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Abstract—Sparse array design professes several advantages
over their uniform array counterparts, including high resolution
and ability to deal with large number of sources in the field of
view (FOV). In this paper, we examine sparse arrays achieving
maximum signal-to-interference plus noise ratio (MaxSINR)
for three different cases, namely, single point source, multiple
point sources and Gaussianly spread source, operating in an
interference active environment. Our approach does not require
any apriori knowledge of the source directions of arrival and their
respective power. We formulate the problem as quadratically
constraint quadratic program (QCQP), where the cost function
is penalized with weighted l1-norm squared of the beamformer
weight vector, and propose an iterative technique to control the
desired sparsity. It is shown that the optimum sparse array
utilizes the array aperture effectively and provides considerable
performance improvement over a compact uniform linear array
(ULA). Simulation results are presented to show the effectiveness
of proposed algorithm for array configurability in the case of both
single and general rank signal correlation matrices.

I. INTRODUCTION

Sparse array design has been a popular approach to alleviate

the computational and hardware overhead of the system while

optimizing sensor locations to achieve optimality for some pre-

determined performance criteria. Many different metrics have

been proposed for optimal sparse array design depending on

the signal processing task at hand. For instance, minimum

redundancy criteria and extended aperture coarrays for high

resolution direction of arrival (DOA) estimation strive for

maximizing the available sensor correlation lags, and efficient

structured array topologies. Common examples are minimum

redundancy arrays, nested and coprime arrays [1]–[3]. Re-

cently, the enabling switched antenna and beam technologies

have motivated the design for environment adaptive sparse ar-

rays. Maximum signal to noise ratio (MaxSNR) and MaxSINR

have been shown to yield significantly efficient beamforming

with its performance depending largely on the positions of the

sensors as well as the locations of sources in the FOV [4]–[7].

Desired source signal power estimation and enhancement

in an interference active environment is an important and

ubiquitous task in array signal processing. This problem has

a direct bearing on improving target detection and localiza-

tion for radar signal processing, boosting the throughput or

channel capacity for MIMO wireless communication systems
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and improving the resolution capability for medical imaging

applications [8]–[10]. Capon method is a well known high

resolution data dependent beamforming approach to optimally

estimate the desired source signal power by improving the

output signal-to-interference plus noise ratio (SINR) [11].

A natural extension of capon beamforming and a broader

approach in enhancing desired source power estimation using

linear combiner at the receiver amounts to maximizing the

SINR over all possible sparse array configurations.

The problem of MaxSINR has been recently investigated in

the case of multiple desired point sources [12], [13]. But the

nominal approach cannot be extended to spatial spread sources

in a straightforward way, as it assumes apriori knowledge of

the directions of arrival and power of the source signals which

are not typically known [10], [14]. Our proposed technique

relaxes this condition and operates directly on the received

data correlation matrix. We assume that either the full array

data correlation matrix is known or has a co-array that delivers

the correlation values across all array elements [15]–[18].

In this paper, we examine MaxSINR sparse arrays for single

and higher rank signal correlation matrices. We analyze the

performance for the case of single rank correlation matrix

which arises when there is one desired source signal in the

FOV. We also consider the case of higher rank signal model

arises in local scattering and could follow certain statistical

or geometric distributions. This is the case of Gaussian or

circularly spread sources in wireless communications, due

to multipath, or fluctuating source wavefront problem in

sonar signal processing [14], [19]–[21]. The multipath can

be modeled as statistically independent point sources for the

receiver array beamformer. We show the merits of sensor array

locations and importance of sparse array configurability in all

the above mentioned cases by comparing the sparse array with

the commonly used compact ULA.

We pose the problem as optimally selecting K antennas out

of N possible equally spaced locations. The antenna selection

problem for maximizing SINR amounts to maximizing the

principal eigenvalue of the product of correlation matrices

[14]. It is an NP hard optimization problem. In order to realize

convex relaxation and avoid computational burden of singular

value decomposition (SVD) for each possible configuration,

we pose this problem as QCQP with weighted l1-norm squared

to promote sparsity. We adopt an iteration based approach to



control the sparsity of the optimum weight vector so that K
antenna sensors are finally selected. The weighted l1-norm

convex relaxation has been exploited for antenna selection

problem for beampattern synthesis, whereas, weighted l1-norm

squared relaxation is shown to be very effective for minimizing

the required antennas in multicast beamforming [5], [22], [23].

The rest of the paper is organized as follows: In the next

section, we state the problem formulation for maximizing the

output SINR under general rank signal correlation matrix.

Section III deals with the optimum sparse array design by

semidefinite relaxation and propose iterative algorithm of

finding optimum K antenna sparse array design. Simulation

and conclusion follow at the end.

II. PROBLEM FORMULATION

Consider P independent desired sources and Q interfering

source signals impinging on a linear array with N uniformly

placed antennas. Then, the signal received at the array at time

instant t is given by:

x(t) =

P∑

k=1

(αk(t))s(θk) +

Q∑

l=1

(βl(t))i(θl) + n(t), (1)

where s(θk) and i(θl) are the steering vectors corresponding to

the respective directions of arrival, θk or θl, defined as follows:

s(θk) = [1 ej(2π/λ)dcos(θk) . . . ej(2π/λ)d(N−1)cos(θk)]T . (2)

The inter-element spacing is given by d, (αk(t), βl(t)) ∈ C

denote the complex amplitudes of incoming signals, n(t)
∈ C

N represents the additive Gaussian noise with variance σ2
n

at the receiver output. The received signal x(t) is combined

linearly by the N -antenna beamformer that strives to maximize

the output SINR. The output signal y(t) of the optimum

beamformer for maximum SINR is given by [14],

y(t) = w0
H
x(t), (3)

where w0 is the solution of the following optimization prob-

lem:
minimize

w
w

H
Rin+nw,

s.t. w
H
Rsw = 1.

(4)

For statistically independent signals, Rs =∑P
k=1 σ

2
ks(θk)s

H(θk) where, σ2
k = E{αk(t)α

H
k (t)}

and Rin+n =
∑Q

l=1(σ
2
l i(θl)i

H(θl)) + σ2
nIN∗N with

σ2
l = E{βl(t)β

H
l (t)}. The problem in (4) can be written

equivalently by replacing Rin+n with R = Rs + Rin+n as

follows [14],

minimize
w

w
H
Rw,

s.t. w
H
Rsw = 1.

(5)

The analytical solution of the above optimization problem ex-

ists and is given by w0 = P{Rin+n
−1

Rs} = P{R−1
Rs}.

The operator P{.} computes the principal eigenvector of it’s

argument. Substituting w0 into (3) yields the corresponding

optimum output SINRo:

SINRo =
w

H
0 Rsw0

wH
0
Rin+nw0

= λmax{R
−1

in+n
Rs}. (6)

Equation (6) shows that the optimum beamformer for maxi-

mizing SINR is directly related to the desired and interference

plus noise correlation matrix. It can be shown that for the case

of Gaussian spread source, assuming sufficiently high number

of independently scattered signals, the source correlation ma-

trix Rs can well be approximated by [19],

Rs ≈ (s(θ0)s
H(θ0)) ◦B, (7)

where ’◦’ denotes the Hadamard product and B is given by:

B(m,n) = e−2(πδ(m−n))2σ2

0
cos2(θ0). (8)

The rank of Rs in (7) is greater than one and its eigenvalue

spread depends on the center angle (θ0) and angle spread (σ0).

In the following section, we demonstrate array configurability

for maximizing SINR for the general rank signal correlation

matrix Rs which could assume unit or higher rank.

III. OPTIMUM SPARSE ARRAY DESIGN

The problem of maximizing the principal eigenvalue of the

correlation matrices associated with K antenna selection is a

combinatorial optimization problem. We assume that we have

an estimate of all the correlation lags of the full array received

signal correlation matrix. Then, the problem formulated in (5)

can be re-written as follows:

minimize
w∈CN

w
H
Rw,

s.t. w
H
Rsw = 1,

||w||0 = K.

(9)

Here, ||.||0 determines the cardinality of the weight vector w.

The problem expressed in Eq. (9) can then be relaxed to induce

the sparsity in optimal weight vector w without placing a hard

constraint on the specific cardinality of w, as follows:

minimize
w∈CN

w
H
Rw + µ(||w||1),

s.t. w
H
Rsw = 1.

(10)

Here, ||.||1 is the sparsity inducing l1-norm and µ is a

parameter to control the sparsity in the solution. The problem

in (10) can be penalized instead by the weighted l1-norm

function which is a well known sparsity promoting formulation

[24],

minimize
w∈CN

w
H
Rw + µ(||Xi

w||1),

s.t. w
H
Rsw = 1.

(11)

where, X
i is the weight matrix at the ith iteration. The

weighted l1-norm function in (11) is replaced by the l1-norm

squared function without effecting the regularization property

of the weighted l1-norm function [5],

minimize
w∈CN

w
H
Rw + µ(||Xi

w||21),

s.t. w
H
Rsw = 1.

(12)

The SDP relaxation of the above problem can then be real-

ized by replacing W = ww
H. Re-expressing the quadratic

function, wH
Rw = Tr(wH

Rw) =Tr(Rww
H) = Tr(RW),



TABLE I: Proposed algorithm to achieve desired cardinality

of optimal weight vector w0.

Steps of proposed algorithm

Step 1 Initialize the weight vector Xi to all ones and sufficiently
small values of µ and ǫ.

Step 2 Run the rank relaxed SDP of Eq. (13).

Check if some entries in W̃ is exactly zero, if yes, check

the cardinality of non zero column of W̃ and go to Step 1
and increase or decrease the value of µ to enhance or
reduce the sparsity respectively until desired cardinality
is achived. If desired cardianlity is achieved go to Step 4
otherwise, in case of no-non zero values go to Step 3.

Step 3 Update the weight vector Xi according to Eq. (15)
and repeat Step 2.

Step 4 After achieving the desired cardinality, run SDP for
reduced size correlation matrix corresponding to nonzero

values of W̃ and µ = 0, yielding, w0 = P{W}.

where Tr(.) is the trace of the matrix. This expression yields

the following problem [5], [25], [26],

minimize
W∈CN∗N,W̃∈RN∗N

Tr(RW) + µTr(Xi
W̃),

s.t. Tr(RsW) = 1,

|W| ≥ W̃,

W � 0, Rank(W) = 1.

(13)

The rank constraint in Eq. (13) is non convex. The rank

relaxed approximation works well for the underlying problem.

Alternatively, one could minimize the nuclear norm of W, as a

surrogate for l1-norm in the case of matrices, to induce sparsity

in the eigenvalues of W and promote rank one solutions [27],

[28]. The resulting rank relaxed SDP is given by:

minimize
W∈CN∗N,W̃∈RN∗N

Tr(RW) + µTr(Xi
W̃),

s.t. Tr(RsW) = 1,

|W| ≥ W̃,

W � 0.

(14)

As suggested in [24], the weight matrix X
i is initialized

unweighted i.e. by all ones matrix and iteratively updated as

follows,

X
i+1
m,n =

1

|Wi
m,n|+ ǫ

. (15)

The proposed algorithm for controlling the sparsity of the

optimal weight vector w0 is summarized in the TABLE. I.

IV. SIMULATIONS

In this section, we show the effectiveness of our proposed

technique for the sparse array design for MaxSINR. The

importance of array configurability for MaxSINR is further

emphasized and reinforced by comparing the optimum sparse

array design with compact ULA performance, under different

source signal models. For all our examples, we select K = 8
sensors from N = 16 possible equally spaced locations with

inter-element spacing of λ/2.
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Fig. 1: Output SINR for different array topologies

A. Single point source

Figure 1 shows the output SINR for different array config-

urations for the case of single desired point source with its

DOA varying from 400 to 1400. Three strong interferers are

located at 200 and ±100 degree apart from the desired source

angle. For instance, when the source is at 600, we consider

that directions of arrival of interferers are at 400, 500 and 700.

The SNR of the desired signal is 0dB, and the INR of each

interfering signals is set to 20dB. The theoretical maximum

SINR possible is 9.03dB, which corresponds to the array

gain offered by 8 antenna array. The case of this MaxSINR

arises when interferers are significantly suppressed in the

array output. It can clearly be seen from the Fig. 1 that the

proposed algorithm performs very close to the optimum array

found by exhaustive search (12870 possible configurations),

which has very high computational cost attributed to expensive

singular value decomposition (SVD) for each enumeration.

For the relaxed SDP, we initialize small values for µ and

ǫ (10−3 in our case). On average, the proposed algorithm

takes six to seven iterations to converge at the optimum

locations and number of sensors; hence, offering dramatic

saving in the computational cost. It is of interest to compare

the optimum sparse array performance with the compact ULA.

It can be seen from Fig. 1, that the optimum sparse array

offers considerable SINR advantage over the compact ULA

for all the source desired angles of arrival. The performance

of the compact ULA degrades severely when the source of

interest is more towards the array end-fire location, as 8
antenna element compact ULA fails to resolve and cancel

the strong interferers while maintaining unit gain towards the

source of interest. For the case of the desired source at the

array broadside, the optimum array design found through the

proposed algorithm yields an output SINR of 8.6dB, which is

0.3dB less than the corresponding SINR of the optimum array

found through exhaustive search. The arrays obtained for the

source at broadside are shown in the Fig. 2 (where ”.” and ”×”



(a)

(b)

(c)

Fig. 2: Array configurations obtained for the point source at

the array broadside (a) Optimum (enumeration) (b) Optimum

(algorithm) (c) Worst array configuration
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Fig. 3: Beampattern for Gaussian spread source at 450

represent the presence and absence of sensor respectively).

It is worth mentioning that although the worst sparse array

configuration utilizes maximum array aperture (Fig. 2c), yet it

manages output SINR as low as −13dB. This emphasizes the

fact that if an arbitrary sparse array structure is employed, it

could degrade the performance catastrophically and perform

far worst than the compact ULA, which offers modest output

SINR of 5dB for the underlying scenario.

B. Gaussian spread source

Consider the case of a Gaussianly spread source with the

center angle of 450 and three interfering signals at 200, 300

and 600. The SNR of this source is 0dB with power uniformly

distributed among all scatterers, and spatial spread of 50. The

SNR of interferences is set at 20dB each. Fig. 3 compares

the beampattern of the optimum sparse array in the case of

spread source with that of the point source. The optimum

sparse array which maximizes the SINR for the Gaussian

spatial spread, is shown in the Fig. 4a, and the optimum

(a)

(b)

(c)

Fig. 4: (a) Optimum 8 antenna array (spread source) (b) Op-

timum 8 antenna array (point source) (c) Optimum 8 antenna

array for multiple desired sources (proposed algorithm)
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Fig. 5: Beampattern for multiple point sources

sparse array for MaxSINR for the point source is shown in the

Fig. 4b. Our proposed algorithm, in both cases, recovers the

optimum sparse array as that obtained through enumeration.

The optimum sparse array for the spread source gives output

SINR of 7.5dB which is 6dB more as compared with compact

ULA and is 0.6dB more than what is offered by the optimum

sparse array for point source. From Fig. 3, we observe that for

spread source, the main-lobe is widened to better capture the

spread signal power. This beam flatttening feature of Gaussian

spread is useful trait for robust adaptive beamforming, and the

Gaussian taper is usually applied to the correlation matrix to

account for the uncertainity in the desired source correlation

matrix [10], [14], [29].

C. Multiple point sources

In the case of multiple point sources, three desired signals

are impinging from DOAs 400, 650 and 1250 with SNR of 0dB

each. Similarly, three strong interferers with SNR of 30dB

each, are active at DOAs 500, 600 and 1200. The compact



ULA again performs with 6dB less output SINR as compared

to the optimum sparse array (Fig. 4c) obtained through the

proposed methodology. This improved performance is evident

from the beampattern of both arrays shown in Fig. 5. The

optimum sparse array engages all its degrees of freedom to null

the interference while maintaining maximum gain towards all

sources of interest. Moreover, the beampattern of the optimum

array is more desirable than the comapct ULA as it has lower

side-lobe level.

V. CONCLUSION

This paper considered optimum sparse array configuration

for maximizing the beamformer output SINR for general

rank desired signal correlation matrices. It was shown that

the weighted l1-norm squared sparsity promoting penality

function with iterative sparsity control algorithm is particularly

effective in finding the optimum sparse array design with low

computational complexity. We showed the effectiveness of

our approach for single and multiple desired point sources

and spatially spread source correlation matrix. The MaxS-

INR optimum sparse array yielded considerable performance

improvement over compact ULA in all of the three cases

discussed. In all cases, we solved the optimization problem

by both the proposed algorithm and enumeration and showed

strong agreement between the two methods.
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