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ABSTRACT

Hermite functions are an effective tool for improving the
resolution of the single-window spectrogram. In this paper,
we analyze the Hermite functions in the ambiguity domain
and show that the higher order terms can introduce unde-
sirable cross-terms in the multiwindow spectrogram. The
optimal number of Hermite functions depends on the location
and spread of signal auto-terms in the ambiguity domain.
We apply and compare several sparsity measures, namely `1
norm, the Gini index and the time-frequency concentration
measure, for determining the optimal number of Hermite
functions, leading to the most desirable time-frequency rep-
resentation. Among the employed measures, the Gini index
provides the sparsest solution. This solution corresponds to
a well-concentrated and cross-term reduced time-frequency
signature.

Index Terms— Ambiguity function, cross-terms, Her-
mite functions, kernel, time-frequency distribution

1. INTRODUCTION

The frequency contents of a majority of biological and man
made signals change in time [1]. Examples include EEG,
radar signals and speech [2], [3]. In order to analyze the time-
varying nature of the signal spectrum, linear and quadratic
time-frequency representations (TFRs) can be used. Vari-
ous time-frequency distributions have been defined, none of
which provides a desirable TFR for all signal types.

The simplest linear TFR is the Short-time Fourier trans-
form (STFT) [1]. It is obtained as the Fourier transform of
the sliding window in time. Energetic version of the STFT
is the spectrogram. The major drawback of the spectrogram
is that its efficiency depends on the employed window size
and shape. Namely, due to the uncertainty principle, one can-
not design a window which is simultaneously narrow in both
time and frequency domains. This creates a trade-off between
spectral and temporal resolution. Improvement in resolution,
however, can be achieved using multiple windows STFTs. A
set of Hermite functions is known to provide excellent res-
olution properties of the spectrogram when compared to its
single-window counterpart [4], [5]. It has been shown that
these functions provide maximum signal concentration in the

joint time-frequency domain with elliptic symmetry [6]. This
property has motivated their use for various types of signals,
including locally stationary processes and radar signals [7]-
[9].

In this paper, we examine the Hermite functions in the
ambiguity domain and show that they act as a low-pass ker-
nel. The spread of this kernel would depend on the number
of the employed functions. We demonstrate that the inclusion
of more Hermite functions leads to a larger kernel volume,
which could capture undesirable cross-terms. Thus, there is
a need to determine the optimal number of Hermite func-
tions in order to achieve good resolution property, while
avoiding cross-terms. We propose an approach which de-
termines this number based on measuring the sparsity of
the time-frequency representation. Among different sparsity
measures, the Gini index is shown to have the best perfor-
mance.

This paper differs from past work on sparsity and quadratic
TFR. It does not perform sparse reconstruction of the TFR
from compressed ambiguity domain observations [10], nor
does it obtain TFR by sparse reconstructions from a win-
dowed randomly sampled data [11] or from the correspond-
ing instantaneous autocorrelation function [12]. Rather, this
paper defines a new member of Cohen’s class in which the
overall equivalent time-frequency kernel, derived from the
Hermite functions, leads to the sparsest solution.

This paper is organized as follows. Section 2 provides a
brief description of the Hermite functions and the multiwin-
dow spectrograms. In Section 3, the multiwindow spectro-
gram and the corresponding set of windows are analyzed in
the ambiguity domain. An approach for determining the op-
timal number of Hermite functions is also given in Section 3.
Simulation results are provided in Section 4, while the con-
clusion is given in Section 5.

2. THE MULTI-WINDOW SPECTROGRAM BASED
ON A SET OF HERMITE FUNCTIONS

The Hermite functions of the 0th and 1st order are defined as
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The Hermite functions of higher order can be defined using
the recursive relation
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These functions are used as windows in the multi-window
spectrogram SPECMW (t, ω), which can be expressed as
the weighted sum of L spectrograms SPECl(t, ω), l =
0, 1...L− 1, i.e. [4],

SPECMW (t, ω) =

L−1∑
l=0

cl(t)SPECl(t, ω). (4)

Each spectrogram in (4) is obtained by using a Hermite func-
tion of l-th order ψl(τ) as the window function, i.e.,
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If the signal s(t) is represented in terms of its amplitude and
phase, i.e., s(t) = A(t)eϕ(t), and if this amplitude is slowly
varying within the window, then the weights cl(t) can assume
constant values [4]. In this paper, we apply this property in
order to simplify the analysis.

3. THE OPTIMAL NUMBER OF HERMITE
FUNCTIONS FOR CROSS-TERMS SUPPRESSION

3.1. The Hermite functions in the ambiguity domain

In this section, the role of window functions in the multiwin-
dow spectrogram is observed in the ambiguity domain. In this
domain, the desirable signal components, namely auto-terms,
reside in the proximity of the origin, while undesirable cross-
terms appear distant from the domain axes and the origin. The
spectrogram is considered as a distribution within the Cohen
class, i.e.,

SPEC(t, ω) = 2π
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As(θ, τ)Φ(θ, τ)e−(θt+ωτ)dθdτ,

(6)
where As(θ, τ) denotes the ambiguity function of signal s(t),
and Φ(θ, τ) is the kernel which, in the spectrogram case, is
equal to the ambiguity function of the window ψ(τ). Most
kernels assume low-pass filter characteristics consistent with
the auto- and cross-terms location in the ambiguity plane. Us-
ing (6), the multiwindow spectrogram can be written as the
two-dimensional Fourier transform (2DFT) of the product of

the signal ambiguity function and the sum of the kernels pro-
duced by the employed set of Hermite functions,

SPECMW (t, ω) = 2DFTθ,τ [2πAs(θ, τ)

L∑
l=1

Φl(θ, τ)].

(7)
Each kernel Φl(θ, τ) can be defined as the scaled ambiguity
function of the l-th order Hermite window, i.e.,
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Before providing the general expression for the kernel Φl(θ, τ),
we first compute the kernels for the lowest order Hermite
functions. The kernel Φ0(θ, τ) is
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In essence, using the 0-th order Hermite function corresponds
to applying a kernel in the ambiguity domain which has a
shape of radial Gaussian. This kernel offers its highest values
when the two variables are close to zero, making it dominant
around the origin. It can be readily shown that the kernel
which corresponds to the 1st order Hermite function is given
by
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If we observe the first term of the above kernel, we find that
the kernel volume is larger than that of the kernel Φ0(θ, τ).
Hence, by employing two Hermite functions instead of one,
more terms in the ambiguity domain will contribute to the
formation of the signal TFR. In order to examine the effect
of the higher order Hermite functions, we recall that the lth
order function can be expressed as

ψl(t) = pl(t)e
− t22 , (11)

where pl(t) is a polynomial of order l. Using this represen-
tation and the fact that Hermite functions are eigenfunctions
of the Fourier transform, i.e., ψl(ω) = (−)lψl(t), the kernel
Φl(θ, τ) can be represented as
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Fig. 1. Hermite functions in time and ambiguity domain: (a)
0th order, (b) 1st order, (c) 2nd order.

where r(θ, τ) denotes contributions to the kernel from poly-
nomials of order smaller than 2l. Since we seek the contribu-
tion of the highest term in polynomial, we write the first term
in (12) as
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−( θ22 + τ2

4 )(1−l
ln( θ

2

2
+ τ

2

4
)

θ2
2

+ τ
2
4

)

. (13)

By increasing l, the argument of the exponential becomes
larger which increases the kernel extent and its volume. This
implies that the inclusion of higher order Hermite functions is
not necessary and could be counterproductive due to the cap-
turing of the ambiguity domain cross-terms. Fig. 1 shows the
Hermite functions of 0th, 1st and 2nd order and their corre-
sponding kernels. The kernel volume increases as we increase
the order of the Hermite function.

3.2. An approach for determining the optimal number of
Hermite functions

In order to determine the optimal number of Hermite func-
tions, we use sparsity measures. It can be shown that the
spread of the kernel in the ambiguity domain influences spar-
sity of the TFR [13]. In other words, the inclusion of more
cross-terms in the ambiguity domain reduces sparsity of the
TFR. Using this property, we can determine the number of
Hermite functions necessary to provide the sparsest solution,
defined as the TFR which contains only auto-terms. The op-
timization problem can be formulated as follows,

minimize
L

‖ X ‖0

subject to X = 2DFT [2πAs �
L∑
l=1

Φl], (14)

where ‖ · ‖0 corresponds to `0 norm and X represents TFR
based on multiple Hermite functions. It should be noted that

vectorized forms of the TFR are used when measuring spar-
sity. The `0 norm measures the number of non-zero elements
within a matrix X. However, this norm is sensitive to noise
which makes it unsuitable for use in practice. Other norms
and measures can be defined. The most common substitute
for `0 norm is `1 norm which for the real-valued signal vector
x, x(1) ≤ ... ≤ x(N) is defined as

‖ x ‖1=

N∑
n=1

| x(n) | . (15)

In [14], the authors proposed a set of attributes which a spar-
sity measure should intuitively have. They compared several
measures, including `1 norm, and proved that the Gini in-
dex and the pq-mean satisfy all desirable properties, rendering
them good candidates for measuring sparsity. The Gini index
for the sorted real-valued vector x can be defined as
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N − n+ 0.5

N
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As the number of non-zero values of the signal decreases, the
value of the Gini index increases. The pq-mean measure of
the real-valued vector x is defined as
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If we use p = 4 and q = 2, and the fourth power is computed,
one of the well-known TFR concentration measures emerges
[15]. Even though this measure satisfies desirable properties
for measuring sparsity, it has its own disadvantage. Namely,
in the case of multiple signal components, this measure could
favor highly localizable cross-terms in lieu of less concen-
trated auto-terms. In Section 4, three sparsity measures are
examined, namely the Gini index, the time-frequency concen-
tration measure [15] and `1 norm. The results suggest the use
of the Gini index for measuring sparsity in the time-frequency
plane.

4. SIMULATIONS

In this section, we evaluate the proposed approach using
multi-component non-stationary signals. In all plots, fre-
quency axis is normalized.

In the first example, we observe a signal in the presence
of noise (SNR = 0dB) which has two sinusoidal frequency
modulated (FM) components and a sinusoid, i.e.,

x(n) = 2e16 sin(2πn)+64n + 2e16 sin(2πn)−96n + 2e64n.

These types of signals are common in radar applications.
The sinusoidal FM signal can be used to model rotating parts



Fig. 2. Different TFRs in the presence of noise. For multi-
window TFRs, number of windows is determined by different
sparsity measures: (a) Single-window spectrogram, (b) TFR
based on Gini index, (c) TFR based on time-frequency con-
centration measure, (d) TFR based on `1 norm, (e) CWD.

of a target, while sinusoid is used to model the rigid body.
Fig. 2(a) demonstrates poor resolution property of the single-
window spectrogram. Choi-Williams distribution (CWD)[16]
in Fig. 2(e) suppresses the cross-terms, but auto-terms are
also affected. In Fig. 2 (b, c, d), multiwindow TFRs are
shown based on different sparsity measures. We notice that
the Gini index has significantly suppressed the cross-terms
which is the result of estimating the optimal number of Her-
mite functions. Fig. 3 depicts how sparsity changes for
different number of windows according to the observed spar-
sity measures. The Gini index requires the smallest number
of functions and leads to the best TFR.

In the following example, we observe real-data, namely
human gait. Data is obtained at the Radar Imaging Lab at
Villanova University. Results are shown in Figs. 4 and 5.
The multiwindow TFR based on the Gini index improves the
concentration of single-window spectrogram, rendering the
human gait features more prominent and simple to extract.

Fig. 3. The change of sparsity according to different mea-
sures: (a) Gini index, (b) Time-frequency concentration mea-
sure, (c) `1 norm. Red circle denotes the point where sparsest
representation occurs according to each measure.

Fig. 4. TFR for data representing a human fall: (a) Single-
window spectrogram, (b) The multiwindow TFR based on
Gini index.

Fig. 5. TFR for data representing a person walking with one
arm swinging: (a) Single-window spectrogram, (b) The mul-
tiwindow TFR based on Gini index.

5. CONCLUSION

In this paper, the behavior of the multiwindow spectrogram,
based on a set of Hermite functions, is analysed in the am-
biguity domain. Analysis showed that the Hermite functions
form a kernel in the ambiguity plane which, in the case of
lower order functions, behaves as a low-pass filter. Using
more Hermite functions can improve resolution, but will re-
sult in the inclusion of undesirable cross-terms. These cross-
terms compromise sparsity of the time-frequency signature
and as such should be avoided. By using the Gini index as a
sparsity measure, an optimum number of Hermite functions
can be determined.
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