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Abstract—Time-frequency representations are a powerful tool
for analyzing Doppler and microDoppler signals. These sig-
nals are frequently encountered in various radar applications.
Data interpolators play a unique role in time-frequency signal
representations under missing samples. When applied in the
instantaneous autocorrelation domain over the time variable, the
low-pass filter characteristic underlying linear interpolators lends
itself to cross-terms reduction in the ambiguity domain. This
is in contrast to interpolation performed over the lag variable
or a direct interpolation of the raw data. We demonstrate the
interpolator performance in both the time-domain and time-lag
domain and compare it with sparse signal reconstruction, which
exploits the local sparsity property assumed by most Doppler
radar signals.

Index Terms—Ambiguity domain, cross-terms reduction, in-
terpolation, microDoppler, radar, time-frequency distribution.

I. INTRODUCTION

NCOMPLETE, random, or nonuniform sampling of radar

returns of moving targets can arise in data multiplexing,
range ambiguity resolution, localization enhancement, noisy
measurement removal, hardware simplification, sampling rate
limitations, or logistical restrictions on data collections and
acquisition schemes [1]-[4]. For nonstationary signals, missing
or random samples introduce noise which clutters both the
time-frequency (TF) and ambiguity domains and obscures
desired signal information, especially the Doppler and mi-
croDoppler signatures [5], [6]. The latter arises in many
applications, including urban radar and over the horizon radar
[7]-[16].

In this paper, we show that interpolation applied in the
instantaneous autocorrelation function (IAF) domain for data
recovery has three-fold advantages:

(a) It reduces cross-terms by the virtue of the underlying
low-pass filter characteristics when considered in the am-
biguity domain. This property requires interpolation to be
performed over the time variable instead of the lag variable of
the IAF;

(b) It reduces noise as the result of the frequency ban-
dlimited processing applied to noise, which is homogenously
spread in the Fourier domain;

(c) It enhances signals auto-terms which lie in the vicinity
of the origin.

This paper focuses on deterministic nonstationary signals
rather than nonstationary random processes [17]. It considers
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uniform interpolations [18], [19] for data recovery applied
in the time and time-lag domains under random sampling
schemes. We compare the corresponding time-frequency dis-
tributions (TFDs) with the results obtained based on sparse
reconstruction, which also uses the linear data model. This
paper extends the work in [20] which reported initial results
on the use of the interpolation techniques for computing
TFDs of incomplete data. It puts linear interpolation and
sparse reconstruction within the same data model, and provides
comparison between interpolations performed in different do-
mains and over different variables, including the IAF Ilag.
Interpolator effects in the TF domain, which were noticed in
[20], are further analyzed and explained to provide a better
understanding of the role of interpolators in time-frequency
analysis.

The paper is organized as follows. Section 2 briefly reviews
TFDs and examines them from filtering and interpolation
perspectives. Section 3 discusses the interpolations in the
time domain and time-lag domain. Performance comparison
is given in Section 4 using synthetic data.

II. TIME-FREQUENCY DISTRIBUTIONS

The instantaneous autocorrelation function can be used to
define the class of reduced interference distributions. For a
signal z € CN, 1AF is formulated over time n and lag m as,

Riz(n,m) = x(n+m)z*(n —m). (1)

The Fourier transform (FT) of the IAF over time yields the
ambiguity function (AF) defined over frequency p and lag m,

N/2-1

A(p,m) = Z Rm(n,m)e_ﬂ”"p/N7 2)
n=—N/2

whereas the FT over lag computes the Wigner-Ville distribu-
tion (WVD),

N/2—1
WD(n, k) = Z Rm(n,m)eﬂ%mkﬂv. 3)
m=—N/2

WVD is a simple and efficient method for mono-component
signals. However, for multi-component signals, WVD suffers
from cross-terms induced by the bilinear data products of (1)
[21], [22]. In order to reduce the presence of cross-terms,
WVD is often smoothed using various kernels [23]. These
kernels exhibit low pass filter characteristics when considered
in the ambiguity domain and, as such, mitigate the cross-
terms that are typically located distant from the origin. The
signal auto-terms pass through or cluster around the origin
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and, therefore, are emphasized by the employed kernel. The
resulting reduced interference distribution (RID) is obtained
as the 2D Fourier transform of the filtered AF,

=22 Alp.m)C(pm)e

m

RID n k’ ]27rnp/Ne—]2ﬂ'mk/N-

“4)

C(p,m) is a kernel implementing some type of low pass filter.

Equation (4) can also be represented in terms of convolution
between the applied kernel and the bilinear data products,

) (n—l, m)e—ﬂﬂ-mk/N.

ZZ (I+m)x
&)

Fast implementations of RID(n, k) avoid the convolution pro-
cess through spectrogram decomposition [24], [25]. Missing
data samples in time map into missing data bilinear products
[5]. It is important to note that the convolution process
(5) indirectly interpolates the missing samples in the time-
lag domain. However, it may be inappropriate to call these
kernels true interpolators, since they change the values of the
existing samples. This is in contrast with the commonly used
interpolators which do not alter the data observations.

RID(n,k)

III. INTERPOLATION IN TIME AND TIME-LAG DOMAIN

The problem of estimating the signal y(n) based on the
given set of samples x(n) is very common in signal process-
ing. In general, this problem can be formulated in the form,

y = Hx (6)

where matrix H is a linear operator that maps vector X
into vector y. For the considered interpolation problem, H
contains the coefficients of the interpolation kernel. Alterna-
tively, sparse reconstruction solves the inverse problem and
can be used as a method for estimating the unknown samples,
following the model x = By. In both cases, vector y is
unknown; however, the following differences should be noted.
In sparse reconstruction, the unknown vector y is sparse, while
B is a dense matrix. Due to the underdetermined system of
equations, iterative methods are used to solve for y which are
clearly more complex than the simple convolution posed by
(6). On the other hand, in linear interpolation, H is typically
sparse and there is no need for iterative procedures. Various
interpolation kernels have been designed in order to provide
a good approximation of y(n) given z(n), including linear
interpolator and nearest neighbor [18], [19]. The simplicity of
classical interpolators motivates their use in the underlying TF
signature estimation problem.

Interpolation can be regarded in terms of time-invariant
and time-varying filtering. Time-invariant filters are associated
with uniform downsampling. In this case, the same number of
interpolated samples L lie in between any two consecutive
observations. As a result, matrix H in (6) is Toeplitz. In
the case of random undersampling, the number of samples
interpolated between two consecutive observations would vary,
amounting to time-varying filtering. In this case, matrix H is
not Toeplitz and L becomes time-dependent, L(n).

In applying interpolators to nonstationary signals, and prior
to computing the time-frequency distributions, one has the

option of interpolating the raw data or the bilinear data
products. Without loss of generality, we use linear interpolator
as a representative of classical interpolators. For the case when
the sampling rate is increased L + 1 times and new sampling
period is denoted as 7', the interpolator impulse and frequency
responses are, respectively,

_ nl
h(n) = 30 M <L+1 (7)
0, otherwise,
1 [sin(w(L—l— 1)T/2)]2
L+1 sin(wT/2) ’
which shows that the linear interpolator is a low pass filter.

The coefficients of this filter depend on the number of missing
samples L. Smaller L implies higher filter cutoff frequency.

H(w) = @®)

A. Interpolation in time domain

When directly operating on the randomly sampled data, the
interpolated data in the frequency domain become

=Y X(p)H(k,p), ©)

which follows a time-varying low-pass filtering process. The
exclusion of high frequency components due to filtering would
depend on L(n). In essence, fewer missing samples cause
less truncated frequency spectrum. However, when dealing
with undersampling of a critically sampled data, part of the
high signal bandwidth will always be lost, leading to signal
distortion.

B. Interpolation over the lag variable in time-lag domain

Interpolating the bilinear products over the lag variable is

represented by
m) =Y h(m,)rza, (1),
l

where 7., (I) corresponds to the R,, elements in (1) when
observed at time n. This interpolation corresponds to the
filtering process in the time-frequency domain,

Z W Dye, (p)H (k, ).

This process is similar to applying a mask in the time-
frequency domain, a process commonly used for the separation
of signal components. However, separation of nonstationary
components is not the purpose of applying an interpolator
in our problem. In the time-frequency domain, as in the
time domain, linear interpolator causes loss of high frequency
components and produces signal distortion.

(10)

Tyy, (

(an

yyn

C. Interpolation over the time variable in time-lag domain
Interpolation in the time-lag domain over the time variable

can be written as,
(n) = Z h(n, D)7y, (1), (12)
l

Tyym
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where 7, () corresponds to the R, elements in (1) when
observed for a certain m. This procedure corresponds to the
low-pass filtering in the ambiguity domain,

Ay, (k) =" Age, () H (K, ). (13)

Interpolation kernels will, as in the case of raw data, remove
high frequency components. However, the loss of these com-
ponents occurs in the ambiguity domain. Since the signal
auto-terms are of low-pass characteristics with high power
concentration at or near the origin, the interpolation filter is
considered less harmful to the Doppler signature than that of
the time-domain data.

This analysis sheds new light on the role of interpolators as a
cross-terms removal method. However, this role only emerges
when the data is randomly undersampled. Also, the difference
between linear interpolators and classical time-frequency RID
kernels is that the interpolators do not alter the observed sam-
ples, while maintaining the low-pass filtering characteristic.
Therefore, out of three possible ways to interpolate the data,
the one with the filtering effect in the ambiguity domain can
be considered the most attractive for Doppler type signals.

IV. SIMULATIONS

In order to demonstrate the specific role of linear inter-
polators in different domains, we examine their performance
for various polynomial phase signals. In all cases, WVD is
computed using the interpolated data. For comparison, we
include sparse reconstruction as well as WVD and Choi-
Williams distribution (CWD) [23] which are applied directly
to the incomplete data. Results show the advantages of using
the linear interpolator in the time-lag domain over time axis.
In all plots, frequency axis is normalized.

Example 1: We observe a sinusoidal FM signal where 40%
of data samples are randomly missing,

m(n) — €J32 sin(2ﬂ-n).
Fig. 1 (a) depicts a noisy WVD which is the consequence of
missing samples in the time domain. The effects of applying
the linear interpolator in different domains are shown in
Fig. 1(b,c,d). Fig. 1(e) shows sparse reconstruction using
Orthogonal Matching Pursuit (OMP) [26] over overlapping
windows, similar to the work in [3]. WVD, obtained from
the interpolated IAF over time, reveals the desired time-
frequency signature, even though some noise is present. We
can also observe that sparse reconstruction provides the least
cluttered joint-variable representation, but also shows poor
energy concentration along the signal instantaneous frequency.
Example 2: A multicomponent signal consisting of two
chirps and a sinusoidal FM is considered,

x(n) — 1.56319.2sin(27rn)+]64n + e]87r(n—3)2 + 1.56_]27'27"1’2.

Fig. 2 contains results when applying WVD and CWD to the
data with and without missing samples. The strong presence of
cross-terms in WVD (Fig. 2 (a)) can be successfully mitigated
using the CWD (Fig. 2(b)). WVD and CWD of 65% of the data
samples are shown in Fig. 2 (c,d), respectively. These results

illustrate how missing samples introduce a significant level of
noise in the time-frequency domain. Some of that noise can
be removed by using standard time-frequency kernels which
are low pass filters (Fig. 2 (d)). The smoothing effect of the
kernel operation is visible, but it is inferior to the results
obtained by sparse reconstruction or interpolation. Plots in
Fig. 3 (a,b,c) pertain to WVD when applying interpolation
to estimate the missing 35% of the samples. The benefits of
applying the interpolation in the time-lag domain over the
time variable are evident. Sparse reconstruction provides less
cluttered representation, but with coarse resolution.

Example 3: In this example, we observe a multicomponent
signal which has two components,

J?(TL) — 6]4.87T(7L—1)3+]321‘L + ej4.87r(n—1)3—396n.

The phase of both components is a third degree polynomial.
Signal is randomly undersampled and 50% of samples are
missing. As in the previous example, we show the results when
applying standard time-frequency distributions, namely WVD
and CWD (Fig. 4). Compared with the distributions using
full data (Fig. 4 (a,b)), missing samples cause noise which
clutters both time-frequency distributions, as evident in Fig.
4 (c,d). Strong cross-term is visible even in WVD cluttered
by noise (Fig. 4 (c)). WVDs obtained from applying the
interpolator in different domains are displayed in Fig. 5. These
results illustrate, as in the previous cases, the specific filtering
role of the interpolator in the ambiguity domain (Fig. 5 (c)).
However, cross-term in Fig. 5 (¢) is not completely removed by
the linear interpolator, indicating the dependence of the filter
cutoff frequency on the number of missing samples. Higher
number of missing samples will decrease the cutoff frequency
of the corresponding filter, but at the cost of estimating more
unknown points. Fig. 5 (d) shows the result corresponding to
35% of the data. Whereas less cross-terms are produced due
to a narrower filter, the auto-terms are adversely affected due
to the same reason.

V. CONCLUSION

In this paper, we considered nonstationary signals with
missing or randomly undersampled data. We examined the role
of linear interpolators for data recovery in the context of time-
frequency signal representation. Whereas TFDs can be applied
directly to the raw non-interpolated data, their performance im-
proves when interpolation is performed prior to time-frequency
signature estimation. It was shown that interpolation of the
bilinear data products in the time-lag domain outperforms the
interpolation of the raw data, owing to the underlying low-pass
filtering behavior in the ambiguity domain and the resulting
cross-terms reduction. The paper compared linear interpolation
with sparse reconstruction, which makes use of the power
concentration along the instantaneous frequency. Our simula-
tions have shown that sparse reconstruction over overlapping
windows, although cross-terms free, provides coarse signatures
compared to interpolators.
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Fig. 1. Time-frequency representations of incomplete sinusoidal FM signal: (a) WVD obtained by using incomplete data; (b) WVD obtained after using linear
interpolation in time domain; (c) WVD obtained after using linear interpolation along lag axis in the IAF; (d) WVD obtained after using linear interpolation
along time axis in the IAF; (e) Time-frequency representation obtained by using sparse reconstruction over overlapping windows.
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Fig. 2. Time-frequency representations of multicomponent signal: (a) WVD obtained by using full data; (b) Choi-Williams distribution of full data; (c¢) WVD
obtained by using incomplete data; (d) Choi-Williams distribution obtained by using incomplete data.
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Fig. 3. Time-frequency representations of randomly undersampled multicomponent signal: (a) WVD obtained after using linear interpolation in time domain;
(b) WVD obtained after using linear interpolation along lag axis in the IAF; (c) WVD obtained after using linear interpolation along time axis in the IAF;
(d) Time-frequency representation obtained by using sparse reconstruction over overlapping windows.
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Fig. 4. Time-frequency representations of multicomponent signal: (a) WVD obtained by using full data; (b) Choi-Williams distribution of full data; (c¢) WVD
obtained by using incomplete data; (d) Choi-Williams distribution obtained by using incomplete data.
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