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Abstract— In this paper, we propose a Gaussian mixture model 

(GMM) based approach to discriminate stationary humans from 

their ghosts and clutter in indoor radar images. More 

specifically, we use a mixture of Gaussian distributions to model 

the image intensity histograms corresponding to target and 

ghost/clutter regions. The mixture parameters, namely, the 

means, standard deviations, and weights of the component 

distributions, are used as features and a K-Nearest Neighbor 

classifier is employed. The performance of the proposed method 

is evaluated using real-data measurements of multiple humans 

standing or sitting at different locations in a small room. 

Experimental results show that the nature of the targets and 

ghosts/clutter in the image allows successful application of the 

GMM feature based classifier to distinguish between target and 

ghost/clutter regions. 

I. INTRODUCTION 

Detection of stationary humans is one of the most 
challenging and important objectives in through-the-wall radar 
imaging (TWRI) and urban radar sensing [1]. Owing to losses 
in exterior-grade wall materials, high frequency radar 
operation is not feasible in TWRI. As such, the micro-Doppler 
signatures associated with biometric features, such as 
breathing and heartbeat, cannot be always detected and 
employed for identifying stationary humans behind walls, 
especially in SAR using moving radar platforms. Accordingly, 
detection of stationary humans would solely depend on 
effective image-domain detection techniques applied to 
through-the-wall radar imagery.   

Image segmentation techniques have recently been 
considered in the literature for detecting stationary humans in 
TWRI [2]-[5]. These schemes were shown to be effective in 
distinguishing between target regions and those clutter regions 
which were distinct from target regions. However, in the 
presence of ghosts resulting from multipath propagation and 
clutter that closely mimics the targets in size and intensity, the 
performance of image segmentation methods degrades 
significantly. 

In this paper, we investigate the  use  of  Gaussian  mixture 

model (GMM) based features for classifying target and 
ghost/clutter regions in indoor images. More specifically, we 
model the image intensity histograms of target and 
ghost/clutter regions with a mixture of Gaussian distributions 
[6]-[8]. GMM was considered because of its ability to form 
smooth approximations to arbitrarily shaped/multi-modal 
histograms.  The mixture parameters, such as the means, 
variances, and the components weights, form the feature 
vector. K-Nearest Neighbor (K-NN) classifier is employed 
which classifies image regions based on closest training 
examples in the feature space [9], [10]. The training examples 
consist of the GMM-based feature vectors corresponding to 
known target and ghost/clutter image regions. The 
performance of the proposed GMM feature based detector is 
evaluated using real images acquired with the Multi-channel 
TWSAR, which is the vehicle-borne TWRI system developed 
by Defence Research and Development Canada (DRDC).  The 
dataset corresponds to through-the-wall measurements of 
multiple humans of different heights, standing or sitting at 
different locations in a small room. We show that, for the 
specific data analyzed, the proposed scheme can successfully 
discriminate between target and ghost/clutter regions. We also 
compare the performance with the pixel-wise Likelihood 
Ratio Test (LRT) based approach of [11], modified to use 
GMMs for describing the target and clutter distributions.  

The remainder of the paper is organized as follows. We 
present the proposed GMM based scheme for target and 
clutter classification in Section II. Section III briefly describes 
the LRT approach. Section IV evaluates the performance of 
the proposed and the LRT based methods using real data, and 
Section V concludes the paper.  

II. PROPOSED TARGET AND CLUTTER CLASSIFICATION 

SCHEME 

A.  Gaussian Mixture Model  

A Gaussian mixture model is a probabilistic model that 
assumes all the data points are generated from a mixture of a 
finite number of Gaussian distributions with unknown 
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parameters. One can think of mixture models as generalizing 
k-means clustering to incorporate information about the 
covariance structure of the data as well as the centers of the 
latent Gaussians. 

A Gaussian mixture model is a weighted sum of M 
component Gaussian distributions [7], [8] 

 �(�) = ∑ ����(�|
� , σ�),
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where � is the image pixel intensity, ��  is the weight of the ith 
component, and ��(�|
� , σ�) is the ith component Gaussian 
distribution  
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with mean 
� and standard deviation σ� . The component 

weights satisfy the constraint that ∑ ��
��� = 1.	The 
parameters of the GMM are collectively represented by the set 
��� , 
� , σ� ���
 . The expectation-maximization (EM) algorithm 
is used to maximize the likelihood estimate of the mixture 
parameters [8], [12]. 

Note that the selection of the number of mixture 
components is important.  With too many components, the 
mixture may over fit the data and yield poor interpretations, 
while with too few components, the mixture may not be 
flexible enough to approximate the true underlying data 
structure. The number of mixture components was empirically 
determined to be nine for the experimental TWRI data 
considered in this paper. 

B.  Feature Vectors 

The parameter sets !" = [�", 
", σ"]% , & = 1, 2,⋯ ,9 
of all nine Gaussian components are arranged in a tall vector 
in ascending order of their means, i.e., * = [!�% , !�% , … , !,%]% . 
Therefore, the length of the resulting feature vector * is 27. 
The feature vectors were computed for several image regions, 
which were known to correspond to stationary humans and 
ghost/clutter based on the ground truth. These sets of 
extracted feature vectors form the training set for the 
classification problem at hand. 

C.  K-Nearest Neighbors Classifier 

We consider the K-NN classifier, which is commonly 
used in learning and classification [9], [10]. Therein, an object 
is classified based on the “distance” of its features from those 
of its neighbors (i.e. the training set), with the object being 
assigned to the class most common among its K nearest 
neighbors. Euclidean distance is the commonly used distance 

metric, defined between two feature vectors *� 	and	*0 as 

 1 = 2*� − *0 2 (3) 

with ‖∙‖ denoting the l2 norm. If K = 1, the algorithm simply 
becomes the nearest neighbor algorithm and the object is 
assigned to the class of its nearest neighbor. If K >1, the object 
is assigned to the class of the majority of its K nearest 
neighbors. Typically, K is chosen to be odd when the number 

of classes is two to resolve any ties. A higher K increases the 
classification accuracy but at the expense of computational 
time. 

D.  Proposed Scheme  

To summarize, the proposed algorithm consists of the 
following steps:  

Step 1: Extract the candidate image region to be classified 
from the intensity image. 

Step 2: Obtain the Gaussian mixture parameters for the 
extracted region, and generate the corresponding test 
feature vector. 

Step 3: Compute the Euclidean distance between the test 
feature vector and each of the training feature vectors. 

Step 4: Classify the candidate region as target or 
ghost/clutter depending on the class most common among 
its K nearest neighbors. 

It is assumed that the training set of feature vectors has been 
obtained prior to the testing phase using Steps 1 and 2 above 
for known target and ghost/clutter regions. 

III. MODIFIED LRT APPROACH  

In the image-domain based LRT approach proposed in 
[11], a pixel-wise hypothesis test is formulated and a Neyman 
Pearson test [13] is applied. The target and clutter are 
assumed to follow Gaussian and Weibull distributions in [11]. 
However, these assumptions were shown to produce inferior 
results for images acquired with DRDC’s Multi-channel 
TWSAR system [14]. We, therefore, modify the non-adaptive 
LRT approach of [11] by using GMMs for both target and 
clutter distributions.  

We define the pixel-wise null and alternate hypotheses as 

 
56:	clutter	present	at	the	pixel	under	considertion	
5�:	target	present	at	the	pixel	under	consideration   (4) 

Assuming the data to be independent and identically 
distributed, the LRT is given by 

 BC(�) = �(�|56)
�(�|5�)

5�><
56

F (5) 

where �(�|56) and �(�|5�) are the conditional probability 
density functions, given the null (ghost/clutter class) and 
alternate (target class) hypothesis, respectively, which are 
expressed as 

 �(�|56) = ∑ �G�G(�|
G, σG),HG��    (6) 

 �(�|5�) = ∑ �I�I(�|
I, σI),JI��    (7) 

with N and L being the respective number of mixture 
components under the null and alternate hypotheses. The 
parameter F in (5) is the LRT threshold, which maximizes the 
probability of  detection  while  controlling the  probability of  
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Figure 1.  (a) TWSAR System,  (b) Troop Shelter building (small room indicated by the dashed square), (c) Scene with four human occupants. 

false alarm.  Given the image statistics �(�|56) and �(�|5�) 
and the threshold F, the output binary pixel value can be 
computed as 

 K(�) = �1,					BC	 L 	F
0,					BC < 	F    (8) 

Using the Neyman-Pearson theorem, the false alarm rate N 
can be fixed by evaluating 

 N = O PJ(B|Q
R 56)SB   (9) 

where PJ(B|56) is the probability density function of the 
likelihood ratio under the null hypothesis. 

The LRT based approach operates on a pixel-by-pixel 
basis and, thus, the step in (8) generates a decision for each 
individual pixel. In order to arrive at a single decision for the 
entire candidate image region, two counters are set up. Every 
time a pixel is assigned to a particular class, the corresponding 
counter is incremented. At the end of the process, the 
candidate image region is assigned to the class of the counter 
with the largest count. 

IV. EXPERIMENTAL RESULTS 

A.  System Parameters and Experimental Setup 

We evaluate the proposed scheme using real three-
dimensional (3D) images collected with the experimental 
through-the-wall multiple-input multiple-output radar testbed 
developed by DRDC [15]. The radar is installed inside a 
vehicle with its two transmit antennas and an eight-element 
receive array mounted on the side of the vehicle, as shown in 
Fig. 1(a). The antenna elements are compact Y-shaped printed 
bowtie antennas and, when used in the vertical polarization, 
have approximately 60º beamwidth in the elevation direction 
and 150º beamwidth in the azimuth or horizontal direction 
[16]. The receive array has an inter-element spacing of 15 cm, 
and the two transmit antennas are separated by 1.2 m. The 
transmit and receive array antennas have a horizontal spacing 
of 2 m. A frequency-modulated continuous wave (FMCW) 
signal covering the 0.8 to 2.7 GHz frequency band is used as 
the transmit signal. A switch is used to alternate the radar 
transmissions between the two transmit antennas, and the 
eight-channel radar receiver digitizes the eight received 
signals for each radar transmission. 

 



   

   

Figure 2.  Target and ghost/clutter histograms and GMM fits. Top row corresponds to the targets and the bottom row to the ghosts/clutter (first two in each 

are from the first dataset and third from the latter measurements.) The red curve depicts the Gaussian fit and the blue curves show the individual Gaussian 

components. The horizontal and vertical axes represent the pixel value and the probability, respectively. 

 

Figure 3.  Euclidean distances between various target and ghost/clutter 

feature vectors. 

A small room in the Troop Shelter building, shown in Fig. 
1(b), was imaged three different times, with six, four, and one 
human occupant, respectively. The antennas were lowered on 
the van between measurements from the first scene and the 
latter scenes. Fig. 1(c) depicts the scene with the four human 
targets. The exterior walls of the building are constructed of 
vinyl, chip board and drywall on a 16 in. spacing wood stud 
frame. The raw radar data were collected while the vehicle 
moved along a straight path parallel to the front wall of the 
building, allowing 3D images to be generated in downrange, 
azimuth, and elevation using backprojection. 

 

TABLE I.  CONFUSION MATRIX FOR K-NN CLASSIFER WITH K=3. 

Class 
Classification 

Target Ghost/Clutter 

Target 100% 0 

Ghost/ 

Clutter 
9% 91% 

 

B.  GMM Based Classification Results 

Eleven target regions and eleven clutter regions were 
extracted from the 3D through-the-wall images. Each of the 
extracted regions was modeled by a mixture of nine Gaussian 
distributions, and the corresponding 27-element feature vector 
was estimated using the EM algorithm. Figure 2 depicts the 
intensity histograms and the corresponding GMM fits for six 
of the extracted target and ghost/clutter regions. The red curve 
depicts the Gaussian fit  and the blue curves  are the individual 
Gaussian components. Classification is performed using these 
feature vectors. Because of limited dataset, we used leave-one-
out cross validation [17], wherein the classification is 
performed 22 times, using one feature vector from the dataset 
for testing and the remaining for training each time. In this 
way, all of the target and ghost/clutter regions in the dataset 
were used for both training and testing.   

Fig. 3 depicts the distances from each target and ghost/ 
clutter  feature  vector to all  22  of the target  and ghost/clutter 
feature vectors. The distinction between the target and 
ghost/clutter classes is evident in Fig. 3. Further, it is observed 
that the target feature vectors from the first and the latter 
datasets are quite different. This is because when the antennas 
were  lowered,  a much higher level of background clutter was 
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Figure 4.  Result obtained using the LRT approach for the six human 

occupant dataset with a preset false alarm rate of 5%. 

picked up, which infringed on the target regions in the 
corresponding images. Table I presents the confusion matrix 
for the K-NN classifier with K=3, which shows that the GMM 
feature based classifier provided a high classification accuracy 
with no missed detections and 9% false alarms. 

C.  Modified LRT Based Results 

The output binary 3D image generated with the modified 
LRT approach applied to the six human occupant dataset is 
shown in Fig. 4 for a preset value of N = 0.05. We observe 
that most of the clutter appears at the output along with the 
targets, thereby causing a much higher number of false alarms 
compared to the proposed GMM feature based technique. 
Similar results were observed for other values of N ranging 
from 0.01 to 0.2 and for the four and one human occupant 
cases. 

V. CONCLUSION 

In this paper, we presented a Gaussian mixture modeling 
approach for detecting  stationary  human  targets in through- 
the-wall radar imagery. The problem of target discrimination 
from multipath ghosts and clutter was investigated by means 
of a feature-extraction strategy and a K-NN classifier based 
on the Euclidean distance metric. The mixture parameters, 
namely, the means, variances, and weights of the component 
Gaussian distributions, were used as features. The 
performance of the proposed scheme was evaluated using real 

3D images. The results showed that the proposed scheme was 
successful in providing higher classification accuracy 
compared to the likelihood ratio test based approach.     
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