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Abstract—Traditional quadratic time-frequency distributions
are not designed to deal with randomly undersampled signals
or data with missing samples. The compressed data measure-
ments introduce noise-like artifacts in the ambiguity domain,
compounding the problem of separating the signal auto-terms
and cross-terms. In this paper, we propose a multi-task kernel
design for suppressing both the artifacts and the cross-terms,
while preserving the signal desirable auto-terms. The proposed
approach results in highly concentrated time-frequency signa-
ture. We evaluate our approach using various polynomial phase
signals and show its benefits, especially in the case of strong
artifacts.

Index Terms—Ambiguity domain, reduced interference distri-
bution, sparsity, time-frequency kernel design.

I. INTRODUCTION

MOST of the signals encountered in practice have time-
varying spectra. Examples of nonstationary signals

include microDoppler signals, ECG, EEG and speech. Tra-
ditionally, joint time-frequency (TF) signal representations are
used for the analysis of these signals [1]-[6]. Due to the various
applications in which non-stationary signals arise, it is difficult
to define a single time-frequency signal representation (TFSR)
which provides an ideal TF signature for all signal types.

The short-time Fourier transform (STFT) is the simplest
linear TFSR [7], [8]. This transform is obtained by computing
the Fourier transform over a sliding window in time. The
square modulus of the STFT is the spectrogram. The major
drawback of the spectrogram is that its efficiency depends
on the employed window size and shape. Improvement in
resolution can be achieved through the use of Wigner-Ville
distribution (WVD), which is obtained as the Fourier transform
of the signal instantaneous autocorrelation function (IAF).
WVD is an ideal TFSR for linearly frequency modulated (FM)
signals, i.e., chirps. However, due to the data bilinear products,
WVD suffers from cross-terms when multi-component signals
are analyzed. In order to suppress the cross-terms in WVD,
a class of reduced interference distributions (RID) has been
defined [9] which belongs to the general Cohen’s class of
quadratic time-frequency distributions (QTFDs) [10]. These
distributions are better explained in the ambiguity domain
where desirable signal auto-terms are generally located near
the origin and along the two axes, in contrast with the
cross-terms. Kernels with low-pass filter characteristics reduce
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cross-terms while preserving auto-terms. Accordingly, the two-
dimensional (2D) Fourier transform of the kernelled ambiguity
function yields a cross-terms mitigated TFSR.

The exponential growth of data demands new ways of
collecting, representing and analyzing samples. In recent years,
compressive sensing, dealing with few observations, has at-
tracted a widespread interest [11]-[13]. Missing observations
or random sampling in the field of radar can be due to range
ambiguity, discarding noisy measurements, hardware simpli-
fication, sampling frequency limitations, logistical restrictions
on data collection/storage, or co-existence of various wireless
services with active or passive sensing platforms [14]-[16].
The possibility of acquiring less measurements than in the
case of Nyquist is also beneficial in many other fields, such
as seismology, biomedicine and astronomy [17]-[20]. QTFDs
are traditionally defined to deal with data which is Nyquistly
sampled or over sampled.

Consider the following linear model,

y = Ψs, (1)

where Ψ maps the Nyquistly sampled data s into compressed
measurements given by vector y. Since (1) is an under-
determined system, additional information is necessary for
finding a solution. Compressive sensing observes the case
when the data is sparse in some transform domain.

Stationary signals and sparsity in the frequency domain have
been extensively studied in the literature [21]-[23]. However,
the majority of non-stationary data are not sparse in the
frequency domain, i.e., they occupy large bandwidths. When
observed in the joint time-frequency domain, these signals can
be considered sparse. Fig. 1 depicts ideal TFSRs of a mono-
component and multi-component signals. It is evident that
most of the TF domain is vacant. Sparsity in the TF plane
can present itself over the entire 2D plane or locally (for each
time instant or frequency).

A. Related work

Several approaches dealing with sparse TFSRs have recently
emerged [24]-[36]. Since there is a significant variety between
some of these approaches, it is not simple to provide a unified
framework. One way to divide these methods is according to
their parametric/non-parametric perspective. Works reported in
[29], [37] pertain to the parametric approaches. They operate
on the time-domain data to estimate the signal parameters.
The estimation can be performed either globally, incorporating
all data, or locally, over short data segments. This parametric
perspective is motivated by the need to perform classifications
based on features related to the signal estimated parameters.
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However, this approach requires known signal structures, e.g.,
sinusoidal FM or chirps. As such, it works well when there
is a good match between the assumed and actual signal
characteristics, but becomes sensitive to deviations in the
assumed model. As an example of a non-parametric approach,
we refer to the work presented in [24] where sparsity is
observed over the TF plane. The compressed measurements
are defined in the ambiguity domain through the application
of an appropriate mask. This approach does not consider the
case of random or missing samples in time. Due to incomplete
data, the signal ambiguity function becomes contaminated
by noise-like artifacts which render any masked ambiguity
domain data unreliable. This, subsequently, yields undesirable
TFSR, whether produced by sparse reconstruction or 2D FT.
An alternative approach is to perform the TF reconstruction
operating directly on the data and then, through the use of
ambiguity domain filtering, reduce the presence of cross-
terms. This process requires sequential operations which can
be time consuming, considering the fact that we are dealing
with 2D representations of data. Another drawback is that in
reconstructing the TFSR, we are, in essence, recovering the
cross-terms which will later be discarded through some kernel
application.

For dictionary composed of Gabor atoms, conditions which
guarantee successful reconstruction with high probability were
derived in [34]. Approaches based on Gabor dictionary stem
from the linear TFSRs, while in our work we focus on
developing quadratic TFSR. The latter are more suitable for
polynomial phase signals [38]. The authors in [36] develop a
spectrotemporal pursuit and explicitly impose conditions for
smoothness in time and sparsity in frequency. Using the link
between the sparsity-promoting priors and the expectation-
maximization method [39], an efficient algorithm for solving
the estimation problem is proposed. However, as noted in [36],
some a priori knowledge of the spectrum behavior is needed
in order to choose the window size.

Most of the aforementioned methods use fixed dictionaries,
and thus they are not fully data-driven. On the other hand,
methods like Empirical mode decomposition (EMD) and Syn-
chrosqueezed wavelet transforms use dictionaries which are
learned in the decomposition process [40], [41]. Even though
these data-driven approaches have been used in practice, there
is still a lack of strong mathematical understanding about the
entire process. Some of the issues, such as the ”beating” phe-
nomenon, are analyzed for both EMD and Synchrosqueezed
transform in [42], [43]. In [35], the authors combine EMD
and compressive sensing to obtain sparse TFSR. This work
offers several advantages over traditional EMD, but some
difficulties remain, as reported in [44]. Another EMD-based
work that deals with gaps in the data is presented in [41].
Upon dividing signal into sub-signals without gaps, intrinsic
mode functions (IMFs) are computed and then interpolated.
The rationale given is that it is easier to interpolate modes
of the signal, i.e., IMFs, than interpolating the signal itself.
This approach becomes inefficient when dealing with highly
interrupted signals underlined by random missing samples. In
this case, there would be many sub-signals, some of which
would contain only few samples making the EMD process

Fig. 1. Ideal TFSRs: (a) Chirp; (b) Two crossing chirps. Axes are normalized.

less applicable.

B. Main contribution

In this paper, we pursue the non-parametric perspective by
introducing sparsity-aware TF kernels in Cohen’s class. We
analyze the effect of missing samples in the joint-variable
domain and show that this effect manifests itself in terms of
artifacts which follow certain pattern that does not favor the
application of signal independent kernels. We then present a
new class of data-dependent TF kernels that lead to reduced
interference sparse distributions (RISD). These kernels aim at
improving sparsity in the TF domain while reducing inter-
ference. The kernel design interplay auto-term preservation,
cross-term suppression, and sparsity of the TFSR and decides
on the low-pass filter characteristics as an optimum tradeoff
between these objectives. The TF kernel design is, therefore,
defined as an optimization problem. Based on the measure-
ments in the time-lag domain, we search for the kernel in the
ambiguity domain which yields sparse and cross-terms free
TFSR. The Gini index [45]-[47] is used as the sparsity measure
and controls the extent of the low pass kernel in the ambiguity
domain. In the problem formulation, the kernel and ambiguity
function appear as one term and, as such, the optimization is
performed on the kerneled ambiguity function.

The paper is organized as follows. In Section II, we provide
a brief review of traditional QTFDs. The effect of compressed
data on the ambiguity function is analyzed in Section III.
The proposed kernel design is introduced in Section IV, while
Section V contains simulations results. Conclusion is given in
Section VI.

II. TRADITIONAL TF KERNELS

The IAF can be used to define the class of RIDs. For a
complex-valued signal sampled with period T , i.e., x(n) =
x(nT ), the IAF is formulated over time n and lag m as,

Rxx(n,m) = x(n+m)x∗(n−m). (2)

The discrete Fourier transform (DFT) of the IAF over time
yields the ambiguity function (AF) defined over Doppler
frequency p and lag m,

A(p,m) =

N/2−1∑
n=−N/2

Rxx(n,m)e−2πnp/N , (3)
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where  =
√
−1 and N is the signal length. In the ambiguity

domain, the desirable signal auto-terms are located at and
around the origin, whereas cross-terms reside at distant posi-
tions. This property motivated the introduction of various TF
kernels which possess low-pass filtering characteristics [10].
After applying a kernel C(p,m), the resulting RID is obtained
through the 2D Fourier transform,

RID(n, k) =
∑
p

∑
m

A(p,m)C(p,m)e−2πnp/Ne−2πmk/N .

(4)
QTFDs should assume certain properties in order to be valid

distributions of signal energy in the TF plane. In the case of
RIDs, these properties are defined by the employed kernel.
Some of desirable kernel properties are:
• Realness,

C(p,m) = C∗(−p,−m). (5)

• Signal instantaneous power,

C(p, 0) = 1. (6)

• Power density spectrum,

C(0,m) = 1. (7)

The last two properties are also known as marginal proper-
ties. Existing time-frequency kernels can be divided into two
groups: signal-independent and signal-dependent. Most of the
signal-independent kernels satisfy aforementioned properties.
Fig. 2 depicts two commonly used signal-independent kernels.
The major drawback of the signal-independent kernels is that
they have fixed shapes in the ambiguity domain. This property
renders them inflexible in accommodating a large class of
signals and prevent them from achieving optimum tradeoff be-
tween auto-term preservation and cross-term suppression, even
under the inclusion of an adjustable parameter σ. Additionally,
and more importantly, these kernels are not designed to handle
data with missing samples. Signal-dependent kernel design,
on the other hand, is formulated as an optimization problem
under two separate constraints [48]. One constraint forces the
kernel to have low-pass filtering characteristics, whereas the
other constraint specifies the volume under the optimal kernel.
Such optimization can be performed either over the entire
data record or windowed data. With no missing samples, the
adaptive kernel generally outperforms the signal-independent
kernels. However, under random data observations, existing
signal-dependent kernels may be misguided when finding
the optimal solution. Missing samples cause artifacts in the
ambiguity domain [28] which can be mistakenly interpreted
as signal regions of interest. Capturing these regions results in
highly cluttered time-frequency distributions.

III. THE EFFECT OF MISSING SAMPLES ON THE
AMBIGUITY DOMAIN

In this section, we analyze the effect of missing samples on
the ambiguity function. We show that preserving the realness
and marginal properties does not lend itself to desirable TFSR
when dealing with incomplete data.

Fig. 2. Some of commonly used signal-independent time-frequency kernels:

(a) Choi-Williams C(p,m) = e
−p2m2

σ2 ; (b) Born-Jordan C(p,m) =
sin(pm/σ)
pm/σ

.

Signal with missing samples can be represented as a mod-
ulated version of the original signal s(n),

x(n) = s(n)ϕp(n), (8)

where ϕp(n) is the sampling pattern in time and can be
represented as the sum of impulses at random positions np,
i.e., ϕp(n) = Σnpδ(n − np). These impulses determine the
positions of available samples. The corresponding pattern of
missing samples at positions nm is given by,∑

nm

δ(n− nm) = 1− ϕp(n). (9)

These formulations show that missing samples could be
viewed as a special type of impulsive noise. The ambiguity
function of x(n) becomes,

Ax(p,m) =
N/2−1∑
n=−N/2

Rss(n,m)[1−
∑
nm

δ(n− nm +m)]

[1−
∑
nm

δ(n− nm −m)]e−2πnp/N , (10)

where Rss(n,m) denotes the IAF of the original signal s(n).
The ambiguity function of the compressed observations can be
represented as the sum of the ambiguity function of the full
data As(p,m) and the artifacts caused by the missing samples
∆(p,m),

Ax(p,m) = As(p,m) + ∆(p,m). (11)

Define the ideal kernel, Cx(p,m), for the missing sample case
which satisfies

Ax(p,m)Cx(p,m) = As(p,m)Cs(p,m), (12)

where Cs(p,m) is a desirable RID kernel which, when applied
to complete data As(p,m), properly attenuates the cross-terms
and captures the auto-terms. Accordingly from (11) and (12),
we obtain

Cx(p,m) =
As(p,m)Cs(p,m)

As(p,m) + ∆(p,m)
=

Cs(p,m)

1 + ∆(p,m)
As(p,m)

. (13)

The above equation implies that the ideal kernel is signal
dependent and it has complex values which, therefore, violate
the realness property of traditionally used kernels.
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The artifacts in (11) resemble noise in the sense that they
are spread over the ambiguity domain. However, they follow
a certain pattern and can be represented in the form of three
terms,

∆(p,m) = V1(p,m) + V2(p,m) + V3(p,m), (14)

where

V1(p,m) =

N/2−1∑
n=−N/2

Rss(n,m)
∑
nm

δ(n−nm+m)e−2πnp/N ;

(15)

V2(p,m) =

N/2−1∑
n=−N/2

Rss(n,m)
∑
nm

δ(n−nm−m)e−2πnp/N ;

(16)

V3(p,m) =
N/2−1∑
n=−N/2

Rss(n,m)
∑
nm

δ(n− nm +m)∑
nm

δ(n− nm −m)e−2πnp/N . (17)

By further developing each of the three artifact terms, we
obtain the following expressions,

V1(p,m) = −
∑
nm

s(nm)s∗(nm − 2m)e−2πp(nm−m)/N ;

(18)

V2(p,m) = −
∑
nm

s(nm + 2m)s∗(nm)e−2πp(nm+m)/N ;

(19)

V3(p,m)=
∑
nm

δ(−2m)s(nm)s∗(nm − 2m)e−2πp(nm−m)/N

+
N/2−1∑
n=−N/2

∑
nm

[δ(n− nm +m)s(n+m)∑
nl 6=nm

δ(n− nl −m)s∗(n−m)]e−2πnp/N .

(20)

Besides the first two terms, which reside at ∀m, a com-
ponent of the third term is always located at m = 0, i.e.,
along the Doppler frequency axis. This discourages the use
of traditional RID kernels which, due to marginal properties,
capture all values along the m = 0. Another conclusion which
can be drawn from (18)-(20) is that the noise pattern in the
ambiguity domain indeed depends on the values of the missing
samples and their positions. Accordingly, it is expected that
some parts of the ambiguity function will be more affected
than others.

In what follows, we analyze the artifacts in the ambiguity
domain using an approach based on the spectral density. We
observe the spectral density of the IAF for fixed τ , i.e.,
Φxx(ω). The bandwidth of the full data unaltered IAF is W
over which the spectral density is assumed constant. Using the
result given in the Appendix, we obtain

Φxx(ω) = W
1− β2

T
β2 +

2πβ4

T

∑
rect(

1

W
(ω − 2πn

T
)).

(21)
T is the sampling period, whereas β and β2 are probabilities
that a sample is present in the time and time-lag domain,

Fig. 3. Value of ρ over different percentage of present samples in time β.
Point depicts the case when the support in the ambiguity domain is 4 times
smaller than in the frequency domain, signal to noise ratio is higher in the
ambiguity domain for β ≥ 0.4.

respectively. The first term in the above equation corresponds
to the noise introduced by the missing samples, whereas
the second term corresponds to the original unaltered IAF
spectrum. As expected, more missing samples (smaller β)
introduce not only higher noise level, but also higher distortion
of signal auto-terms. Another important observation is that the
noise level also depends on the support of the original IAF.
We can define the signal-to-noise ratio ρA as,

ρA =
2πβ2

W (1− β2)
, (22)

and use it to compare the effect of missing samples on the
time and time-lag domains. For the former, if we assume that
the signal occupies a frequency band of width Z, then the
signal-to-noise ratio becomes ρF = 2πβ

Z(1−β) . Comparing these
two ratios,

ρ =
ρA
ρF

=
Z

W

β

1 + β
. (23)

This relationship highlights the advantages of performing
reconstruction in the ambiguity domain rather than in the
frequency domain. Namely, most of the non-stationary signals
are wide-band and occupy the entire frequency domain, while
in the ambiguity domain, desired auto-terms may represent
a fraction of the available bandwidth for given τ . Thus, even
though there are more missing samples in the time-lag domain,
(1−β2) compared to (1−β), the relative signal small support in
the ambiguity domain contributes to small noise level, making
it easier to detect signal components in the ambiguity domain
compared to the frequency domain. Fig. 3 shows how the value
of ρ changes over different β and Z/W . It can be noticed that
larger ratios of supports Z/W leads to more suitable detection
in the ambiguity domain.

Our analysis in this section revealed the behaviour of ambi-
guity function in the presence of missing samples and showed
that traditional RID kernels are unsuitable for randomly under-
sampled signals. This motivates the need for a new approach
for kernel design.
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Fig. 4. Illustration of matrix Q for a simple circular shaped kernel C observed
at a certain lag m.

IV. TIME-FREQUENCY KERNEL DESIGN IN THE CASE OF
COMPRESSED DATA

In this section, we formulate the proposed RISD kernel
design. We define the design problem as,

maximize
AC,C(σ)

GI[((AC)2DFT )vec]

subject to ‖ rxx
m −Q(C)aC

m ‖2≤ ε,m = 1, 2, ...N

C is a low-pass kernel (24)

In (24), we seek the kernel C and the kerneled ambiguity
function AC, dependent on parameter σ, which maximize the
Gini index (GI) of TFSR. The latter is obtained as the 2D
Fourier transform of AC. Matrix Q, which is a partial discrete
Fourier transform (DFT) matrix, relates the measurements in
the time-lag domain to the kerneled ambiguity function.

In this respect, the proposed designed kernels identifies a
new subclass of the general Cohen’s class of TFDs. The Gini
index is known as a sparsity measure [45], [46], which for
sorted real-valued signal vector x, x(1) ≤ ... ≤ x(N) is
defined as,

GI(x) = 1− 2

N∑
n=1

x(n)

‖x‖1
N − n+ 0.5

N
. (25)

Signals with minimum number of non-zero values have max-
imum Gini index. It should be noted that in order to compute
the Gini index, vectorized form of TFSR is used.

The first constraint in (24) is responsible for data fitting as it
minimizes the `2 norm of residuals. Residuals in the constraint
are expressed using the measurements in the time-lag domain
for each lag m, rxx

m. The kernel and its extent determine the
columns of matrix Q. By solving this `2 problem, we obtain
the kerneled ambiguity function for each m, aC

m. Setting
the kernel to have low-pass filtering characteristics discards
high frequency columns in the partial DFT matrix. This is
illustrated in Fig. 4 which shows how the matrix Q is formed.
The second constraint in (24) is necessary for ensuring that the
auto-terms are captured without the inclusion of cross-terms.
Without the general low pass filter characteristics of the kernel,
cross-terms will be equally welcomed, as sparsity in the TF
domain does not discriminate between auto and cross-terms.
We employ a kernel function with circular shape of radius σ,
even though any low-pass filter shape can be applied. For the
sake of simplicity, the employed kernel has binary values, i.e.,
1s and 0s. However, non-binary kernels can also be used such
as the radial Gaussian kernel or the sinc kernel [10].

Since we do not know what the optimum C or AC is,
the optimization in (24) can be a computationally demanding

process when compared to some of the well-known one-
variable optimization processes, e.g., basis pursuit. However,
by using knowledge about the sparsity and concentration
behavior in the TF plane, we propose an efficient algorithm
for solving (24). We first analyze the dependence of RID
on parameter σ. We write the ambiguity function in terms
of auto-terms and cross-terms. For a signal composed of L

components, s(n) =
L∑
l=1

sl(n), the ambiguity function can be

written as,

A(p,m) =

L∑
l=1

N/2−1∑
n=−N/2

sl(n+m)s∗l (n−m)e−2πpn/N

+

L∑
l=1

L∑
k=1,l 6=k

N/2−1∑
n=−N/2

sl(n+m)s∗k(n−m)e−2πpn/N . (26)

The first term corresponds to auto-terms, whereas the second
term corresponds to cross-terms. The 2D Fourier transform of
the signal auto-terms provides the Wigner distribution without
the cross-terms, i.e., WDAT, while the TF signature of cross-
terms can be denoted as WDCT. The optimal σopt can be
defined as the one which filters out the auto-terms while
suppressing the cross-terms. We can observe three cases:

1) σ � σopt
In this case, the kernel does not include cross-terms.
However, part of the auto-terms may also be excluded.
The resulting TF distribution is,

RID(n, k) =
∑
u

∑
r

WDAT (u, r)C̃(n− u, k − r),

(27)
where C̃(n − u, k − r) represents the kernel in the TF
domain. The narrowband property of C(p,m) causes
C̃(n, k) to be broad, leading to poor localization of
the RID(n, k). As such, the TFSR in (27) is neither
concentrated nor sparse.

2) σopt − ε < σ < σopt + ε
We consider this to be the optimal range of σ for
capturing the auto-terms and suppressing the cross-
terms. That is,

RID(n, k) = WDAT (n, k). (28)

The corresponding RID is well-concentrated and sparse.
3) σ � σopt

Increasing the value of σ will improve the localization
property of kernel in the TF domain, but will also
include cross-terms. The higher value of σ implies more
cross-terms in the TF plane. Thus, although RID is well-
concentrated, it has more components and, therefore, is
less sparse than in the previous case. In this case, the
RID can be represented as,

RID(n, k) = WDAT (n, k)+∑
u

∑
r

WDCT (u, r)C̃(n− u, k − r).

(29)
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A. Algorithm

Based on the above trade-off cases, we propose the follow-
ing algorithm for solving (24).

1: procedure KERNEL DESIGN(AC,C)
2: initialize σ = σ0

3: form a circular shaped kernel C of radius σ
4: for each lag m do
5: find the number Km and the position set Ωm of

non-zero kernel values
6: Based on the set Ωm form matrix Q(C)
7: solve ‖ rxx

m −Q(C)aC
m ‖2 using Km

8: end for
9: if GI[((AC)2DFT )vec]

(i+1) >
GI[((AC)2DFT )vec]

(i) then
10: increase σ and go to step 3
11: otherwise stop and return 2DFT of AC

i

12: end if
13: end procedure

In the initial step, we set a value for kernel parameter σ.
We can set this value as small as possible. This parameter
defines the frequency range over which the auto-terms will be
reconstructed in the first iteration, i = 1. After forming the
kernel, we solve for the ambiguity function for each lag in the
time-lag domain. For a lag m, we determine the set Ωm con-
sisting of Doppler frequencies which are non-zero in the kernel
C. Based on this set, matrix Q(C) can be formulated and
used to solve the under-determined problem which minimizes
the residuals. It should be noted that rxx

m contains the data
measurements from the time-lag domain, including the cross-
terms. Since the number of non-zero Doppler frequencies Km

is set by the kernel, and these components appear within a
sub-band, greedy algorithms like Block Orthogonal matching
pursuit (BOMP) [49] can be used, and ε in (24) does not have
to be specified. After obtaining the low-pass filtered ambiguity
function AC, the 2D Fourier transform is computed and TFSR
is obtained. The Gini index of the result is measured which
determines the stopping criterion of the algorithm. When
sparsity of the TFSR in i+ 1 iteration is smaller than that in
the ith iteration, procedure stops and the result from previous
iteration is used as the final TFSR.

B. Choosing the sparsity measure

In what follows, we elaborate on the choice for the sparsity
measure. Several measures of sparsity have appeared in the
literature [47]. Among those measures, some deal with concen-
tration property. Concentration measures have been success-
fully applied for determining the quality of TFSR [50]-[52].
Since concentration coincides with sparsity, multiple options
are available for measuring the concentration/sparsity in the
TF plane. However, each measure has different attributes. In
[47], the authors proposed a set of intuitive attributes which
each sparsity measure should have. They examined several
sparsity measures, and proved that the Gini index and pq-mean
satisfy all attributes, making them better choice compared to

commonly used `1 norm. The pq-mean measure of real-valued
vector x is defined as,

pq(x) = −
( 1
N

N∑
k=1

xp(k))1/p

( 1
N

N∑
k=1

xq(k))1/q

. (30)

When p = 4 and q = 2, and the forth power is computed,
one of well-known TFSR concentration measures is obtained
[51]. In statistics, this measure is better known as kurtosis.
Even though this measure satisfies few desirable properties
for measuring sparsity, it has one major shortcoming. For the
case when there are multiple components, the above measure
will not favor the distribution where each component is highly
localized. Rather, it favors the case where one component is
much more concentrated than others. In other words, TFSR
with cross-terms is preferred over the TFSR which contains
only auto-terms. Mixed norm represents an alternative mea-
sure, and for matrix X is defined as [53],

`21(X) = (
∑
k

(
∑
j

|X(k, j)|2)1/2). (31)

This norm favors the group sparsity which is an intuitive
manner for measuring the concentration of TFSR since TF
signature for majority of signals is clustered around the in-
stantaneous frequency. However, this measure is based on the
use of `1 norm which is shown to be inferior when compared
to the Gini index.

It is important to note that none of these sparsity measures
are specifically designed to distinguish between the auto and
the cross-terms. In our recent work [54], we compared several
sparsity measures in order to determine which measure is
the most efficient in the TF domain. Besides the previously
described measures, the `0 norm and Renyi entropy were also
included in the comparison. Results showed that, among the
employed measures, the Gini index provided the TFSR with
the most suppressed cross-terms for both noiseless and noisy
data. Another significant result in [54] is that the most efficient
solution for the noiseless full data was obtained with the `0
norm. This supports the argument that the sparsity, i.e., the
number of occupied frequency bins, is significantly altered in
the presence of cross-terms. One important property of the
Gini index, which could explain its success in the underlying
problem, is that the index is a normalized measure with values
within the range [0,1] for any given signal vector. This prop-
erty makes the Gini index a natural tool for measuring sparsity
of different representations of the same signal. This conforms
well with our case where changing the kernel parameters
provides a different representation of the same signal.

Figs. 5 and 7 show TFSRs when three different values of
σ are used. Figs. 5, 6 correspond to the signal composed of
two 3-degree polynomial phase components, whereas Figs. 7,
8 show results for two crossing chirps. For each σ, the sparsity
measure is computed. Based on the results in Figs. 6 and 8, we
can notice that, in the two examples, all measures successfully
cast first value of σ as the least sparse. The results of measures
for the second and the third case are close in values, and they
demonstrate the difficulty which arises when distinguishing
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the auto and cross-terms. Among the employed measures, the
Gini index successfully determined the case when auto-terms
are captured and cross-terms are not included.

V. SIMULATIONS

In order to evaluate the performance of the proposed RISD
kernel design, various signal types are observed. Namely, we
consider randomly under-sampled polynomial phase signals.
It is shown that the TFSR based on the multi-task kernel
design provides improved TF signature representation when
compared to the traditional QTFDs. Additionally, we include
results of other sparse reconstruction approaches for compari-
son. In all plots, the frequency axis is normalized with respect
to the sampling frequency.

Example 1: In this example, we consider a signal consisting
of two crossing chirps:

x(n) = e16πn2

+ e−16πn2

.

The above signal is sampled according to Nyquist theorem
followed by random removal of 50% of the samples. Fig. 9
shows the Choi-Williams (CW) distribution [55] and Adaptive
optimal kernel (AOK) distribution [48], both in the case of full
and incomplete data. Compared with the distributions using
full data (Fig. 9 (a,b)), missing samples introduce noise which
clutters both time-frequency distributions, as evident in Fig.
9 (c,d). Also, we can notice vertical lines in the cluttered
CW distribution. These lines are impulses which, due to the
marginal properties of the CW kernel, are captured along the
m = 0 axis in the ambiguity domain, as discussed in Section
III. In Fig. 10(a), the TFSR based on the proposed kernel
design is shown. Even though 50% of samples are missing,
the TF signature clearly depicts the two components.

For comparison, the results based on other reconstruction
techniques are also shown (Fig. 10 (b,c)). The TF plot in
Fig. 10(b) is obtained using the approach in [24]. Namely,
first we compute ambiguity function based on the IAF and
then, using a rectangular mask, we obtain the compressed
measurements which are used for the reconstruction of the
TFSR. We choose an appropriate mask for this signal in order
to remove cross-terms. The signal auto-terms are distorted due
to the induced noise effect of the missing samples, rendering
the reconstruction process unreliable. In Fig. 10(b), the TFSR
depicts two distorted chirps. Another way of providing the
TF signature is through local reconstruction in which we
partition the data into overlapping segments and carry signal
reconstruction over each segment separately [32]. The OMP
algorithm is used for the reconstruction [56]. The result of this
approach, shown in Fig. 10(c), depicts two clear components,
but the resolution is poor.

Example 2: In the second example, we observe the multi-
component signal,

x(n) = e2.4π(n−1)3+16n + e2.4π(n−1)3−48n.

The phase of both components is a third degree polynomial.
As in the previous example, the signal is undersampled, 70%
of samples are randomly missing. Fig. 11 shows the effect

of missing samples on the TFSRs. In this example, the B-
distribution kernel [57] is used as an representative of signal-
independent kernels which do not satisfy marginal properties.
Even though vertical lines are absent, some parts of the signal
TF signature become missing, as evident in Fig. 11(d). Re-
construction results are depicted in Fig. 12. The reconstruction
using measurements in the ambiguity domain (Fig. 12(b)) fails
to capture the signal TF signature when a large portion of data
is missing. Local reconstruction, shown in Fig. 12(c), contains
gaps in the TF signature. These gaps correspond to time
instants which have large number of missing samples within a
window, as evident in Fig. 12(d). Additionally, even over the
regions of TF plane where we can recognize two components,
the TFSR, like spectrogram, suffers from poor resolution. The
proposed kernel design provides the TF signature without
gaps or vertical lines and with better resolution than local
reconstruction (Fig. 12(a)).

Example 3: We observe a similar signal as in the previous
example, but with three gaps, i.e., the missing samples occur
in groups. The gaps are represented by red asterisk in Fig. 13
(d). The starting and ending points of the gaps are as follows:
(36, 40), (70, 80) and (106, 110). Reconstruction based on the
proposed approach is given in Fig. 13 (a) while that associated
with the chirp dictionary [37], [58] is depicted in Fig. 13
(b). In Fig. 13 (c), we show the reconstruction based on the
interpolation of the IMFs. First, the signal is subdivided into
four contiguous portions. IMFs, which are computed for each
of these four portions, are interpolated in order to mitigate the
effect of the gaps. The EMD gap-filling concept was presented
in [41] where a sophisticated technique to interpolate gaps in
the IMFs is used. However, this approach requires manual
setting of the parameters and it is based on the appearance of
signal gaps. Here, we use simple interpolation based on the
spline functions [59]. The signal is reconstructed as the sum of
the interpolated IMFs and the spectrogram is computed (Fig.
13 (c)). We can notice that both the proposed approach and
IMF based approach have significant clutter around the second
gap, which is the largest among the three gaps. However,
the clutter is more suppressed in the proposed approach. The
method based on the chirp dictionary successfully fills in the
gaps, but also shows clear deviations which occur when the
employed dictionary does not appropriately represent the local
signal behavior.

Example 4: In this example, computational EM modeling
data corresponding to a human walking straight toward a
pulse-Doppler radar (which means 0 azimuth) is observed.
Vertical polarization is considered. The radar operates around
1 GHz, with 80 MHz bandwidth. It is assumed that a walking
cycle takes 2 seconds. The EM solver, Finite Difference Time
Domain (FDTD) is used. Analysis of human gait signals
plays an important role in various military applications and
TFSRs are commonly used to represent these signals [60].
Fig. 14 depicts AOK distribution computed using full and
compressed data. Fig. 14(b) clearly shows the negative impact
of missing samples on the TFSR. Reconstruction results are
shown in Fig. 15. The proposed kernel design (Fig. 15(a))
successfully depicts TF signature which is not the case with
local reconstruction that suffers from poor resolution (Fig.
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(a) (b) (c)

Fig. 5. TFSRs of a signal composed of two 3-degree polynomial phase. The corresponding kernel parameter is (a) σ = 0.01N , (b) σ = 0.1N , (c) σ = 0.2N .
N is signal length, N = 128.

Fig. 6. Different sparsity measures applied to the TFSRs in Fig. 5. Radius indices correspond to the cases Fig. 5 (a), (b) and (c), respectively. (a) Gini index,
(b) Kurtosis, (c) `21 norm, (d) `1 norm. Red circle denotes the point where sparsest representation occurs according to each measure.

(a) (b) (c)

Fig. 7. TFSRs of two crossing chirps. The corresponding kernel parameter is (a) σ = 0.01N , (b) σ = 0.1N , (c) σ = 0.2N . N is signal length, N = 128.

15(b)).

VI. CONCLUSION

In this paper, we introduced reduced interference sparse
TF distributions with the aim of providing highly localizable
TF signature for incomplete or compressed data. The TF
kernel design was defined as the optimization problem over

two variables. In order to effectively solve this problem, we
proposed an algorithm which takes into account the specific
nature of the kernel spread and the auto- and cross-term
distributions in the ambiguity domain. The algorithm iterates
between the TF domain and ambiguity domain and measures
sparsity using the Gini’s index. We examined the properties
of desired kernels under missing samples and demonstrated
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Fig. 8. Different sparsity measures applied to the TFSRs in Fig. 7. Radius indices correspond to the cases Fig. 7 (a), (b) and (c), respectively. (a) Gini index,
(b) Kurtosis, (c) `21 norm, (d) `1 norm. Red circle denotes the point where sparsest representation occurs according to each measure.

Fig. 9. TFSRs of signal consisting of two chirps: (a) AOK distribution of full data, (b) CW distribution of full data, (c) AOK distribution of compressed
data, (d) CW distribution of compressed data.

Fig. 10. TFSRs obtained using different reconstruction approaches: (a) Proposed kernel design, (b) Reconstruction of the TFSR using ambiguity domain, (c)
Local reconstruction.

that they cannot be satisfied by the traditional TF kernels in
Cohen’s class. Simulation results illustrated the benefits of
using the proposed approach, even in the case when a large
part of data is missing.

APPENDIX

SPECTRAL DENSITY OF THE IAF

Define the signal with missing samples as x(t) = s(t)ϕp(t),
where both the complete signal s(t) and the sampling pattern
ϕp(t) are continuous. Even though this assumption is not
feasible in practice, it enables relatively simple derivations for

impulse processes. We assume that the two processes s(t) and
ϕp(t) are independent which, considering the randomness of
missing samples, is a valid assumption. The IAF of randomly
sampled signal is,

Rxx(t, τ) = s(t+ τ)ϕp(t+ τ)s∗(t− τ)ϕp(t− τ). (32)

If we observe IAF for fixed τ , then we can define spectral
density of Rxx,τ (t) and examine the behaviour of IAF in the
ambiguity domain,

Φxx(ω) = Φss(ω) ∗ Φϕ(ω), (33)
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Fig. 11. TFSRs of signal consisting of two 3-degree polynomial components: (a) AOK distribution of full data, (b) B-distribution of full data, (c) AOK
distribution of compressed data, (d) B-distribution of compressed data.

Fig. 12. TFSRs obtained using different reconstruction approaches: (a) Proposed kernel design, (b) Reconstruction of the TFSR using ambiguity domain, (c)
Local reconstruction (d) Real part of signal, missing samples are denoted by red asterisk.

Fig. 13. TFSRs obtained using different reconstruction approaches: (a) Proposed kernel design, (b) Reconstruction of the TFSR using chirp dictionary, (c)
Reconstruction based on interpolating the IMFs, (d) Real part of signal, missing samples are denoted by red asterisk.

where ∗ denotes convolution operation, Φss(ω) is the spectral
density of the function s(t+τ)s∗(t−τ), while Φϕ(ω) denotes
spectral density of the corresponding sampling pattern function
ϕp(t + τ)ϕp(t − τ). Using a similar approach as in [61],
[62], which operates on the compressed observations in the
time domain and derives the spectral density in the frequency
domain, the spectral density of Rxx,τ (t) becomes,

Φxx(ω) = Φss(ω)∗1− β2

T
β2+Φss(ω)∗2πβ4

T

∑
δ(ω−2πn

T
),

(34)
where T is the sampling period, β2 is the probability that a
sample is non-missing in the time-lag domain and β is the

probability that a sample is present in the time domain.
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