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Abstract—Reduced interference distributions are well-known
methods used for quadratic time-frequency signal analysis of
nonstationary data including Doppler signals. These distributions
use kernels that determine the quality of a time-frequency signal
representation. Optimal reduced interference distribution kernels
are determined based on the employed design criteria, including
sparsity and concentration measures that are applied in the
time-frequency domain. This paper demonstrates that sparsity,
compared to common concentration measures, satisfies desirable
performance attributes and, as such, is considered effective in
revealing the signal local frequency structure and its time-
frequency signature, including the signal instantaneous frequency.

I. INTRODUCTION

Fourier transform is a standard method for analyzing sta-
tionary signals. However, the majority of signals in practice are
nonstationary, i.e., their spectral contents change with time.
Time-frequency representations (TFRs) are typically used to
properly examine the signal local frequency characteristics
and reveal the signal time-varying spectral behaviour [1], [2].
Various TFRs have been defined in the literature, but none
provides ideal time-frequency signature for all signal types
[1]. The simplest TFR is the Short-time Fourier transform
(STFT) which is defined as the Fourier transform of the data
over sliding windows in time. The role of these windows is
to partition the signals into stationary segments over which
Fourier transform becomes meaningful. Even though STFT is
appealing due to its simplicity, this TFR and its corresponding
energetic distribution, spectrogram, suffer from the resolution
dependency on the window size. Namely, short windows pro-
vide good temporal resolution, but poor frequency resolution
and vice versa.

Improvement of the time-frequency resolution can be
achieved using the Wigner-Ville distribution (WVD)[2]. This
distribution is obtained as the Fourier transform of the signal
instantaneous autocorrelation function (IAF). WVD provides
an ideal time frequency signature for linearly frequency mod-
ulated signals, i.e., chirps. However, for the case of multiple
components, WVD suffers from cross-terms which are induced
by the bilinear products of the IAF. In order to suppress the
cross terms, reduced interference distributions (RIDs) were
introduced [1], [2]. These distributions seek to reduce the
cross-terms in the WVD using low-pass kernels which multiply
the signal ambiguity function. For the majority of signals,
the auto-terms reside around the origin while cross-terms

appear distant from both the origin and the two axes in the
ambiguity domain. After filtering the ambiguity function, the
two dimensional (2D) Fourier transform is applied in order to
obtain the signal TFR.

Even though RIDs assume two important and desirable
qualities, namely, high concentration and cross-term suppres-
sion, the tradeoffs between these two qualities can significantly
vary depending on the kernel employed. With parameterized
kernels, the parameters would need to be tuned so accurate
time-frequency signatures for multi-component signals can
be obtained. Various criteria can be used for adjusting the
kernel parameters. The signal power concentration in the
time-frequency plane is often used to qualitatively describe
the signal time-frequency structure. There are several well-
established concentration measures which exist for evaluating
the suitability of the time-frequency signal representation [3]-
[6]. A rival property which is linked to the efficiency of the
TFR is sparsity. Namely, desirable RIDs can be considered
sparse since only a portion of the time-frequency plane is
occupied, even in the presence of multi-component signals
[7]-[9]. It is noted that in radar and sonar applications, these
complex nonstationary signals represent target Doppler signals
under translation, rotation, vibration, and oscillation motions.

In this paper, we compare the concentration and the sparsity
measures in view of their roles in producing accurate TFR
close to the ground truth or the analytical formulation. We
demonstrate that the sparsity measure provides more efficient
TFR, where efficiency is ultimately defined as cross-terms free
distribution with resolution resembling that of the WVD.

The paper is organized as follows. In Section II, RIDs are
briefly described. Section III describes the effect of a kernel on
RID sparsity and concentration. Also, in this section, different
sparsity and concentration measures are compared. Simulation
results are given in Section IV, whereas conclusion is given in
Section V.

II. REDUCED INTERFERENCE DISTRIBUTIONS

The RID of a signal s(t) is defined as

RID(t, ω) =

∞∫
−∞

∞∫
−∞

A(θ, τ)C(θ, τ)e−θte−τωdθdτ, (1)



where t and ω denote time and frequency, respectively, C(θ, τ)
is the kernel, whereas A(θ, τ) is the ambiguity function of
signal s(t). The ambiguity function can be formulated as

A(θ, τ) =

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2)e−θtdt. (2)

The variables θ and τ represent Doppler frequency and time
lag, respectively. Various kernels have been designed in order
to suppress cross-terms while preserving the signal auto-terms.
Kernels are commonly designed as low-pass filters which are
intended to capture the signal auto-terms and leave out most
of the signal cross-terms.

III. DETERMINING THE OPTIMAL DISTRIBUTION

A. Sparsity and concentration of RIDs

In this section, we analyze the effect of the kernel passband
on the RID sparsity. Based on (1), we observe that by changing
the kernel parameters, we change the auto and cross-terms
shape in the RID. This shape determines various properties of
the RID, including sparseness and concentration.

Without loss of generality, we consider a signal composed
of two sinusoids, i.e., s1(t) = eω1t and s2(t) = eω2t.
This signal is taken for consideration due to the fact that the
majority of signals can be represented as a sum of sinusoids
during a short period of time. For the sake of simplicity, we use
two sinusoids. The ambiguity function of the observed signal
can be written as

A(θ, τ) =eω1τδ(θ) + eω2τδ(θ)

+e(ω1+ω2)
τ
2 [δ(ω1 − ω2 − θ) + δ(ω2 − ω1 − θ)].

(3)

The first two terms in the above equation represent the signal
auto-terms which are located along the entire τ axis. The third
term denotes the signal cross-terms which reside away from
θ = 0 for ω1 6= ω2. In order to obtain the RID, we use the
radial Gaussian kernel. This kernel is defined as

C(θ, τ) = e−
θ2+τ2

2σ2 , (4)

where σ2 is the kernel variance. Three distinct cases can occur
when changing the kernel variance. This is illustrated in Fig.
1. The upper row shows RIDs, while the bottom one shows
plots of a time slice taken from the corresponding RIDs. The
variances considered are σ2

1 = 1/6, σ2
2 = 50 and σ2

3 = 250.

We can notice that the first case (Fig. 1 (a)), which
corresponds to the smallest kernel variance, depicts distorted
auto-terms and shows lack of term concentrations and the
lowest sparsity. Therefore, we can expect that neither sparsity
or concentration measure will favor this specific variance. The
auto-terms in the third case are more concentrated than in
the second case. Concentration is defined by the bandwidth
measured by drop in amplitude by e≈2.7182 times. Even
though the signal TFR in the third case is more concentrated,
it contains an undesirable cross-term which reduces TFR
sparsity. Intuitively, the second case should be sparser than the
third case, since the latter contains an additional component.
This paradigm is made clear in the following analysis.

Since sparsity is commonly defined as the number of non-
zero components, it is important to compute both the auto
and cross-terms bandwidths. The RIDs auto and cross-terms
properties, including their amplitude and bandwidth, are well
studied in the literature [10]. In this paper, these properties are
observed from the sparsity perspective. Based on (3) and (4),
the auto-terms in the time-frequency plane are expressed as

AT (t, ω) =

∞∫
−∞

(eω1τ + eω2τ )e−
τ2

2σ2 e−ωτdτ

=σ
√
2πe−

σ2

2 (ω−ω1)
2

+ σ
√
2πe−

σ2

2 (ω−ω2)
2

.

(5)

The bandwidth of the first auto-term is computed using the
following relation

σ
√
2π

e
= σ
√
2πe−

σ2

2 (ω−ω1)
2

. (6)

Based on (6), we can compute the bandwidth for both auto-
terms BAT as follows:

ω = ω1 ±
√
2

σ
⇒ BAT = 4

√
2

σ
. (7)

Similarly, the expression for the cross-term is given by

CT (t, ω) =

∞∫
−∞

e
τ
2 (ω1+ω2)e−

τ2+(ω1−ω2)2

2σ2 e−(ω1−ω2)te−ωτdτ

+

∞∫
−∞

e
τ
2 (ω1+ω2)e−

τ2+(ω1−ω2)2

2σ2 e−(ω2−ω1)te−ωτdτ

=σ
√
2πe−

σ2

2 (ω−ω1+ω2
2 )2e−

(ω1−ω2)2

2σ2 cos(ω1 − ω2)t.
(8)

As we gradually increase the kernel variance, the cross-term
bandwidth can be computed using the same threshold as for
the auto-terms, i.e., σ

√
2π/e,

BCT = 2

√
2

σ

√
1− (ω1 − ω2)2

2σ2
+ ln[cos(ω1 − ω2)t]. (9)

It is clear from the above analysis that the bandwidths of both
types of time-frequency terms change with the kernel variance.
These bandwidths can be used to measure sparsity, since they
provide the number of occupied frequency bins. In this respect,
in order to cast the second case of the variance to be sparser
than the third case, the following condition should be satisfied:

BAT (σ2) < BAT (σ3) +BCT (σ3). (10)

It can be noticed that the fulfilment of this condition depends
not only on the used kernel variances, but also on the signal
components. Measuring the bandwidth, or equivalently, the
number of occupied frequency bins, corresponds to the `0
norm. However, it is well-known that this sparsity measure
is not suitable in the presence of noise. Another norm which
is commonly used is `1 norm. Based on the previous analysis,
unfortunately there are no indications that `1 norm is sensitive
to the cross-terms since the sum of the absolute values does not
discriminate between signal auto and cross-terms. This paradox
confirms that even though sparsity can be a useful indicator
when searching for the optimal RID, an appropriate metric is
required when measuring sparsity in the time-frequency plane.



Fig. 1. RIDs and corresponding time slices at t=64. Three cases in the RID kernel adjustment: (a) Distorted auto-terms, (b) Cross-terms free TFR, (c) TFR
which contains cross-terms. Plots are normalized.

B. Measures for determining the optimal RID

The above discussion, although based on a simple ex-
ample and specific kernel, serves to strengthen the general
argument of the importance of having a proper time-frequency
performance measure. In essence, we require a measure which
can distinguish the three aforementioned critical cases decided
by the kernel. The task of finding the optimal RID can
be described as searching for the TFR which is both well-
concentrated and sparse, but has reduced cross-terms. In [11],
the authors defined several attributes which should be held by
any sparsity measure. They proved that, among the examined
measures, the Gini index and pq-mean satisfy all desirable
properties.

In what follows, we examine several well-known sparsity
and concentration measures. For a signal s ∈ CN , we observe
the discrete RID X. More specifically, we use the absolute
form of the normalized X or its vectorized version x.

`0 and `1 norm

As previously mentioned, the `0 norm is commonly used
to describe sparsity. The `0 norm for vector x is defined as

`0(x) = card(x 6= 0). (11)

It is possible to use the threshold to detect the number of
components which are above the threshold value, but the
determination of that threshold is itself a difficult task. The
`1 norm can be used as an alterative to the `0 norm. This
norm is defined as the sum of the absolute values in vector x.

TFR kurtosis
TFR kurtosis is one of the well-known measures used in time-

frequency analysis [3]. It is defined as

k(X) =

∑
n

∑
k

X4(n, k)

(
∑
n

∑
k

X2(n, k))2
. (12)

Even though this measure satisfies few desirable properties for
measuring sparsity and concentration, it has one disadvantage.
Namely, in the case of a multicomponent signal, it favors
a single highly localized component over less, but similarly
localized components in the time-frequency domain. Thus, it
is expected that this norm would fail in the presence of cross-
terms.

Renyi entropy

Another approach of determining the quality of the TFR is
using the entropy measures [12]. Renyi entropy of third order
is a traditionally used measure in time-frequency analysis, and
it is computed as

Hα(X) =
1

1− α
log2

∑
n

∑
k

X(n, k)α, (13)

where α = 3.

pq-mean

pq-mean is a sparsity measure formulated as

pq(x) = −
( 1
N2

N2∑
m=1

xp(m))1/p

( 1
N2

N2∑
m=1

xq(m))1/q
, (14)



where p < q. In this paper, we use p = 1, q = 2.

Gini index

The Gini index is a sparsity measure [13], [14], which for
sorted form of vector x, x(1) ≤ ... ≤ x(N2) is defined as

GI(x) = 1− 2

N2∑
m=1

x(m)

‖x‖1
N2 −m+ 0.5

N2
. (15)

As the number of non-zero values of the signal decreases, the
value of the Gini index increases. The pq-mean and the Gini
index have shown to satisfy several desirable properties. One
of the advantages of the Gini index is its normalization so it
assumes the values in the range between 0 and 1 for any given
vector. This gives a useful interpretation of the sparsity and
enables a more efficient monitoring of the change in sparsity
over kernel parameters. An alternative definition of the Gini
index is based on the relative mean difference [15], i.e.,

GI(x) =

N2∑
m=1

N2∑
n=1
||x(m)| − |x(n)||

2N‖x‖1
. (16)

This definition shows another advantage of using the Gini
index. Namely, the Gini index takes into account the energy
distribution of the nonzero coefficients. This property can be
useful in detecting cross-terms since these terms can reduce
the difference between two coefficients in vector x.

IV. SIMULATION RESULTS

In this section, we evaluate the measures described previ-
ously for obtaining the optimal RID. Radial Gaussian kernel
is used as a parameterized kernel. For each measure, we use
the following range of variances 1:10:1000.

Example 1: We observe a signal composed of a chirp and
a sinusoid. Fig. 2 shows plots of different sparsity measures.
These plots depict how the sparsity of a noiseless TFR changes
for different variances. The TFRs, corresponding to the optimal
points in Fig. 2, are shown in Fig. 3. We can notice that the
`0 norm (Fig. 3(a)) provides the most efficient solution, thus
underscoring the general argument that the sparsity, i.e., the
number of occupied frequency bins, is considerably altered
when the cross-terms are included. However, it should be noted
that this is a noiseless signal. Among other measures, the Gini
index provided the TFR with the most suppressed cross-terms
(Fig. 3(f)).

Example 2: In this example, a signal consisting of two
components with 3-degree polynomial phase is considered
(SNR=10dB). Results are shown in Fig. 4. The sensitivity of
the `0 norm, even with an applied threshold, demonstrates the
inefficiency of this measure (Fig. 4 (a)). The solutions which
most resemble the optimal case are provided by pq-mean and
Gini index. It can be noticed from Figs. 4, 5 that in the noisy
case, sparsity measures, such as pq-mean and Gini index, tend
to choose smaller variance, and hence, provide TFR with more
suppressed cross-terms. This behaviour is attributed to the fact
that, by increasing the kernel extent in the ambiguity domain,
the noise power becomes higher which significantly affects the
TFR sparsity. These results confirm that the Gini index can be
successfully used for determining a sparse RID.

Fig. 2. Different measures applied to the TFRs. x axis represents the variance
of the radial Gaussian kernel. The optimal points, according to the applied
measures, are denoted by red circles and their variance value is also depicted.
The measures values are normalized to be in the range [0,1], except the Gini
index which already provides results in this range.

Fig. 3. TFRs corresponding to the optimal points according to the measures
in Fig. 2 (a) `0 norm result, (b) `1 norm result, (c) Kurtosis, (d) Renyi entropy,
(e) pq-mean (p = 1, q = 2), (f) Gini index.



Fig. 4. Different measures applied to the TFRs of a signal consisting of two
components with 3-degree polynomial phase.

Fig. 5. TFRs corresponding to the optimal points according to the described
measures when SNR=10dB: (a) `0 norm result, (b) `1 norm result, (c)
Kurtosis, (d) Renyi entropy, (e) pq-mean (p = 1, q = 2), (f) Gini index.
When computing `0 norm, we use threshold-based definition. Threshold is set
to the 1/e of the maximum TFR value.

V. CONCLUSION

This paper examined sparsity in the time-frequency domain
from a quadratic power distribution perspective. It was shown
that one can improve time-frequency representations of non-
stationary signals using sparsity, in lieu of concentration, as a
performance measure in the time-frequency domain. However,
the presence of undesirable distribution cross-terms, which are
inherent in multicomponent signal TFR, renders `0 and `1
based sparsity measures inadequate and ineffective. Simulation
results showed that, among the employed measures, the Gini
sparsity index is considered most reliable for finding both
sparse and cross-terms free time-frequency signal representa-
tion.
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