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ABSTRACT
Optimum sparse array design for maximum output signal-
to-noise ratio (MaxSNR) and signal-to-interference ratio
(MaxSINR) have been shown to yield significant perfor-
mance improvement compared to random or environmental-
independent structured arrays, with the same number of an-
tennas. We examine the MaxSNR problem in presence of
local scatterings which may follow specific deterministic or
statistical scattering models. It is shown that if the scatterers
assume a Gaussian distribution centered around the source
angular position, the optimum array configuration for maxi-
mizing the SNR is the commonly used uniform linear array
(ULA). If the scatterers circulate the source, the optimum
design yields sparse array topologies with superior perfor-
mance over ULAs. Simulation results are presented to show
the effectiveness of array configurability in the case of both
Gaussian and circularly spread sources.

Index Terms— MaxSNR, MaxSINR, ULA, sparse array,
Gaussian distribution, circularly spread sources

1. INTRODUCTION

Sparse arrays have recently attracted much attention that is
motivated by switched antenna technologies and advances
in constrained minimization and convex optimization tech-
niques. There are several metrics to design sparse arrays
and decide on optimum array configurations. Among those
metrics, maximum signal-to-noise ratio (MaxSNR), maxi-
mum signal-to-interference and noise ratio (MaxSINR), and
reduced Cramer-Rao bound (CRB) for direction-of-arrival
(DOA) estimation, yield improved beamforming and direc-
tion finding performance [1–6].

Designing optimum sparse arrays for MaxSNR strives
to maximize the SNR at the array output for a given source
direction-of-arrival (DOA). Depending on the number of an-
tennas and permissible antenna locations, it has been shown
that a significant performance improvement can be achieved
over other commonly used sparse arrays, including nested
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and coprime structured array [7–9]. In past contributions,
point sources have typically been assumed where each source
is characterized by a steering vector and provides a rank-one
spatial covariance matrix at the array receiver. However,
depending on the multipath environments and source signal
bandwidth, these steering vectors, along with the correspond-
ing covariance matrix rank, can significantly change [10–13].

In this paper, the effect of the spatial channel on opti-
mum sparse array beamforming for MaxSNR is examined for
the first time. Two models for local scatterings, namely, the
Gaussian model and circular model, are considered. These
scattering models are most suitable for dense urban environ-
ment, in which the signal encounter rich scattering prior to
its arrival at the array receiver [14–17]. It is shown that the
optimum sparse array always elects a configuration that seeks
the highest spatial correlation values across the antennas. On
the other hand for a spatial correlation that is monotonically
decreasing, the sparse array would assume the minimum pos-
sible antenna separation, so as to collect the highest corre-
lation values. This is accomplished by configuring a ULA.
For those scattering models in which the correlation rises and
falls with increased antenna spacing, the optimum MaxSNR
sparse array configuration deviates from a ULA, and positions
the antennas such that their separations are consistent with the
highest sensor correlation values.

We pose the problem as optimally selecting K antennas
out of N possible equally spaced locations on a uniform grid.
The antenna selection problem for maximizing SNR amounts
to maximizing the principal eigenvalue of the source correla-
tion matrix [18]. In order to realize convex relaxation for this
NP hard optimization problem and avoid computational bur-
den of singular value decomposition for each possible config-
uration, we maximize the lower bound of output SNR instead.
The lower bound optimization objective is approximated by
Taylor series and formulated as an iterative linear program.

The rest of the paper is organized as follows: In section
2, we formulate the problem for maximizing the output SNR.
The role of array configurability for MaxSNR for Gaussian
and circular scattering models is explained in section 3. Sec-
tion 4 deals with the iterative solution of finding optimum ar-
ray design. Simulations and conclusion follows at the end.



2. PROBLEM FORMULATION

Consider a spatially spread source with P independently scat-
tered components impinging on a linear array with N uni-
formly placed antennas. Then, the signal received at the array
at time instant t is given by:

x(t) =

P∑
k=1

(αk(t))a(θk) + n(t), (1)

where
a(θk) = [1 ej(2π/λ)dcos(θk) . . . ej(2π/λ)d(N−1)cos(θk)]T ,

is the steering vector corresponding to the kth scatterer with
the direction-of-arrival θk, d is the inter-element spacing in
terms of wavelengths λ, αk(t) ∈ C represents the complex
amplitute of kth scatterer and n(t) ∈ CN represents the ad-
ditive Gaussian noise with variance σ2

n at the receiver out-
put. The received signal x(t) is linearly combined by the
N -antenna beamformer that strives to maximize the output
SNR. The output signal y(t) of the optimum beamformer for
maximum SNR is given by [18],

y(t) = w0
Hx(t), (2)

with
w0 = P{Rn

−1R}. (3)

The operator P{.} computes the principal eigenvector,
R = URsU

H is the received source correlation matrix
with U = [a(θ1) . . .a(θP )] and k, lth entry of Rs(k, l) =
E{αk(t)αHk (t)} for k = l and zero otherwise. For spatially
uncorrelated noise, Rn = σ2

nI, we obtain the corresponding
optimum output SNRo as follows:

w0 = P{R}, (4)

SNRo =
wH

0 RwH
0

w0Rnw0
=
||R||2
σ2
n

. (5)

Here, ||.||2 denotes the spectral norm or the maximum eigen-
value of the matrix. Equations (4) and (5) show that the op-
timum beamformer for MaxSNR is directly tied to the eigen-
structure of the correlation matrix. As such, there is a need to
analyze the correlation matrix under the scattering models.

3. GAUSSIAN AND CIRCULAR SCATTERING
MODELS

Gaussian model assumes that the directions of arrival of
the scatterers are Gaussianly distributed, N (θ0, σθ), having
mean direction of arrival θ0 and variance σθ. Consequently,
each element of the steering vector would be jointly Gaussian
with zero mean and covariance matrix given by [14],

Rg(θ0,σ0)
≈ (a(θ0)a

H(θ0)) ◦B(θ0,σ0), (6)
where ’◦’ denotes Hadamard product and

B(θ0,σ0)(k, l) = e−2(πδ(k−l))2σ2
0cos

2(θ0). (7)
Denote z ∈ {0, 1}N a selection vector whose entries 0’s and
1’s represents the presence and absence of corresponding an-
tennas respectively. The steering vector corresponding to an-

tenna selection vector z is given by aθ0(z) = a(θ0) � z.
Here ’�’ is the element-wise product operator which allows
the selection of antenna elements according to z. Similarly,
B(θ0,σ0)(z) = B(θ0,σ0) � Z with Z = zzT being the corre-
sponding antenna selection matrix. Equation (6) with selected
antennas can be re-written as follows:

Rg(θ0,σ0)
(z) ≈ (aθ0(z)a

H
θ0(z)) ◦B(θ0,σ0)(z). (8)

We note that the trace of Rg(θ0,σ0)
(z) is constant since the

input source power remains the same irrespective of the array
configuration. Accordingly, the sum of eigenvalues is con-
stant for all possible correlation matrices associated with the
K antenna selection problem. To be more explicit, the prob-
lem formulated in Eq. (5) can be expressed as:

max
z

||Rg(θ0,σ0)
(z)||2,

given;
K∑
k=1

vz(k) = Tr (Rg(θ0,σ0)
(z)) = KTr(Rs),

(9)

where Tr (.) denotes the trace of the matrix, vz(k) is the kth
eigenvalue of correlation matrix Rg(θ0,σ0)

(z). Equations (6)
and (7) show that the correlation drops monotonically with in-
creased correlation lag. As shown below, this property com-
pels the optimum sparse array to assume a ULA with mini-
mum inter-element spacing; hence, the solution does not re-
quire any iteration-based method or enumeration.

Let Rg(θ0,σ0)
(u) be the correlation matrix for ULA ”u”

and Rg(θ0,σ0)
(s) be the correlation matrix associated with the

sparse ”s” configuration with the same number of antennas,
K. The kth eigenvalue vzM (k) of RM

g(θ0,σ0)
(z) is related to

its corresponding eigenvlaue vz(k) of Rg(θ0,σ0)
(z) by [19],

vzM (k) = vMz (k), ∀M ≥ 0. (10)
For the Gaussian spatial channel, Tr (RM

g(θ0,σ0)
(u)) >

Tr (RM
g(θ0,σ0)

(s)) (proof in Appendix) along with Eq. (10),
yields

K∑
k=1

vMu (k) >

K∑
k=1

vMs (k), ∀M ≥ 2. (11)

From Eq. (11), it can be readily shown that max (vu(k)) >
max (vs(k)). Here, we make use of the fact that all the
eigenvalues of the correlation matrices are greater or equal to
zero. Therefore, for the Gaussian scattering model where the
correlation function is monotonically decreasing with sensors
spacing, the optimum sparse array would always cluster with
minimum spatial separation, configuring a ULA.

The correlation between consecutive sensors for the cir-
cular model is given by [20],

rc(θ0, σ0) =
1

P

P−1∑
i=0

e−j2π(δ(k−l))cos(θ0+θi), (12)

where rc(θ0, σ0) is the k, lth element of the correlation ma-
trix Rc(θ0,σ0) and θi’s are circularly distributed around the
source. Contrary to Gaussian model, the sensor data correla-
tion in circular case shows oscillatory behaviour as a function
of lags (Eq. (12)). We can, however, bound the upper and



lower limits of the optimum SNR as follows:
Tr (Rc(θ0,σ0)(w))

K
≤ SNRo ≤ Tr (Rc(θ0,σ0)(o)). (13)

Rc(θ0,σ0)(o) and Rc(θ0,σ0)(w) are the optimum ”o” and
worst ”w” array correlation matrices, respectively. In the
optimal case, the eigenvalues are maximally spread, whereas
the worst possibility for MaxSNR arises when all the eigen-
values are equal. We also note that Eq. (11) in fact determines
the eigen-spread of the correlation matrix asymptotically. It
can be shown that this equation remains valid for circular
correlation matrix for some ζ sufficiently large, such that∑K
k=1 v

M
o (k) >

∑K
k=1 v

M
s (k), ∀M ≥ ζ. Therefore,

finding the optimum configuration amounts to maximiz-
ing

∑K
k=1 v

M
z (k) or equivalently, Tr (RM

c(θ0,σ0)
(z)) for any

M ≥ ζ, over all posssible configurations. Though maximiz-
ing Tr (RM

c(θ0,σ0)
(z)) is computationally less expensive than

maximizing the principal eigenvalue, yet it is highly compu-
tationally involved. Therefore, in the next section we resort to
lower bound relaxation to design the optimum configuration.

4. OPTIMUM SPARSE ARRAY DESIGN

Following the approach in [21], we assume that we have an
estimate of R(θ0,σ0), which is the full antenna array source
correlation matrix. Then, the problem in Eq. (9) can be rewrit-
ten as follows: max

z
||R(θ0,σ0)(z)||2,

s.t. ||z||0 = K.
(14)

Here, ||.||0 determines the cardinality of selection vector
z. Given e0, the principal eigenvector corresponding to
the full antenna array, we approximate the thinned vector
e0(z)/||e0(z)||2 as the principal eigenvector of the selected
K-element subarray z [22]. The problem in Eq. (14) can then
be approximated by:

max
z

e0
H(z)R(θ0,σ0)(z)e0(z)

||e0(z)||22
,

s.t. ||z||0 = K.

(15)

This approximation represents a lower bound of optimum
SNR. Define, R̃θ,σ0

= R(θ0,σ0) ◦ (e0e0H) and ẽo = e∗o ◦eo.
Equation (15) can be rephrased as follows:

max
z

zT R̃θ,σ0z

zT ẽ0
,

s.t. ||z||1 = K,

0 ≤ z ≤ 1.

(16)

The constraint in Eq. (15) is relaxed to affine equality con-
straint (||.||1 denotes l1-norm) and a box constraint, but the
objective function still remains non-convex. Therefore, we
resort to iterative first order Taylor approximation as follows:

max
z

−ziT R̃θ,σ0z
i
+ 2ziT R̃θ,σ0z

zT ẽ0
,

s.t. ||z||1 = K,

0 ≤ z ≤ 1.

(17)

(a) (b)

(c) (d)

Fig. 1: Output SNR comparison for various array configura-
tions; (a) Gaussian model; (b) circular model. Beampattern
of optimum array; (c) Gaussian model; (d) circular model.

Here, i is the iteration number. This linear fractional program
(LFP) can be turned into LP by simple change of variables,
α = 1/zT ẽ0 and v = z/zTẽ0 as follows [23],

max
v,α

−ziT R̃θ,σ0z
i
α+ 2ziT R̃θ,σ0v,

s.t. 1Tv −Kα = 0, ẽ0
Tv = 1,

v ≥ 0, v − α ≤ 0, α ≥ 0.

(18)

yielding, the estimate of the selection vector z = v/α.

5. SIMULATIONS

For both scattering models, we select K = 9 sensors from
N = 21 possible equally spaced locations with inter-element
spacing of λ/2. The source SNR is 0 dB.

5.1. Gaussian model

Figure 1(a) plots the optimum SNR for all possible array con-
figurations in ascending order of output SNR for Gaussian
spread source with center angle of 900 and variance of 50. As
expected, the optimum array emerges as a ULA with output
SNR of 8 dB. The lower bound relaxation is also depicted
in Fig. 1(a) and is shown to offer a good metric in the un-
derlying case. The ULA has more than 3 dB advantage over
the worst array configuration having less than 5 dB output
SNR. The worst array configuration is shown in the Fig. 2(a)
where ”.” and ”×” represent the presence and absence of sen-
sor respectively. We also observe that if sensor malfunction
prevents a contiguous uniformly spaced antenna array config-
uration, the optimum sparse array opts to minimally stretch,
incorporating the next closest antenna position, as shown in



(a) (b)

(c) (d)

(e) (f)

Fig. 2: (a) Worst sparse array (Gaussian); (b) Second best
(Gaussian); (c) Optimum array (circular); (d) Worst sparse
array (circular); (e) Nested array; (f) Coprime array

the Fig. 2(b). In order to simulate this case, we set antenna
9 as a faulty antenna. The output SNR corresponding to this
new configuration is 7.9 dB which is 0.1 dB less than the op-
timum array configuration. This lower SNR is the price paid
by including a smaller correlation value corresponding to an-
tenna position 10 compared to that of antenna position 9. The
output SNR corresponding to coprime and nested sparse ar-
rays, as depicted in Fig. 1(a), are significantly less as com-
pared to the ULA. Figure 1(c) shows the optimum beampat-
tern corresponding to the different configurations with ULA
giving the widest main lobe with the highest gain possible at
the scatterer’s center. Moreover, the sidelobes for ULA are
significantly lower as compared to other sparse arrays which
is highly desirable.

5.2. Circular model

Figure 1(b) shows the scenario for circular scattering model
with a single source at the broadside with the spatial spread
of 300. It shows that the optimum sparse array (shown in
Fig. 2(c)) has SNR of 5.68 dB, whereas the worst sparse array
(shown in Fig. 2(d)) has output SNR of 3 dB, which is more
than 2.5 dB down as compared to the optimum array topology.
It is informative to compare the performance of optimum ar-
ray with the ULA, which is a de facto array configuration in
many applications. The ULA gives output SNR of 5.28 dB
which is 0.4 dB lower than the optimum performance. The
significant difference however lies in the beampattern of the
two arrays, as shown in Fig. 1(d). Contrary to the optimum
configuration, the ULA attempts to maximize the output SNR
by placing a null exactly in the center of the scatterer beam
which is highly undesirable. Figure 1(b) also shows that the
optimum sparse array has a clear advantage over coprime and
nested array topologies in terms of output SNR. This is bea-
cuse the optimum array manages wider mainlobe with higher
gain where the scatterers are most dense (Fig. 1(d)). Figure 3
shows that better performance of the optimum sparse array
is more pronounced at the broadside, whereas the ULA is the
optimum array configuration for DOAs near the array end-fire

Fig. 3: Output SNR for different arrays vs center angle.

location. It can be seen that the performance of the optimum
array and sub optimum sparse arrays differ significantly over
a wide field of view.

6. CONCLUSION

This paper considered optimum sparse array configuration for
maximizing the beamformer output SNR for a single source
that is seen to the receiver through its local scatterers. It is
shown that for the Gaussian local scattering model, the cor-
relation is weakened monotonically across the receiver anten-
nas. As such, the optimum configuration, in seeking to cap-
ture the highest spatial correlation values, becomes the ULA.
We showed that for a circular local scattering model, the op-
timum sparse array loses uniformity in quest of including the
high correlation values corresponding to large antenna separa-
tions. In both cases, we solved the optimization problem both
iteratively and by enumerations and showed strong agreement
between the two methods.

7. APPENDIX

Proof of the result used in Eq. (11):
Tr (RM

g(θ0,σ0)
(z))

≈ Tr ((aθ0(z)a
H
θ0(z) ◦B(θ0,σ0)(z))

M )

= Tr (aθ0(z)a
H
θ0(z) ◦B

M
(θ0,σ0)

(z))

= Tr (BM
(θ0,σ0)

(z)).

(19)

For Gaussian model, B(θ0,σ0)(u) ≥ B(θ0,σ0)(s) > 0. Here,
’≥’ means element wise comparison and strict equality holds
only for diagonal entries. This implies,

BM
(θ0,σ0)

(u) > BM
(θ0,σ0)

(s), ∀M ≥ 2

Tr (BM
(θ0,σ0)

(u)) > Tr (BM
(θ0,σ0)

(s)).
(20)

Combining (19) and (20), we have,
Tr (RM

g(θ0,σ0)
(u)) > Tr (RM

g(θ0,σ0)
(s)) ∀M ≥ 2
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