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Abstract—In this paper, we propose an approach that uses
deep learning to detect a human fall. The proposed approach
automatically captures the intricate properties of the radar
returns. In order to minimize false alarms, we fuse information
from both the time-frequency and range domains. Experimental
data is used to demonstrate the superiority of the deep learning
based approach in comparison with the principal component
analysis method and those methods incorporating predefined
physically interpreted features.
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I. INTRODUCTION

Falls are a major public health problem worldwide. Ac-
cording to the Centers for Disease Control and Prevention,
falls were the leading cause of unintentional injury death
for people aged 65 and older in 2013 [1]. World Health
Organization (WHO) defines fall as ”an event which results
in a person coming to rest inadvertently on the ground or
other lower level”’[2]. Falls can cause fatal or non-fatal injuries.
WHO estimates that each year around 420,000 falls have fatal
outcome. This number makes fall the second leading cause of
unintentional injury death [1]-[4].

Even though various fall detectors have been introduced in
the literature, and some are available on the market, none has
been tagged as a superior approach [5]-[20]. It is estimated
that almost half of elderly who experience a fall do not report
it to their health care provider [1]. This fact promotes the
use of non-wearable devices that can provide remote monitor-
ing. Radar has been proven successful in monitoring human
motions and, unlike camera and infrared based solutions, its
function is not impeded by lighting or temperature conditions
[21]-[29].

Radar signal returns, corresponding to human gross-motor
activities, are nonstationary in nature. For these signals, the
time-frequency (TF) domain is typically used, attributing to
its ability to reveal velocities, accelerations, and higher-order
Doppler terms of limbs and various human body parts in mo-
tion. The range is another important information which can be
obtained from multi-frequency or wideband radar returns [30],
[31]. It may be used to reveal human location vs. time, and with
fine range resolution, it can tag the body main scatterers to their
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respective Doppler signatures. In general, velocity and range
are considered fundamental to human motion classification.

Traditional radar approaches for motion classification and
detection predicate on three steps: data processing, feature
extraction and classification. Extracting a predefined feature set
in single and joint-variable domains has been a common prac-
tice in feature extractions for motion classification [32]-[35].
However, deciding on relevant features can be a tedious task.
Additionally, these features exhibit large variations, depending
on the individuals being monitored in terms of size, habits,
and health conditions. One way to overcome these issues
is to devise an automated approach that learns and captures
the intricate properties of the human motion signatures in
different domains [36], [37]. This can be accomplished via
deep learning which provides a different paradigm to motion
classification and can work independently of or in tandem
with other feature selection methods. Learning of the most
prominent characteristics is typically done over several layers.

In this paper, we propose a deep learning based fall detection
using FMCW radars. A FMCW radar, also called a range-
Doppler radar, allows us to analyze target returns in multiple
joint-variable domains and monitor both the Doppler shift and
the range. The work in [36] reported initial results when deep
learning is applied only in the time-frequency domain. In this
work, we focus on two domains for analyzing radar returns,
namely, the time-frequency domain and the range domain,
and propose different combination methods for integrating
the information present in these domains. The deep learning
scheme includes two stacked sparse autoencoders and a lo-
gistic regression classifier. Experimental results demonstrate
that deep learning improves fall detection over traditional
approaches, and that incorporating the range along with the
Doppler signatures, provided by range-Doppler radars, yields
higher success classification rates than the case when using a
single domain.

The paper is organized as follows. Section II briefly de-
scribes the radar system and the domains used to represent
the input data. Additionally, a general scheme for fall de-
tection is described. The deep learning based approach for
fall detection is discussed in Section III. Section IV presents
different combinations for incorporating the range and TF
domain information. Experimental results are shown in Section
V, while the conclusion is given in Section VI.

II. DATA PREPARATION

In this section we provide background on the radar system
and describe the domains that are employed. Traditional radar
approaches for motion detection are also discussed.
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A. Radar system

CW radar has been a radar of choice for many years when
observing human motions. It represents one of the simplest
hardware implementations in which a fixed frequency signal
is transmitted and reflections of that signal from objects in
the field of view are received and mixed with the transmitted
carrier. A CW radar detects the radial velocity of a moving
object, which alters the frequency of signal it reflects, known as
the Doppler shift. Additional frequency modulations occur due
to the vibrations or rotations of target parts. These modulations
generate sidebands around the main Doppler shift and they
represent the micro-Doppler effect. Objects moving closer to
or away from a CW radar cause the reflected signals to move
up and down in frequency, respectively, compared to the signal
transmitted by the radar. The Doppler component could be
only a few Hz shift on top of a multi-GHz carrier signal.
The Doppler shifts carry information about the velocity of the
human torso, limbs and other parts of human body.

Unmodulated CW radar can monitor velocity, but cannot
measure distance of the target. Wideband radar, including
frequency modulated CW (FMCW), can overcome this short-
coming.

B. Data representation domains

Since the human body in motion exhibits different veloc-
ities that change over time, it is necessary to represent the
data in such a way that the time-varying frequency char-
acteristics of these radar returns can be clearly manifested.
Due to the relation between velocity and Doppler frequency,
the TF domain has been traditionally used to represent the
backscattering signals from human subjects [38]-[41]. One
of the most commonly used TF signal representation is the
spectrogram which depicts the distribution of the signal power
over time and frequency. The spectrogram of a discrete signal
s(n),n =0..N — 1 is defined as:

N-1
SPEC(n,k) =| Z w(m)s(n —m)e I2mkm/N12 ()
m=0

where w(m) is a window function. High resolution quadratic
time-frequency distributions (TFDS) can be used in lieu of
spectrograms and can improve performance at the cost of
increased complexity [42].

Target range and target motion translation extent are also
considered useful parameters for motion classifications [43].
The target joint slow-time range representation is referred to
as the range map. Figs. 1 and 2 show the spectrograms and
range maps of a fall and three most common motions: sitting,
bending and walking. These motions were also chosen because
they are a common cause of fall false alarms. It is evident
that each motion professes different levels of distinction in
the observed domains. That is, the difference between two
motions can be significant in one representation domain and
insignificant in another. The following remarks are in order:

e Time-frequency domain: Walking is most distinguish-

able in the TF domain and does not appear similar to any
of the other motions. On the other hand, other motions,

i.e., falling, sitting and bending can be confused due to
the resemblance of their respective TF signatures.

e Range map: Sitting and bending range maps bear little
similarity to those of falling and walking. However,
distinguishing sitting from bending or walking from
falling can be a difficult task for a classifier if only the
range maps are employed.

C. General scheme for fall detection

Fig. 3 depicts a general scheme for fall detection. The first
step is to preprocess the data. Typical preprocessing techniques
are denoising and DC removal. Fig. 4 shows the spectrogram
of a human walk before and after preprocessing. The latter is
used for feature extraction, which can be divided into three
categories:

1) Manual feature extraction: For fall detection based on
spectrograms, many predefined features with clear physical
motion interpretations have been proposed. We recognize three
candidate features: extreme frequency magnitude, extreme
frequency ratio, and time-span of the event. These features
have been shown to provide a good description of a fall [27].
The extreme frequency magnitude is defined as:

F= max(f+ max» _f— min)a (2)

where fi max and f_ i, respectively, denote the maximum
frequency in the positive frequency range and the minimum
frequency in the negative frequency range. The extreme fre-
quency ratio is defined as

R:max(|f+max/f—min|v|f—min/f+max|)~ (3)

Selecting predefined features is a cumbersome process and
requires significant tuning of parameters. In contrast, principal
component analysis (PCA) and deep learning build on features
that are not encapsulated in few parameters, and as such, are
considered alternative viable motion classification approaches.

2) Principal component analysis (PCA): The PCA-based
motion classification comprises the following steps [44]. First,
each preprocessed gray-scale spectrogram image in the training
set is vectorized and stored as a column of the ‘training
matrix’. Next, the average of the vectorized training images
is subtracted from each column of the training matrix. The
resulting training matrix is used for generating the eigenvalues
and the respective eigenvectors (eigen images). The training
set is projected onto the space spanned by the selected eigen
images corresponding to the dominant eigenvalues. These pro-
jections are then used in the classification process. When the
test data becomes available, it is projected onto the eigen space
and the resulting projection is compared with all projections
obtained for the training images. The minimum Euclidean
distance determines the class with the closest match to the
observed test motion.

3) Deep learning: Deep learning is a non-linear general-
ization of the PCA [45] and is the focus of this paper. Its
application to fall detection is described in the next section.

Once the features are extracted, they are fed to the classifier.
It should be noted that the choice of features has greater impact
on the classification results than the choice of a classifier [46].
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Fig. 1.

III. DEEP LEARNING BASED FALL DETECTION USING
RANGE-DOPPLER RADAR

The deep learning architecture for fall detection is shown in
Fig. 5. In the general scheme, this method follows three steps,
namely, preprocessing, feature extraction and classification.
Data representation can take the form of spectrogram or range
map of the observed motion. The preprocessed representation
is used as input to stacked auto-encoders that perform feature
extraction.

A. Stacked autoencoders

An autoencoder is defined as a neural network which learns
nonlinear approximation of its input [45]. In other words, it
attempts to reconstruct its input at its output. The learning
is achieved via a single hidden layer that may have different
dimensionality than the input and output layers. Typically, the
hidden layer has fewer units than the input layer. In this case,
the network tries to learn a compressed version of the input
data, i.e., a sparse representation.

Fig. 6 depicts a sparse autoencoder with N and K units in
the input and hidden layer, respectively. Connections between
layers are established by the weight matrix W and bias vectors
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Spectrograms of four human motions: (a) Fall, (b) Sit, (c) Bend, (d) Walk.

b' and b2, which are typically represented by units with the
”+17 label.

Each hidden unit applies a nonlinear function f{e} to the
weighted and biased input data z, i.e., the output of hidden
layer unit is a; = f(z;) where z; is given by

N
2 = Z Wiwjibj + b;—l,

Jj=1

i=1..K. )

The sigmoid function is used as the nonlinear function:

1

= — 5
1+exp* )

f(z) =a(2)

The values of output layer units are obtained in a similar way,
by applying the nonlinear function f{e} to weighed and biased
hidden layer units a;.

The weights and biases of neurons are learned in such
manner which minimizes the reconstruction error and promotes
sparsity. Suppose that we are given a set of M unlabeled
training samples {z(1), z(?) . 2}, where 2(™) € RN. The
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Fig. 2. Range maps of four human motions: (a) Fall, (b) Sit, (c) Bend, (d) Walk.
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Fig. 3. General scheme for fall detection.

cost function for sparse autoencoder can be formulated as :

M N K K
JW,0) =" E@™)+XY "N (W,0)%+8Y " Drr(p. ;).
m=1 j=1

i=1 j=1

(6)

where E(x(™)) is the reconstruction error for single example,

i.e., the error between the input data and the autoencoder
output:

B(z™) = [|at™ — ™3 (7
=l — [o(WTa(Wz™ +b') + b?)]|3.

Dxr(p, pj) is Kullback-Leibler divergence that is defined
as:

Dici(pfy) = plog & + (1= p)log —=-. ()
Pj — Pj

The second term in equation (6) is a regularization term
which prevents the weights from assuming high values. The
last term in the cost function, the divergence D (p, p), is re-
sponsible for obtaining sparse representation. The importance
of this term is determined by parameter 3. Kullback-Leibler
divergence measures the difference between two probability
distributions. In our case, p is a sparsity parameter that we
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Fig. 5. Deep learning based architecture for fall detection.

specify, whereas p; is the average activation of each hidden
neuron. By setting p to a small value close to zero, we enforce
the average activation of the hidden unit to be approximately
equal to that value, leading to sparsity. Minimization of the cost
function is typically done using any gradient descent method.
The backpropagation algorithm is used to efficiently compute
partial derivatives that are required for the gradient descent.

By computing the sparse representation, we are, in essence,
extracting the most prominent features. Since images of human
motions contain significant amount of useful information, it is
prudent to extract this information in several layers where each
layer represents a different concept of the input data. Stacked
autoencoders are useful for capturing hierarchical structure.
For example, one layer can learn the edges, while the next
layer can learn the shapes which contain these edges. The
learning of the input representation in multiple levels can
be achieved using stacked auto-encoders where the output of
one auto-encoder is the input to the next one. In this paper,
feature extraction is performed using two sparse auto-encoders.
This number was chosen empirically. Employing more layers
did not provide any significant improvement in results, while
it considerably increased computation time and the network
complexity.

It is interesting to visualize what sparse autoencoder learns
as features of the input data. Fig. 7 shows few images that
represent the learned features using one autoencoder. The net-
work was trained using spectrograms of four human motions:
falling, sitting, bending and walking. Hidden layer with 300
nodes attempts to learn the most important information from
4096 input layer units that correspond to 64x64 image. We
can notice that the autoencoder captures signatures of human
motions in the time-frequency domain. These images resemble

the eigen images that would be obtained by PCA [47] which
is expected since PCA is linear version of an autoencoder.

B. Classification

In general, the classification problem observes multiple mo-
tion classes. In this case, softmax regression (or multinomial
logistic regression) can be used to classify the data. Multi-
nomial logistic regression is a supervised learning algorithm
which uses feature data z and their corresponding labels. The
output of this classifier is defined as L-dimensional vector
where L denotes the number of classes. The elements of this
vector represent the estimated probabilities that the data z
belongs to the class label y;, [ = 1,.., L. These probabilities
pi, L =1, .., L, are defined by parameter 0, i.e.,

R

i 69£FZ
=1

Given a set of M labeled samples {(z(M) y(M),..,
(z(M) (M) the parameters 6; are obtained by minimizing
the following cost function:

©))

ngz(m)

M L e
J0) == >3 1{y'"™ =} log——,

m=1 [=1 Z eosz(m)
=1

where 1{-} is the indicator function which is defined as:

1, if statement is true,
1{statement } =

(10)

0, if statement is false.

Since we observe only two classes (fall versus nonfall), the
problem is binary and softmax regression amounts to logistic
regression, i.e., L = 2 with two probabilities at the output.
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IV. INTEGRATION OF VELOCITY AND RANGE
INFORMATION

In this section, we integrate both spectrogram and range
map information prior to classification. Below, we consider
two approaches for information fusion. Fusion methods are
typically used to enhance classifier performance of individual
classifiers.

A. Parallel processing of spectrograms and range maps

Fig. 8 shows two possible fusion architectures for the un-
derlying fall detection problem. Fusion has been successfully
used in applications when multiple sources of information are
available [48], [49]. In general, fusion can occur at early stages
(domain level, feature extraction level) or at the classifier
level. In this paper, we focus on the early integration of
both domains. The late fusion, i.e., fusing the outputs post
individual classifications, is not considered since we have only
two outputs and the classical late fusion classification methods,
such as the majority voting, require at least three outcomes in
order to make the final decision. Since we are dealing with
stacked autoencoders, there is an option of performing the
fusion after each layer. Fig. 8 (a) performs fusion after the first
layer, whereas in Fig. 8 (b), fusion is performed just before

TABLE L. PHYSICAL CHARACTERISTICS OF SUBJECTS.
| | Subject A | Subject B [ Subject C |
Height 5°9” 59 5’107
Weight (Ibs) | 171 207 194

classification. In both cases, fusion is performed using features
which correspond to different aspect of the input data. Since
features of both domains provide complimentary information,
the fusion of features at any level outperforms the classification
results obtained without fusion.

B. Sequential processing of spectrograms and range maps

Both architectures shown in Fig. 8 depict the parallel use
of time-frequency and range signatures before making the
final decision. However, as mentioned in Section II, different
motions can exhibit variable distinctions in different domains.
This suggests an implementation of sequential tree-like clas-
sification where the decision proceeding from one level to
another is based on a different signal representation. This
type of sequential processing has been proven successful in
motion classification [21]. The proposed scheme is given in
Fig. 9. First, the range map is used to differentiate between
motions with significant range translations, e.g., falling and
walking, and those which almost occur in place, like sitting and
bending, without considerable range translations. In essence,
we create two classes, based on range information, where a fall
is a member of one class. To discriminate fall from the other
members of the same class, we use the distinctive features
associated with the member TF signatures. The classification at
each level is performed using deep learning based architecture
depicted in Fig. 5.

V. EXPERIMENTAL RESULTS

The FMCW experiments were performed in both semi-
controlled and uncontrolled environments mimicking a room.
The former is shown in Fig. 10 (a), and amounts to a room with
covered back and side walls. An office with typical furniture
(chairs, tables, bookshelves) was used as the uncontrolled
environment (Fig. 10 (b)). A mattress was placed on the floor
to prevent subjects from injuries during the fall experiments.
The experiments were conducted at the Center for Advanced
Communications, Villanova University. The system used in
the experiments, named SDRKIT 2500B, is developed by
Ancortek, Inc. Center frequency is 25 GHz, whereas the
bandwidth is 2 GHz which provides 0.075 m range resolution.
Three male subjects, all aged 26 years, participated in the
experiments. Their physical characteristics are given in Table
L

The dataset contained four human motions: falling, sitting,
bending and walking. Each motion was observed during a time
span of 4s and images of grid size 64x64 were generated
corresponding to the spectrograms and range maps, and used
as inputs. We consider different direction angles. Each subject
performed five trials of each type of motion at 22.5°, 30° and
45°, resulting in 180 trials performed at a non-zero angle. The
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Fig. 7. Images of few learned features when sparse autoencoder is applied to spectrograms.
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Fig. 8. Different architectures for fall detection using spectrograms and range maps in parallel manner.

rest of trials were performed at 0°. In this paper, the interest is
in detecting different motion classes i.e., inter-class variability.
Intra-class variability, which can be attributed to direction
angles, is not considered. Different number of features are used
for spectrograms and range maps since the two representations
carry different information. In general, range maps are simpler
and they embed fewer features. After learning the features, the
final stage is a logistic regression classifier which determines
the probability that the input data belongs to one of two
possible classes (fall versus non-fall).

The dataset contains 408 signals: 117 falls and 291 non-
falls (111 sit, 115 bend and 65 walk signals). The training
set consisted of 100 falls and 100 non-falls(30 sit, 30 bend
and 40 walk signals), while the rest of the dataset was used
for testing. Cross-validation was performed using part of the
training dataset to set the hyperparameters such as the number
of units in the hidden layer and regularization parameters. In

the case of spectrograms, the number of units in the hidden
layer for the first auto-encoder was set to 300, meaning that
the network would attempt to compress 4096 coefficients into
300. The 300 outputs were further compressed using only 100
units in the second hidden layer. For range maps, we used 100
units in the first auto-encoder, while the second auto-encoder
utilized 50 units. The maximum number of epochs was set to
100. In order to properly verify our approaches, 50 different
combinations of training and testing sets are chosen and the
results are averaged. The confusion matrices for different
architectures are given in Table II - Table V. Tables II and III
provide results when the spectrograms and range maps are used
separately. Their success rates are lower than those obtained
with fusion based methods (Table IV and Table V). We can
notice that fusion at the second level slightly outperforms
fusion at the first level. This could be explained by the fact
that it is better to extract features separately for each domain
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in order to preserve all relevant information. If the fusion
is performed in earlier stages, pertinent features of a single
domain representation could be lost and this would impact
the final result. The sequential approach results are given in
Table VI. This approach slightly outperforms the previous
approaches, thus promoting the notion of domain selectivity
when representing human motions. Based on the results, we
can notice the fluctuations in the false alarm and missed
detection rates. Reducing these rates may further require fine
tunning the network parameters and number of layers. We are
primarily concerned in this paper with the demonstration of
improved classification accuracy when choosing proper data
representation domains for the same network.

It should be noted that more sophisticated time-frequency
representations could be used instead of spectrograms [42].
However, even though using higher-resolution or a higher-
order time-frequency distribution may increase classification
rate, this improvement comes at a higher computational com-
plexity. It is also possible to use other joint-variable domains
provided by the FMCW radar [30]. In addition to the two
domains depicting range and Doppler vs slow-time, we consid-
ered the integrated time range-Doppler map which combines
velocity and range information [31]. This map has been shown
to capture different features for improved motion classification.
Table VII contains results when integrated slow time range-
Doppler domain is used for fall detection. Results demonstrate

(b)
Fig. 10. Semi-controlled(a) and uncontrolled environments(b) where exper-
iments were performed.

that even though this domain offers high classification rate, it
is still less effective compared to the combination of the other
two domains.

We have also investigated the effect of subject’s physical
characteristics on the classifier performance. The classifier
is trained on the spectrograms from two subjects, while the
testing is performed on the spectrograms from a third subject.
Simulation results given in Table VIII do not show significant
difference in the classification rate compared to the training
on a generic dataset (Table II).

Another important part of deep learning is the dataset
size. We have investigated classifier performance for different
size of training set. Fig. 11 shows the learning curve. It
can be noticed that even though the curve has not reached
the saturation stage, the increments in success rates become
significantly smaller after the curve reaches 80%.

In order to compare deep learning with traditional ap-
proaches, the confusion matrices for the classifiers based on
manual feature extraction and PCA, both implemented in the
TF domain, are given in Table IX and Table X, respectively.
It should be noted that in the case of predefined feature
extraction, significant amount of tuning and image processing
was performed in order to ensure that meaningful values are
extracted. The number of dominant components for PCA was
set to 20 in order to capture 90% of variance in the data. There
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was no improvement in the results by using higher number of
components. The corresponding tables show inferior success
rates to the deep learning approach. This demonstrates that
limited number of predefined features or the use of dominant
eigenvectors is not capable of representing the complexity of
human motions.

TABLE II. CONFUSION MATRIX FOR THE ARCHITECTURE SHOWN IN
FIG. 5 - SPECTROGRAMS ARE USED AS INPUTS. SUCCESS RATE IS 89.4%.

| Predicted/Actual Class [ Fall [ Non-fall |

Fall 16 21
Non-fall 1 170

TABLE III. CONFUSION MATRIX FOR THE ARCHITECTURE SHOWN IN
FIG. 5 - RANGE MAPS ARE USED AS INPUTS. SUCCESS RATE IS 84.1%
| Predicted/Actual Class [ Fall [ Non-fall |
Fall 16 32
Non-fall 1 159
TABLE IV. CONFUSION MATRIX FOR THE ARCHITECTURE SHOWN IN
FIG. 8 (A) - FUSION AT THE FIRST LAYER. SUCCESS RATE IS 94.2%
| Predicted/Actual Class | Fall [ Non-fall |
Fall 17 12
Non-fall 0 179

VI. CONCLUSION

In this paper, we applied deep learning for range-Doppler
radar-based fall motion detection. The deep learner consisted
of two stacked auto-encoders and a logistic regression clas-
sifier. Different architectures using spectrograms and range
maps were presented. In order to verify our approaches, four

9
TABLE V. CONFUSION MATRIX FOR THE ARCHITECTURE SHOWN IN
FIG. 8 (B) - FUSION AT THE SECOND LAYER. SUCCESS RATE IS 95.7%
| Predicted/Actual Class [ Fall [ Non-fall |
Fall 16 8
Non-fall 1 183
TABLE VI. CONFUSION MATRIX FOR THE ARCHITECTURE SHOWN IN
FIG. 9. SUCCESS RATE IS 97.1%
| Predicted/Actual Class [ Fall | Non-fall |
Fall 15 4
Non-fall 2 187

human motions were considered, namely, walking, falling,
bending/straightening, and sitting. The experimental results
demonstrated the superiority of the deep learning based ap-
proach over conventional and PCA based methods in detecting
a fall. Among the deep learning methods, incorporation of both
spectrograms and range maps outperformed the methods where
individual data domain representations are used separately.
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