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ABSTRACT 
 

Highly localized quadratic time-frequency distributions cast 
nonstationary signals as sparse in the joint-variable 
representations. The linear model relating the ambiguity 
domain and time-frequency domain permits the application 
of sparse signal reconstruction techniques to yield high-
resolution time-frequency representations. In this paper, we 
design signal-dependent kernels that enable the resulting 
time-frequency distribution to meet the two objectives of 
reduced cross-term interference and increased sparsity. It is 
shown that, for random undersampling schemes, the new 
adaptive kernel is superior to traditional reduced 
interference distribution kernels. 
 

Index Terms— Kernel design, reduced interference 
distribution, sparse representation, time-frequency analysis  
 

1. INTRODUCTION 
 

The primary goal of reduced interference quadratic time-
frequency distributions (QTFDs), applied to nonstationary 
signals, is to remove, or at least significantly attenuate, the 
cross-terms [1, 2]. These terms, which result from the 
bilinear data products underlying the quadratic distributions, 
act as interference and clutter the time-frequency signal 
representations. This could, in turn, lead to misinterpre-
tations of the signal local power concentrations and 
misreading of the signal time-frequency signature, including 
the instantaneous frequencies. To solve this problem, many 
signal-independent and signal-dependent reduced inter-
ference distributions (RIDs) and their fast implementations 
have been devised [3-8]. The former involves applying a 
fixed two-dimensional (2-D) low-pass kernel to the 
ambiguity function, which amounts to smoothing the 
Wigner-Ville distribution. The employed kernel attempts to 
capture the auto-terms that pass through and cluster around 
the origin in the ambiguity domain, while giving low 
responses to cross-terms that are distant from the time-lag 
and Doppler frequency axes. In the signal-dependent RID 
approach, the kernel shape changes according to the signal 
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component structures and can be irregular. 
QTFDs and most existing methods for time-frequency 

analysis are defined for uniformly sampled data. Uniform 
under-sampling below the Nyquist rate causes aliasing and 
must, therefore, be avoided when involving Fourier trans-
form or Fourier basis. One way to overcome aliasing is by 
using random sampling schemes [9-14]. In the presence of 
randomly undersampled data, the RIDs are faced with the 
combined task of reducing cross-terms and acting as an 
interpolator or estimator of the missing samples. The data 
interpolation and signal reconstruction capabilities of either 
the signal-dependent or signal-independent approaches have 
never been investigated or become part of the overall kernel 
design.  

In this paper, we consider the problem of auto-term 
preservations and cross-term suppressions under the 
auspices of sparse signal representation. In particular, we 
design a new signal-dependent time-frequency kernel that 
meets the two objectives of reduced cross-term interference 
and increased sparsity under a large number of missing data 
samples. Nonstationary signals, completely or partially 
characterized by their instantaneous frequencies, are sparse 
in the time-frequency domain [9-13]. In this respect, they 
can be locally reconstructed from few random observations. 
To achieve the above two objectives, the low-pass filtering 
and the sparse data properties should both play a role and 
become an integral part of the overall design paradigm. It is 
shown that the added sparsity criterion of the resulting time-
frequency representation renders the kernel robust to 
missing data. Using an optimization procedure, we obtain 
the kernel which satisfies the required constraints. Once the 
kernel is designed, the corresponding time-frequency signal 
representation can be obtained through the use of Cohen’s 
class, i.e., using 2-D Fourier transform of the modified 
ambiguity function. In this case, the new kernel becomes a 
member of QTFDs. 

The remainder of the paper is organized as follows. 
Section 2 provides a brief review of the RIDs with signal-
independent and signal-dependent kernels. In Section 3, we 
introduce the concept of the new kernel design approach, 
followed by the mathematical formulation and discrete-time 
implementations. Section 4 contains examples, which 
compare the proposed approach with commonly used 
kernels when processing signals with missing samples and 



noise. Conclusion is provided in Section 5. 
 

2. REDUCED INTERFERENCE DISTRIBUTIONS 
 
The reduced interference time-frequency distribution in 
polar coordinates RID( , ) is formulated as the 2-D Fourier 
transform of the product of the ambiguity function A(r, ) 
and the kernel function (r, ), expressed as [15]:  

 2 sin( )( , ) ( , ) ( , ) j rRID A r r re drd , (1) 

where the ambiguity function and the kernel function are 
defined in terms of the radius r and the aspect angle . The 
ambiguity function in the polar coordinates can be obtained 
through direct calculation of polar samples or by 
interpolation of the rectangular form A( , ), which for signal 
x(t) is defined as: 

 *( , ) ( ) ( )
2 2

j tA x t x t e dt , (2) 

where (·)* denotes complex conjugation. The kernel 
function acts as a low-pass filter in the ambiguity domain 
and places different weights on the ambiguity function 
samples. Majority of signals have auto-terms located near 
the origin and around the axes in the ambiguity domain, 
whereas the cross-terms appear distant from the origin. This 
property motivated the introduction of various kernels with 
low-pass filtering characteristics in order to suppress cross-
terms and preserve the auto-term shape. It is noted that we 
deal with and focus on nonstationary deterministic signals 
and not nonstationary random processes [16]. 

Existing time-frequency kernels can be divided into two 
forms: signal-independent and signal-dependent. The former 
includes Choi-Williams kernel [3], Margenau-Hill [1], and 
Born-Jordan kernel [1]. Table 1 shows some most 
commonly used signal-independent kernels. One of the 
drawbacks of these kernels is that they have fixed shapes in 
the ambiguity domain and, therefore, are inflexible in 
accommodating a large class of signals to achieve optimum 
tradeoff between auto-term preservation and cross-term 
suppression, even under the inclusion of the adjustable 
parameter . Additionally, and more importantly, these 
kernels are not designed for data with missing samples. The 
primary goal of these kernels has been invariably the 
suppression of the cross-terms. On the other hand, missing 
samples in the time domain may cause significant artifacts 
in the ambiguity function [12]. These artifacts resemble 
noise in the sense that they spread over the entire ambiguity 
domain, but they exhibit strong presence along the  = 0 axis 
because of the impulsive nature of the missing data samples. 
Therefore, while signal-independent kernels, which act as 
low pass filters in the ambiguity domain, reduce noise and 
artifacts to some extent, the contribution of the artifacts 
remains strong at low frequencies and along the  = 0 axis. 
Because most signal-independent kernels, including those 
listed in Table 1, are designed to satisfy the marginal 
properties, i.e., 

 (0, ) 1, ( ,0) 1,  (3) 
the resulting time-frequency distribution generally exhibits 
vertical strips (lines) in the presence of missing samples 
(e.g., Fig. 4(b)).  

On the other hand, signal-dependent kernel design is 
formulated as an optimization problem [4] under two 
separate constraints. The first constraint forces the kernel to 
have low-pass filtering characteristics, which lends itself to 
cross-term suppression. With the second constraint, we can 
specify the volume under the optimal kernel. Such 
optimization can be performed either globally or locally. 
The adaptive optimal kernel [5] provides better 
representation of the local signal characteristics than its non-
adaptive counterparts. With no missing samples, the 
adaptive kernel generally outperforms the signal-indepen-
dent kernels. However, under random data observations, 
existing signal-dependent kernels may be misguided when 
finding the optimal solution. The presence of the artifacts in 
the ambiguity domain, particularly along the entire  = 0 
axis, can be wrongly interpreted as signal regions of interest, 
which undesirably causes the kernel shape to favor the 
artifacts, resulting in highly cluttered time-frequency 
distributions. This shortcoming must be overcome and a 
new kernel design approach is required to provide 
robustness to missing samples. 

 
Table 1. Examples of Doppler-lag domain kernels 

 

Distribution Kernel ( , ) 

Choi-Williams 
2 2

22e  
Margenau-Hill cos( / 2)  

Born-Jordan sinc(2 )  
 

 
3. PROPOSED ADAPTIVE KERNEL DESIGN 

 
3.1 Kernel Function Requirement 

In order to properly devise RIDs under missing data 
samples, we note that the artifacts due to missing data 
assume random non-clustered spreading in the time-
frequency domain. This is in contrast with the localization 
property of the desired signal components. Since 
localization and sparsity are indicative to the same signal 
behavior, significant improvement in artifact reduction, 
while preserving the signal time-frequency signature, can be 
achieved by enforcing the sparsity of the time-frequency 
distribution.  

Toward this end, the proposed time-frequency kernel is 
multitasking and achieves the following objectives: 

1) Reduce or significantly attenuate the cross-terms; 
2) Preserve the signal auto-terms; 
3) Robust to missing time-domain samples. 

The first two requirements are well known in quadratic  



time-frequency signal representations and, for several 
decades, various approaches have been proposed aiming at 
cross-term suppression while preserving the signal auto-
terms [1-8]. To the best of our knowledge, the third task, 
which is implemented to enforce the sparsity of the resulting 
time-frequency representation, has not been explored in 
time-frequency kernel design since it was generally assumed 
that full data volume is available with no missing 
observations.   

The recent development of compressed sensing and 
sparse signal reconstructions provide a capable vehicle for 
the consideration of sparsity-based time-frequency kernel 
design. Compressed sensing and sparse signal reconstruc-
tions from random observations instigated reexaminations of 
conventional spectral analysis and estimation methods that 
ignored the signal sparsity property. Similarly, since a large 
class of nonstationary signals has sparse time-frequency 
representations, various procedures have recently been 
proposed for the analysis of incomplete data in the time-
frequency domain [9-13]. However, these methods would 
observe cross-terms removal, auto-terms preservation, and 
sparsity property in time-frequency domain separately. Fig. 
1 illustrates the typical traditional approach for calculating 
the RID in the presence of missing time samples. It is clear 
that both cross-term removal and sparsity constraint are 
included in the final result. However, their applications are 
decoupled, necessitating a sequential cascading process. 
This observation has motivated us to search for a procedure, 
which would combine the aforementioned three tasks and 
perform them simultaneously. 

3.2. Mathematical Formulation 

We follow an approach that searches for the optimum radial 
attenuation ( )  as a function of the aspect angle, which 
would fulfill the three desired tasks. The optimization 
problem is formulated as follows: 
 

 

2

2

2 1

2 ( )

2

minimize ( ) ( )

subject to ( , ) ,

1 ( ) ,
2

r

L L

r e

d

 (4) 

where   
 

 
2

2 ( ) ( , ) ( , ) ( , )
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and 

 2 sin( )
1( ) ( , ) ( , ) j r

r

L A r r re drd d d  (6) 

 

are, respectively, the l2 and l1-norm terms, and  represents 
the regularization parameter.  

 
Fig. 1. Traditional approach of computing RID in the case of 
incomplete data. 

 
In the proposed objective function, two terms are 

minimized. The first term is an averaged l2-norm error 
between the original and the kernelled ambiguity functions. 
Therefore, minimization of this term amounts to energy 
preservation in the ambiguity domain. The minimization of 
the second term imposes sparsity in the time-frequency 
domain and its role is to provide robustness of the ambiguity 
function to the presence of missing data samples. It is 
known that, in general, the solution of an objective function 
which contains an l1-norm regularized term provides 
sparsity of that term. In our case, the resulting kernel avoids 
the inclusion of the artifacts in the ambiguity domain since 
their presence makes the corresponding TFD less sparse. In 
contrast to the traditional approach which uses l2 norm, the 
l1 estimate is not a linear function of A(r, ) and we need 
more complex procedures when finding a solution of the 
objective function in (4). The new role of the kernel in 
imposing sparsity of the corresponding time-frequency 
distribution marks a significant change in the way we look 
at kernels and advocates adaptive kernel design.          

Since we assume that auto-terms are around the origin in 
the ambiguity domain, we specify the kernel class as radial 
Gaussian. This formulation places a condition that the 
desired kernel acts as a low-pass filter. The choice of  in 
(4) influences the tradeoff between cross-term suppression 
and auto-term preservation. 
 
3.3. Discrete-Time Implementation 

RIDs are often computed for discrete-time signals. The 
discretized form of our optimization problem is as follows:  
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2

minimize ( )
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1 ( ) ,
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p
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q

A A W A W

 (7) 

where W represents the discrete Fourier transform matrix, p 
and q are discretized versions of the radius and angle, 
respectively, and the symbol ‘ ’ denotes the Hadamard 
product. We also follow the same approach as in adaptive 
optimal kernel and observe the signal characteristics locally 
[4]. In (7), A corresponds to the short-time ambiguity 



function, i.e., the ambiguity function of the windowed signal 
centered at time instant tc (refer to Fig. 2). After computing 
 and the corresponding kernel function, the 2-D Fourier 

transform is performed which corresponds to time tc. In (7), 
the vectorized versions of the matrices are used and are 
subject to the l1 and l2 vector definitions.  

In order to determine the value of , the gradient 
method is used. Starting from an initial value 0 for i =0, the 
new value in the (i+1)th iteration is obtained as: 
 1( ) ( )i i iq q   (8) 

where is the step size and i  is the gradient of the 
objective function, described in (7), at the ith iteration. Note 
that finding the gradient involves computing the derivative 
of the l1 penalty term. Since it is well known that this term is 
not differentiable, we use the sub-gradient strategy to define 
a gradient and update  at each iteration [17]. We define the 
sub-gradient of our objective function f ( ) as: 
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where sign(·) denotes the sign function.  
 

4. SIMULATION RESULTS 
 
In this section, we demonstrate the effectiveness of the 
proposed kernel through simulations.  

In the first example, we observe the sum of two signals 
with polynomial phase: 

2 3 2

2 3 2

2 (0.05 0.05 /64 0.1 /64 )

2 (0.15 0.05 /64 0.1 /64 )

( )

+ ,

j t t t

j t t t

x t e

e  
where 1  t  64. 40% of the noise-free data is randomly 
missing. The ambiguity functions of data with and without 
missing samples are shown in Fig. 3. It is evident that the 
missing samples create a similar effect as that of additive 
noise, as discussed in [11, 12]. It can be observed that the 
ambiguity function of data with missing samples exhibit 
artifacts over the entire ambiguity domain, which is much 
more cluttered compared to the ambiguity domain of the 
noise-free full data. Also, we can observe that part of the 
artifacts reside along the  = 0 axis, which corresponds to the 
impulses in the time domain. Thus, missing samples can be 
seen as a special type of impulsive noise.    

We compare the QTFD obtained from the proposed 
kernel with the Choi-Williams distribution (CWD), adaptive 
optimal kernel distribution, and Spectrogram. The results 
which are depicted in Fig. 4, clearly demonstrate the 
effectiveness of the proposed approach. With missing 
samples, the Spectrogram and CWD in Figs. 4(b) and 4(c) 
fail to capture the signal signature. Additionally, it is evident  

 
 
Fig. 2. Illustration of computing the time-frequency representation 
of one time slice. Missing samples are denoted by symbol ‘ ’. 
 
 

 
 
 
that CWD shows vertical lines in time-frequency domain. 
These lines are impulses which the CWD tries to capture 
since it assumes them to be a part of the signal. On the other 
hand, the adaptive optimal kernel distribution with a high 
kernel volume in Fig. 4(a) signifies the two signal 
components, but also includes cross-terms. Our approach, as 
shown in Fig. 4(d), successfully suppresses the cross-terms. 

In the next example, we consider data consisting of two 
crossing chirps when 50% of the samples is missing (Fig. 5). 
Similar observations, as in previous example, hold true for 
this data. Besides enhancing the auto-term concentration and 
providing a cross-term-free distribution, our approach yields 
less noisy representation compared to the signal-dependent 
kernel.  

 
5. CONCLUSION 

 
In this paper, we proposed an adaptive kernel design, which 
lends itself to satisfying the combined objective of bilinear 
cross-term suppression and sparse reconstruction in the 
time-frequency domain. It was shown that the new signal-
dependent time-frequency kernel outperforms traditional 
signal-independent kernels, which only impose low-pass 
filtering in the ambiguity domain. It is also superior to 
signal-dependent kernels which are designed without 
sparsity considerations. 

 
 

Fig. 3. Ambiguity function for data (a) with no missing samples;
(b) for data with 40% missing samples. 
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Fig. 4. RIDs of a signal consisting of two polynomial phase signals
when 40% of data is missing. (a) adaptive optimal kernel; (b)
CWD; (c) Spectrogram; (d) proposed approach. 

 
Fig. 5. TFDs of a signal consisting of two chirp components
when 50% of data is missing. (a) adaptive optimal kernel; (b)
CWD; (c) Spectrogram; (d) proposed approach. 
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