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Abstract—Human motion recognition (HMR) plays a key role
in various fields including health monitoring. Radar is a type of
sensor that has shown remarkable success in the classification of
human motions. Different data representation domains have been
used for the analysis of radar returns. Each domain provides one
aspect of the observed motion not readily discernible in other
domains. In this letter, we propose an approach to quantify
the domain suitability in representing a human motion. In
order to evaluate the proposed approach, we consider the time-
frequency domain and the range map. Additionally, based on
the demonstrated domain effectiveness, we propose a classifica-
tion scheme which seeks to incorporate each domain consistent
with its offerings. Experimental results show the importance of
investigating domain offerings prior to the classification process.
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I. INTRODUCTION

Much research in recent years has been focused on the use
of human motion recognition (HMR) in health monitoring [1]-
[3]. Short-term health monitoring is typical for rehabilitation
services, while long-term monitoring is common in residential
care facilities for the elderly.

Remote sensing of human motions offers several advantages
over wearable devices, most notably, it is user independent.
Camera-based systems capture small movements, but prepro-
cessing methods, like background subtraction and extraction
of human target, have to be employed before motion analysis.
Privacy concern issue, associated with camera-based systems,
can somewhat be alleviated by the use of systems where
only the contours of human shape can be seen, e.g. infrared
monitors. However, other issues like improper illumination and
occlusions remain challenging.

Radar systems provide contactless monitoring that is not
susceptible to lighting conditions or typical indoor occlusions
[4], [5]. It is a proven technology for monitoring different
targets, including humans and animals. For many years, radar
has been used for target detection and tracking, and more
recently, classification [6]-[12].
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The time-frequency (TF) signal representation of radar re-
turns is commonly used for observing human motions [7].
Features extracted in the TF domain often have physical inter-
pretations, including energy, periodicity, and highest frequen-
cies. Other domains have also been considered for the same
purpose [13], [14]. For example, cadence velocity diagram can
be used to detect abnormal gait [15] and extract features based
on pseudo-Zernike moments [13].

Different motions manifest themselves differently depending
on the domain used. Since there is no one single domain
that provides distinctive signatures for all motion types, an
effective HMR approach should undertake multiple data do-
main representations. Deciding on a proper domain for a given
motion would depend on the resemblance/distinction between
the respective motion signature and other motion signatures
in the same domain. In this letter, we propose an approach
that measures a motion distinction level in each domain with
respect to other motions. This approach can be used prior to
any classification process to guide domain selection and fusion
schemes aiming at minimizing the classification errors intrinsic
to a single domain.

The letter is organized as follows. Section II describes
the dataset and the employed representation domains. The
proposed approach for measuring motion distinction level is
discussed in Section III. Experimental results are shown in
Section IV, while the conclusion is given in Section V.

II. DOMAINS USED FOR RADAR RETURN SIGNALS
ANALYSIS

When using FMCW radar, it is possible to represent the
radar signals in different joint-variable domains that include
slow-time, range, and Doppler [14]. Each domain provides
information that may not be present or easily identifiable in
other domains. In this letter, we observe the data in the TF
domain and the range map. These two domains are commonly
used to represent radar returns and they provide valuable
information about the target over time. The TF domain depicts
the target velocity change, in our case the human torso and
limbs, over time, whereas the range map provides information
about the motion range extent and its time-dependence.

The spectrogram is used as the TF signal representation,
depicting the distribution of the signal power over time n
and frequency k. The spectrogram of a periodic version of
a discrete signal s(n), n = 0..N − 1 is given by,

SPEC(n, k) = |
N−1∑
m=0

h(m)s(n−m)e−j2πkm/N |2, (1)

where h(m) is a window function.



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, MONTH 2017 2

In this work, we observe four common human motions:
falling, sitting, bending and walking. Each motion is observed
during a time span of 4s. Fig. 1 depicts four observed motions
in the two aforementioned domains. It is clear that motions
which can be visually distinguished in one domain may not
be easily identified in another domain. For example, falling
and sitting can be confused in the TF domain, while they can
be readily distinguished in the range map.

III. ANALYSIS OF HUMAN MOTIONS IN A CHOSEN
DOMAIN

In this section, an approach to quantify the distinction
between a pair of motions is proposed. We find the principal
components of each motion class. Similarity between motion
classes then amounts to measuring closeness between the
corresponding subspaces.

A. Measuring motion distinction level
Define matrix X that contains raster scanned images xi, i =

1, . . . ,M of a specific motion,

X =

(
x1 x2 ... xM

)
. (2)

We assume that X is normalized. Each vectorized image
is of size 1xN . The principal components are defined by the
eigenvectors of the covariance matrix CXX = XXT . Various
methods are used to estimate the covariance matrix and to com-
pute the principal components [16], [17]. The maximization of
the variance is one of the well-known approaches where the
strongest principal eigenvector ν is obtained by solving

max
ν

νTCXXν

subject to ‖ν‖2 = 1.
(3)

Other components can be obtained in an iterative manner, by
removing the already computed principal components from the
signal and applying the same procedure until all components
are extracted. The number of components that can be used
for quantifying the motion level distinction depends on the
importance of principal components. Fig. 2 shows the three
strongest principal components of the observed motions in
image form. Finding a class subspace is an important step
in the classification process. The aim here is to quantitatively
describe the suitability of each domain for a given motion.
Towards this end, we measure similarity between the motion
subspaces using both Canonical correlations and Pearson cor-
relation coefficients.

B. Similarity measures
Canonical correlations are a well-known tool for measuring

the distance between two subspaces [18], [19]. Define U and V
as d-dimensional subspaces belonging to two motion classes.
Canonical correlations are cosines of canonical angles θi, i =
[1, ..., d] (also known as principal angles), and are defined as:

cos(θi) = max max
u∈U,v∈V

|uTi vi|

subject to ‖ u ‖=‖ v ‖= 1

uTi uj = vTi vj = 0, i 6= j. (4)

The solution of this problem can be obtained using Singular
Value Decomposition (SVD) of matrices U and V that form
orthonormal bases for the subspaces U and V , i.e.,

UHV = PΛQ. (5)

The columns of P and Q are the left- and right-singular
vectors, respectively, whereas Λ contains singular values.
These singular values are canonical correlations, i.e., cos(θi) =
λi, i = 1, ..., d. The minimum canonical angle is used to
measure the closeness of two subspaces.

Another measure of similarity between two subspaces is
to treat their respective components collectively instead of
separately, as in the canonical correlations. That is, for each
subspace, the corresponding d components of length N are
averaged. In this way, two subspaces are represented by vectors
x and y, respectively. The similarity can then be measured by
finding the Pearson correlation value, defined as [20],

ρ =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
, (6)

where x and y are the sample means.
Figs. 3 (a,c) show both canonical and Pearson correlation

coefficients in different domains when using the strongest
principal component of each motion class. Figs. 3 (b,d) show
the correlation coefficients corresponding to the five dominant
principal components for spectrograms and range map, respec-
tively. We can notice that in both cases, the high correlation
coefficients properly describe the similar motions, i.e., falling
and sitting in the TF domain, and bending and sitting in the
range map. Conversely, and accordingly to the two measures,
walk and bending motions are considered most distinctive in
both representation domains. By increasing the number of
principal components, the motion distinction level becomes
more accurate. For example, the Pearson correlation coefficient
better captures the similarity between falling and walking in
the range map.

For comparison, we compute the Pearson correlation coef-
ficients for the spectrograms, depicted in Fig. 1, in lieu of
their subspaces. The results are shown in Fig. 4. It is evident
that attempting to measure motion resemblance, based on the
respective spectrograms, fails to provide a desired motion
distinction level.

The results of Fig. 3 highlight the importance of representing
human motions in the proper domains. They demonstrate
two effective measures of motion distinction which can guide
the selection of data representation prior to any classification
process.
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(a) (b) (c) (d)

Fig. 1. Human motions in the TF domain (first row) and the range map (second row): (a) Fall, (b) Sit, (c) Bend, (d) Walk.

(a)

(b)

(c)

(d)

Fig. 2. Three strongest principal components of the observed human motions:
(a) falling, (b) sitting, (c) bending and (d) walking.

C. Domain combination scheme for motion detection

The above analysis allows us to devise more appropriate
domain combination schemes without relying on the visual
assessments. In essence, it is prudent to group similar motions

and regard them as one, instead of trying to detect each motion
in every domain separately. Based on the results obtained in
the previous section, proper motion groups are:

• Time-frequency domain: fall-sit;

• Range map: fall-walk, sit-bend.

One has the option to observe these domain representations
in a parallel or serial manner. In this work, a serial configu-
ration is proposed (Fig. 5). The test motion is first classified
based on the range maps into two classes: fall-walk and sit-
bend. This classification can be described as distinguishing
between in-place motions versus motions that cause range
translation. The next step is more precise classification, i.e.,
based on the radar return TF representation, motion is declared
as either fall or walk (sit or bend).

It should be noted that this approach can be used in
combination with any classifier or feature extraction method. In
this work, we use Principal Component Analysis (PCA) based
classifier to discriminate motions according to the scheme in
Fig. 5 [21], [22]. PCA based classification consists of two
stages, the training stage followed by the testing stage. The
classification process can be described by the following steps:

Training
1: Vectorize each input image and stack them as columns in

a matrix S
2: Normalize the matrix S by subtracting the average
3: Perform the eigendecomposition of the covariance matrix
SST and select dominant eigenvectors

4: Project the training images onto the subspace spanned by
selected eigenvectors
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(a) (b)

(c) (d)

Fig. 3. Canonical and Pearson correlation coefficients for a pair of subspaces when 1 (a,c) and 5 principal components (b,d) are used. First row - spectrograms,
second row - range maps. Correlation coefficient values are normalized in the range [0,1].

Fig. 4. Correlation coefficient for spectrograms. Pearson coefficients are
included for the reference.

Fig. 5. Proposed combination scheme. The test data is first classified based on
the range extent, followed by the classification based on the TF representation.

Testing
1: Project the testing image onto the subspace obtained in

the training process
2: Compare the testing image projection with all projections

obtained for the training images
3: The minimum Euclidean distance determines the class

with the closest match to the observed test motion

IV. EXPERIMENTAL RESULTS

The FMCW radar experiments were conducted in the Radar
Imaging Lab at the Center for Advanced Communications, Vil-
lanova University. The radar system used in the experiments,
named SDRKIT 2500B, is developed by Ancortek, Inc. The
center frequency is 25 GHz, whereas the bandwidth is 2 GHz
which provides 0.075 m range resolution. The obtained dataset
is analyzed in Matlab 9.0.

The dataset contains 260 samples, 65 samples for each
motion class. For the PCA based classifications, the training set
consists of 50 samples for each class (200 samples in total),
and each sample is a 64x64 image. Thus, for each motion
class, 4096x50 matrix X is generated according to Eq. (2).
This training dataset is also used to generate results in Figs.
3 and Fig. 4. The rest of the dataset is used for testing. The
number of principal components was determined based on the
eigenvalues. The success rate can be improved by including
additional principal components [23]. However, after a certain
number of components, there is no significant increment in
the success rate. Based on the eigenvalues for the observed
dataset, ten dominant principal components are used for the TF
representation, whereas five dominant components are used for
the range maps. When only using five components for the TF
representation, a success rate of 73.3% is achieved, whereas
the use of fifteen components yields negligible improvement
(84.75%).

The confusion matrices for spectrograms and range maps
are shown in Tables I and II, respectively. These tables show
the correspondence between the actual and the classified class.
For example, Table II depicts that the 93% of actual falls
are classified as falls, while the rest (7%) are declared as
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walk. These results underline the need to perform domain
analysis prior to classification. It can be observed that the
low success rate for the range maps is primarily caused by
sitting and bending misclassification. Table III contains results
when the proposed combination scheme is used. We can
notice that domain combinations, when performed properly,
improve the overall success rate. Additionally, the difference
in computational times between the use of a single domain
and the use of a combination scheme is not significant.

TABLE I. CONFUSION MATRIX FOR THE TF DOMAIN. SUCCESS RATE
IS 84.5%, COMPUTATIONAL TIME IS 0.8 s.

Classified/Actual Class Fall Sit Bend Walk
Fall 86% 20% - 7%
Sit 14% 80% 14% 7%

Bend - - 86% -
Walk - - - 86%

TABLE II. CONFUSION MATRIX FOR THE RANGE MAP. SUCCESS RATE
IS 81.25%, COMPUTATIONAL TIME IS 0.5 s.

Classified/Actual Class Fall Sit Bend Walk
Fall 93% 7% - -
Sit - 66% 34% -

Bend - 27% 66% -
Walk 7% - - 100%

TABLE III. CONFUSION MATRIX FOR THE APPROACH BASED ON THE
TREE-LIKE STRUCTURE. SUCCESS RATE IS 91.25%, COMPUTATIONAL

TIME IS 1.4 s.

Classified/Actual Class Fall Sit Bend Walk
Fall 93% - - 14%
Sit - 100% 14% -

Bend - - 86% -
Walk 7% - - 86%

V. CONCLUSION

In this paper, we introduced an approach which measures
domain representation appropriateness for a given human
motion. This approach provides an effective means to guide
selection and combinations of multiple domain representations
in order to minimize errors inherent in a single domain-based
classifications. The proposed approach is evaluated using the
TF domain and the range map. Based on the analysis of
the observed domains, an effective serial combination scheme
is proposed. Results demonstrate that proper combination
schemes outperform the use of single domains.
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