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ABSTRACT

Radar for indoor monitoring has recently attracted much at-
tention that is driven by its safety, privacy-preserving, and
non-wearable sensing mode. Micro-Doppler signatures of-
fered by radars operating in the K-band can disclose intricate
details and characteristics of human gait. This paper reveals
key Doppler features associated with human legs in gait mo-
tions which have been overlooked or ignored by existing work
in this area, including biomechanics simulators and electro-
magnetic modeling. These features are used to detect gait ab-
normalities and distinguish gait from other translational mo-
tions which exhibit similar signatures in the time-frequency
domain, such as assistive walking devices.

Index Terms— human gait, micro-Doppler signature,
time-frequency analysis, assisted living

1. INTRODUCTION

Worldwide, the elderly population aged over 65 years is grow-
ing [1]. In particular, its ratio to the age population over 20 is
predicted to be 50% by 2050 [2]. Older adults desire to stay
at their own homes as long as possible. However, a major
challenge hindering seniors to live independently at their own
home is the risk of falling. According to the World Health Or-
ganization (WHO) falls are the second leading cause of death
in the elderly population aged over 65 [1]. Changes in gait
characteristics have been shown to be associated with the risk
of falling [3]. Therefore, it is important to detect gait abnor-
malities and monitor alterations in walking patterns over time.

Radar-based indoor monitoring of humans has become of
increased interest in recent years and is promising to become
a leading technology in assisted living in the near future [4, 5].
Radar is able to reflect nuances in target motions and it is well
suited to detect falls and screen changes in gait characteristics
while enabling the elderly to live independently at home.

Human motion activities may be recognized using radar
by exploiting features caused by the micro-Doppler (mD) ef-
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fect, so-called micro-Doppler signatures [6]. They are rep-
resented in a joint time-frequency (TF) domain that provides
an additional time dimension to exploit the time-varying na-
ture of human locomotion. The mD signatures reflect human
kinematics by capturing velocity, acceleration, and rotation
of individual body parts and are the basis of discriminating
movements. The advantage of mD signatures is that they are
not sensitive to range, lighting conditions, and background
complexity that usually affect visual images.

Existing work in the field of radar-based gait analysis fo-
cuses on extracting the stride rate information and walking
velocity to assess human walking patterns. Using a contin-
uous wave radar, Otero [7] extracts both these features from
the cadence-velocity diagram to detect and classify humans.
Orović et al. [8] propose a human gait classification method
that relies on the motion signature from arm and leg move-
ments. Only few works consider human movements with the
radar having a back-view, see e.g. [9, 10]. However, none of
them elaborates on the differences in mD gait signatures when
receding from or approaching to the radar system.

Besides empirical studies of human gait, various walk-
ing models have been developed to study mD signatures of
human gait in more detail. A widely used empirical model is
the Boulic-Thalmann model [11]. It describes a global human
walk model derived from a large number of biomechanical ex-
perimental data based on averaging parameters. Irrespective
of the model used, the conversion of the time-varying trajecto-
ries of the different body parts to radar scattered electromag-
netic (EM) data, that can be used to generate mD signatures,
may be achieved using simple modeling or complex full wave
EM prediction techniques [12, 13]. Also, radar Doppler sig-
natures of humans are simulated utilizing data obtained from
motion capturing systems [14] or using computer animation
data [15].

In this paper, we provide a novel analysis and interpreta-
tions of the mD signature of human gait. Based on extensive
experiments conducted at the Radar Imaging Lab, Villanova
University, we point to impulsive-type and sinusoidal TF fea-
tures associated with leg motion when the radar is placed in a
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Fig. 1: Spectrograms of the same person walking slowly (a) towards and (b) away from the radar. (c) Extracted mD stride
signature from the spectrogram in (b) that corresponds to a swing phase of one leg and shows a spike.

non-oblique back-angle view. We show that these features are
substantially different from those corresponding to the case
where the radar is placed in front of the human and that they
are absent in existing human mD signature simulators utiliz-
ing e.g. kinematic models such as the Boulic-Thalmann hu-
man walking model. In fact, there has not been any work in
the literature distinguishing gait characteristics in towards- or
away-from-radar motions. The salient features are the key to
understanding the fundamental composition of mD gait sig-
natures and, as such, assessing abnormalities in physical and
cognitive conditions of the elderly.

2. RADAR MICRO-DOPPLER GAIT SINGNATURES

2.1. Time-Frequency Representation

Due to its highly non-stationary and multi-component nature
the radar return signal of a walking person is best analyzed
in the TF domain [6]. The most common choice of time-
frequency representation (TFR) is the spectrogram, which re-
veals characteristic mD signatures of target motions. The
spectrogram is given by the squared magnitude of the short-
time Fourier transform of the back-scattered radar signal. In
the following, we will use the spectrogram to interpret human
mD gait signatures.

2.2. Experimental Setup

The measurements presented in this work were obtained us-
ing a UWB radar [16]. The radar was set to FMCW mode
with linear frequency modulation sweeps and a carrier fre-
quency of 25 GHz. Doppler filtering was applied to obtain the
velocity information of the target by utilizing the phase shift
between different sweeps. All measurements were conducted
in a semi-controlled lab environment at the Radar Imaging
Lab at Villanova University, PA, USA. In total seven subjects
were asked to walk slowly back and forth between two points
in front of the radar, approximately 4.5 m and 1 m from the

antenna feed point. The feed point of the antenna was po-
sitioned 1.15 m above the floor. Data were collected with a
non-oblique view to the targets and at a 0◦ angle relative to
the radar line-of-sight. All subjects were asked not to swing
their arms. A list of the performed walks is given in Table 1.
In total, a set of 42 measurements are considered.

Table 1: Walking styles being analyzed.

Walking style Description of the walk # of Exp.
Normal slowly without arm swinging 7
Assisted slowly with 1 cane 18

slowly with 2 canes 9
Abnormal without bending knees 2

bending only one knee 6

2.3. Biomechanical Interpretation

Figure 1(a) shows a typical spectrogram of a human walking
towards the radar system. The mD signatures of the feet show
a clear sinusoidal shape, representing five steps here. Note
that the walk is rather slow, mimicking an elderly person, and
there is no arm swinging involved. In all figures, the color in-
dicates the received power in dB, which is proportional to the
cross-section area of the target. In contrast, a typical signature
of a person walking away from the radar is shown in Figure
1(b). Clearly, the mD signatures of the strides are different
compared to the towards-radar measurement. By carefully
examining numerous human gait signatures from experimen-
tal radar data, we next give a biomechanical interpretation of
the observed away-from-radar mD stride signatures.

To gain insights on the above differences, Figure 1(c)
shows an excerpt of the spectrogram in Figure 1(b) corre-
sponding to the swing phase of one leg during the human
walking cycle. The swing phase consists of an acceleration,
mid-swing and deceleration phase [6]. In the acceleration
phase, marked with (I) in Figure 1(c), the heel comes off the
ground and the thigh swings forward. As the latter is consid-
ered a pendulum-like motion, it reveals a sinusoidal-shaped



mD signature in the spectrogram, which can be seen between
0.2 and 0.5 s with a maximum Doppler frequency of 200 Hz.
In the mid-swing phase, (II), the swinging of the foot causes
the highest Doppler frequency, i.e., it has the highest veloc-
ity, here up to 350 Hz between 0.5 and 0.7 s. Again, due to
its pendulum-like motion the mD signature has a sinusoidal
shape. Embraced in the foot signature, the lower leg signature
becomes visible in the form of a spike, i.e., an impulse-like
behavior in the TF domain at 0.6 s. Accordingly, there are
two dominant signatures that constitute the lower leg’s mD
signature when the radar is facing the back of the human.
However, due to the larger cross-section area in comparison
to the foot, the calf reveals a higher energy in the TFR and
is eclipsing the foot signature. Hence, the foot signature may
not be noticeable by standard feature extraction techniques.
The spike appears during the mid-swing phase when the
swinging foot causes the highest Doppler shift corresponding
to its highest velocity. Progressing in time, see 0.6-0.8 s, the
spike passes into a half sinusoidal-shaped mD signature. This
phase represents the straight leg swinging to the front of the
body during the deceleration phase, (III). This part of the
signature is attributed to the reflections from the upper calf.
It experiences the same deceleration as the foot, for which
reason the signature is in parallel with the foot’s signature.
However, the calf’s motion leads to a smaller Doppler fre-
quency as the swinging angle with respect to the knee joint is
smaller compared to that of the foot.

In order to support the previous observations we con-
ducted an experiment where a person was walking away from
the radar, while the lower legs up to the knee area were cov-
ered by absorbers that were moved along on the floor. The
resulting mD signature is shown in Figure 2(a). Obviously,
the characteristic spike signatures are absent, underscoring
the fact that they are due to EM wave reflections from the
lower legs. The spectrogram reveals the torso’s motion,
which can be identified by the maximum power, as well as
the mD signature of the upper legs. The latter appears shortly
after the maximum torso Doppler frequency and is typically
of sinusoidal shape due to its pendulum-like motion.

3. DETECTION OF GAIT ABNORMALITIES

In order to study the contribution of individual body parts to
the overall mD gait signature, it is inevitable to resort to simu-
lations based on mathematical or empirical models. A widely
used empirically developed model to generate mD signatures
of walking humans is the Boulic-Thalmann model [11]. The
signatures are generated by utilizing a global human walk
model describing the position and orientation of 12 human
body parts. A simulated mD signature of a human walking
away from radar is given in Figure 2(b) using the implemen-
tation given in [6]. We observe that it is fundamentally dif-
ferent from that of real measurements, particularly because it
does not show the impulsive-like signature of the lower leg.
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Fig. 2: (a) Spectrogram of a person walking away from radar
while an absorber covers the lower legs by being moving
along on the floor. (b) Simulated mD signature of human
walking away from radar using the global walking model pro-
posed in [11]. (c) Spectrogram of a person walking abnor-
mally away from the radar, i.e., the knee is not bent in the
second, forth and sixth stride signature. (d) Spectrogram of a
person walking slowly with a cane away from radar. The cane
motion is out of sync with the legs’ motion, i.e., distinct cane
and leg signatures are revealed (cane - leg - leg- cane).

Using the previous analysis, we aim to detect abnormal-
ities in human gait. A walk is considered abnormal if the
person is e.g. limping which is characterized by unbent or
slightly bent knees compared to a normal walk. A spectro-
gram of a person walking with only one knee bending is
shown in Figure 2(c). The mD signatures of the legs clearly
differ: the bending of the knee while taking a step leads to
the characteristic spike signature, as previously discussed,
whereas an unbent knee reveals two overlaying sinusoidal
signatures caused by swinging the straight leg forwards.

Here, we also consider a walk using assistive walking de-
vices, such as a cane, as abnormal, indicating a level of phys-
ical or cognitive impairment. Figure 2(d) shows the spec-
trogram of a person walking with a cane, where the cane is
moved independently from the legs. Clearly, the cane has a
different signature compared to a leg.

Utilizing wavelet transform we aim to capture these
salient mD features in away-from-radar measurements from
the back-scattered radar signal for discriminating normal
from abnormal mD stride signatures.

3.1. Wavelet Transform

The leg’s movement reveals high-frequency components of
short bursts. The Fourier transform is unsuitable for analyz-



ing signals of this kind because it has the limitation of con-
stant time and frequency resolutions for both low and high
frequencies. Using the wavelet transform (WT), the resolu-
tion is varied with scale (proportional to frequency), meaning
that a higher time resolution can be achieved for high fre-
quency components, which is particularly relevant for our ap-
plication. The continuous wavelet transform is defined as [17]

WT(t, a) =
1√
|a|

∫ ∞
−∞

x(τ)h∗
(
τ − t
a

)
dτ, (1)

where h(·) is the wavelet function, and a is the scale.

3.2. Feature Extraction

A major challenge in human gait classification is the choice of
features to discriminate different walking styles. Many works
have presented extraction methods for human motion classi-
fication and recognition [9, 18, 19]. Here, we use time-scale
features from the WT of the back-scattered radar signal to
classify motion abnormalities in mD stride signatures.

3.2.1. Prescreening

In order to find the time location of an mD stride signature,
we use the wavelet coefficients at scale four, where the used
wavelet function is the reverse biorthogonal 3.3 (rbio3.3) as
in [20]. Here, scale four corresponds to a Doppler frequency
range of 320 to 640 Hz and was found to best reveal the
impulsive-like behavior of the spike in the frequency domain.
The stride signature location in time is determined by detect-
ing maxima in the short-time energy of the corresponding
wavelet coefficients WT(t, 4) obtained using (1) as

D(k) =

N∑
t=1

{w(t) WT(t+ k ·N/5, 4)}2, (2)

where w(·) is a Hamming window of length 0.5 s, N is the
window length in samples, and k denotes the frame index.
The windows overlap by 80%, i.e., the resolution in time for
detecting a stride signature is 0.1 s.

3.2.2. Time-scale Features

We extract features from the time-scale domain by forming
a feature vector for each detected frame during prescreening
as follows. Let E(t, a) be the relative energy of a wavelet
coefficient at scale a and time lag t, we calculate an energy
profile as

F (t) =

M∑
a=1

E(t, a), (3)

where M = 8 is the number of scales used. Next, we deter-
mine the time-span occupied by the signature by thresholding
the energy profile F (t) at 20% of its maximum. The rationale

behind it is that due to its impulsive-like behavior the normal
stride signature spans a much shorter interval than abnormal
ones. Thus, the first feature is defined as the time duration
tspan that contains the wavelet coefficients with the highest en-
ergy over all scales. Further, we observe that the spike man-
ifests itself in higher frequency bands or scales. Hence, we
define the sum of the relative energy of the wavelet coeffi-
cients at scale a as

G(a) =

N∑
t=1

E(t, a), (4)

where N is the number of times samples in the detected
frame. The final feature vector for a detected mD stride
signature is then given by

v = [tspan G(1) G(2) . . . G(M)]
T
. (5)

3.3. Micro-Doppler Signature Classification

From the experiments listed in Table 1, 216 mD stride sig-
natures were detected by the prescreener with a false alarm
rate of 6% and a missed detection rate of 5%. There are
104 normal gait signatures and 89 abnormal signatures avail-
able. Using the feature vector defined in (5), we train a linear
support vector machine [21, 22] using 70% of the detected
frames, whereas the remainder is used for testing. Classifica-
tion results are shown in Table 2. All rates are obtained by
averaging 100 classification results, where training and test
samples were randomly chosen. The overall detection rate
is 76%. Note that we only evaluated measurements of 5 s
duration with 3-7 stride signatures present. In practice, the
observation time could be much longer and, additionally, the
classifier could be trained to be person specific, which would
likely improve the classification performance.

Table 2: Correct classification rates for mD stride signatures.

predicted
normal abnormal

true
normal 80% 20%

abnormal 29% 71%

4. CONCLUSION

This paper contributes to the growing subject of assisted liv-
ing and focuses on the radar technology for indoor monitoring
of human motions. Experimental results of the gait, when in-
terrogated by a K-band radar, depicted a new and persistent
feature of the leg kinematics. An impulse-like behavior in the
spectrograms was revealed when the radar is placed facing
the human back. Forming characteristic mD signatures, they
lend themselves to distinction of normal walk from abnormal
walking patterns or the use of an assistive walking device.
This will enable monitoring of progression in recovery from
physical and possibly cognitive impairments.
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