate of the full
target velocity vector, whereas a single path may only deliver
a scalar Doppler speed.

The described velocity estimation method can be extended
to multiple targets within a single location resolution cell. In
this case, multiple Doppler velocities need to be extracted from
each path. This, however, results in resolution and association
issues. First, multiple Doppler velocities may only be found
if they are sufficiently distinct and can be resolved in the
Fourier-transformed slow time. Second, the association of the
determined velocities to the targets is not obvious. In the case
of only a few targets per cell and a few paths, a combinatorial
search may be feasible. That is, every possible association is
attempted and the result with the lowest estimation residual is
chosen as the correct velocity estimate.

The final result of this two-step method is a reconstructed
image of the scene and corresponding velocity estimates for
the detected targets. Note that despite solving K different
sparse reconstruction problems, the computational load of the
two-step approach is much lower compared to the sparsity-
based scheme proposed in [7] that jointly reconstructs the
target location-velocity space. Typical sparse reconstruction
schemes have at least linear complexity in the number of
unknowns [11]. Hence, the complexity of the joint approach
scales with the potentially large number of velocity bins Nv .
Since we do not need to discretize the target velocities for the
two-step approach, the complexity only scales with the number
of pulses K. Further, the computational load of the least-
squares step is negligible. Hence, we see an overall reduction
of complexity by the factor Nv/K.

IV. RESULTS

A. Simulation Results

We present simulation results to demonstrate the effective-
ness of the proposed two-step multipath exploitation approach.
In all simulation examples, independent and identically dis-
tributed complex circular Gaussian receiver noise with a
signal-to-noise ratio of 10 dB is added to the measurements
before applying the downsampling operation.

Simulations were performed for a wideband pulse-Doppler
multistatic radar with one transmitter and uniform linear array
with N = 8 receivers. The inter-element spacing of the array is
10 cm and the transmitter is assumed in the center of the array.
A modulated Gaussian pulse, centered at fc = 2 GHz, with a
relative bandwidth of 50% is transmitted. The pulse repetition
interval is set to 10 ms and K = 15 pulses are processed
coherently. At the receiving side, T = 150 fast time samples
in the relevant interval, covering the target and multipath
returns, are taken at a sampling rate of fs = 4 GHz. The
front wall is modeled with thickness d = 20 cm and relative
permittivity ε = 7.66, and is located parallel to the array at
a distance of 3 m. Two side walls are considered at ±2 m in
crossrange, each of which causes 3 different multipath returns
per target depending on whether the secondary reflection at
the wall happens on transmit, receive, or both legs of the
round trip path. The multipath returns are all considered to

Fig. 1. Two-step reconstruction using 13% of the measurements.

be 6 dB weaker than the direct path. Hence, in total, there
are R = 7 paths per target contributing to the received signal.
We assume that the returns from the front wall have been
properly suppressed. We neither consider any wall returns nor
any multipath from the back wall located at 6 m downrange.
We consider two stationary targets residing at coordinates
(0.5, 3.7) m and (−1.5, 3.7) m and two moving targets at
(0.5, 4.7) m and (−1.5, 4.7) m, respectively. The moving
targets are assumed to be 8 dB weaker than the stationary
targets and possess respective velocities (−0.45, 0) m/s and
(0, 0.3) m/s. The scene of interest is spatially discretized
into an 32 × 32 pixel grid. Hence, the slowly moving target
assumption holds up to approximately 1 m/s.

In Fig. 1, we present the target location reconstruction and
velocity estimation using only 13% of the full Nyquist sampled
measurements, averaged over 20 Monte Carlo runs. That is,
only 20 fast time samples are acquired using a linear mixing
scheme by correlating with Gaussian sequences. An image is
shown where the magnitudes are accumulated over all paths
and pulses. The velocity estimates for the four strongest targets
are indicated using arrows. The result of the two-step approach
generally exhibits a fairly high background noise compared to
the joint reconstruction scheme of [7] (not shown); however,
the four targets and the corresponding velocities are well
reconstructed.

In order to evaluate the velocity resolution performance of
the proposed method as a function of the number of multipath
returns, we simulated two targets in the same location but
moving with different crossrange velocities. We consider the
same paths as described in the first example, but first simulate
and exploit only 5, then 6, and finally all 7 paths for velocity
estimation. We vary the velocity difference between the two
targets from 0.4 m/s to 2 m/s in steps of 0.4 m/s and repeat
each simulation 100 times. We assume that the target location
is known; hence, only the velocities are estimated from the
reflectivities in the multipath components. The target location
is chosen such that the observed Doppler velocity is zero
for both targets in the direct path, i.e. the targets are in the
broadside direction of the array.

The RMSE of the velocity estimates is depicted in Fig. 2a,



(a) RMSE (b) Probability of resolution

Fig. 2. Velocity resolution performance for various amounts of multipath.

Fig. 3. Two-step reconstruction of the walking human using 20% of the
measurements.

whereas the probability of a velocity estimation error lower
than 0.2 m/s is shown in Fig. 2b. We observe that velocity
estimation performance improves with increasing number of
exploited multipath returns. Also, velocity estimation becomes
increasingly difficult for decreasing velocity difference be-
tween the targets, as evident from the higher RMSE and
lower detection results for small velocity differences. This is
attributed to the resolution limit of the Doppler processing
step.

B. Experimental Results

Experimental results are presented for a wideband real
aperture pulse-Doppler radar with a single transmitter and a
uniform linear array with N = 8 receivers. The data has
been recorded at the Radar Imaging Lab, Villanova University,
in a semi-controlled lab setup. The transmit waveform is a
modulated Gaussian pulse, covering the frequency range of
1.5 to 4.5 GHz. At each receiver, 768 fast time samples have
been recorded at a sampling rate fs = 7.68 GHz. Early and
late returns have been gated out to clean the data, resulting
in T = 153 samples. The transmitter was placed 62 cm away
from a side wall and the receive array (element spacing 6 cm)
was placed on the other side of the transmitter at a distance
(to the first element) of 29.2 cm on the same baseline. No
front wall was present in the scene. A total of R = 4 possible
propagation paths are expected, namely, the direct path, two
first order and one second order multipath via the side wall. A
scenario with a human walking diagonally towards the radar

was recorded. All of the above mentioned propagation paths
are expected to be observed for the human.

The proposed two-step method is employed and the imaging
result is shown in Figure 3 along with the velocities of the four
strongest targets. We apply linear mixing in the fast time to
one third of the original samples and use only 5 receivers
amounting to 20% of the full measurements. The two-step
approach is able to recover the moving human at the correct
location and the direction of the estimated velocity vectors
is generally consistent with the ground truth. However, the
individual velocity estimations of the four scattering centers
differ considerably. This may be attributed to the complex
nature of human torso and limb movements.

V. CONCLUSION

We have proposed a computationally efficient two-step mul-
tipath exploitation method for indoor target localization and es-
timation of the full target velocity vector. Sparse reconstruction
is first employed to localize the targets and also separate the
contributions of the different propagation paths, which are then
exploited to gain additional velocity information on the targets.
We have demonstrated the effectiveness of the approach using
simulated and experimental data.
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