
*sridhar.santhanam@villanova.edu; http://www1.villanova.edu/villanova/engineering/research/centers/cac/facilities/aul.html 

 

Multifrequency and Multimodal Sparse Reconstruction in Lamb Wave 

Based Structural Health Monitoring 
Andrew Golato, Sridhar Santhanam*, Fauzia Ahmad, Moeness G. Amin

 

Center for Advanced Communications, College of Engineering, Villanova University,  

800 E. Lancaster Ave., Villanova, PA 19085, USA. 

ABSTRACT  

In structural health monitoring, Lamb waves are employed extensively to examine and monitor thin structures, such as 

plates and shells. Typically, a network of piezoelectric transducers is attached to the structural plate member and used for 

both transmission and reception of the Lamb waves. The signals scattered from defects in the plate are recorded by 

employing the transducers in pitch-catch pairings. In this paper, we propose a multifrequency, multi-modal sparse 

reconstruction approach for localizing defects in thin plates. We simultaneously invert Lamb wave based scattering 

models for both fundamental propagating symmetric and anti-symmetric wave modes, while exploiting the inherent 

sparsity of the defects. Dictionaries are constructed for both fundamental wave modes, which account for associated 

dispersion and attenuation as a function of frequency. Signals are collected at two independent frequencies; one at which 

the fundamental symmetric mode is dominant, and the other at which only the fundamental anti-symmetric wave mode is 

present. This provides distinct and separable multi-modal contributions, thereby permitting sparse reconstruction of the 

region of interest under the multiple measurement vector framework. The proposed defect localization approach is 

validated using simulated data for an aluminum plate.   
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1. INTRODUCTION 

Today, Structural Health Monitoring (SHM) has emerged as a leading technology in the assessment of the integrity or 

health of a structure.
1-4

 With applications to a variety of structures, and associated self-sensing capabilities of the 

structures, much of the recent attention has been given to this field. Under the umbrella of SHM, guided ultrasonic waves 

find favor in the real-time imaging of defects in thin-walled structures, which include airplanes, bridges, and windmills. 

The utilization of a self-sensing, real-time system in such structures fosters safety and offers economic advantages.
5-6

  

Lamb waves have gained preference in the SHM of thin-walled structures.  These guided waves, unique to thin plates 

and shell structures, can travel large distances without significant attenuation, while also lending themselves to rich 

interactions with defects.
7-9

  Propagation characteristics of Lamb waves can be obtained by solving the wave equation for 

a thin plate with traction free surface conditions.
10,11

  These  waves are multimodal in nature, and can be separated into 

symmetric (S) and anti-symmetric (A) modes.  While, in general, there are an infinite number of symmetric and anti-

symmetric modes, the number of such modes present in a structure can be regulated by the frequency of excitation in 

relation to the thickness of the plate. At higher frequencies, an overabundance of wave modes exist, while at lower 

frequencies, only the fundamental S0 and A0 modes are present.   

Typically, in order to induce these waves in a structure, a network of piezoelectric (PZT: Lead Zirconate Titanate) 

transducers is attached to the surface. Windowed sinusoidal pulses excite the transmitting transducers, thereby inciting 

Lamb waves in the structure. These waves travel through the structure, interact with any defects present, and arrive at the 

receiving transducers in the network.  While the frequency of excitation regulates the wave modes present in the 

structure, the choice of transducer size will also affect the relative strength or amplitude of the individual wave mode 

packets.
12

 Hence, the propagating wave can be reduced to a single dominant symmetric or anti-symmetric mode through 

the appropriate choice of transducer and excitation frequency.   

While these choices can lend predictability to the received signal, the dependence of the phase and group velocities of 

the individual modes on frequency will complicate the signal.  Frequency-dependent velocities change the shape of the 

waves during propagation via dispersion.  Additional reflections by the boundaries or edges of the structure can further 



 
 

complicate the guided Lamb wave signal.
5-6,13

 Despite the complexities, exploitation of the information contained in the 

various modes provides an enhanced assessment of the health of the structure.  For example, the S0 mode is well-suited 

at detecting transverse cracks in the middle of plates, while the A0 mode interacts best with delamination cracks lying in 

a plane parallel to the plane of the plate.
14

 

Once the scattered signal is received, processing is necessary in order to extract the desired information.  Most often, the 

first step in processing involves the subtraction of a baseline signal (signal received with no defect present) from the 

received signal, thereby producing a residual signal primarily displaying the effects of the defects.
5-6 

This step is 

followed by an image formation process whereby the scene (area under investigation) is reconstructed. While both data-

independent and adaptive beamforming approaches have been employed in the past for scene reconstruction in order to 

detect the presence of defects, none of these methods exploit the sparsity of scattering sources (defects) in the structure 

for image recovery.
15-16

 In recent work, the defect imaging problem in Lamb wave based SHM was cast in a sparse 

reconstruction framework by recognizing that the number of defects is typically small.
5-6

 Reasonably accurate imaging 

results with sufficient resolution of neighboring defects in the presence of noise were obtained via an l1-norm 

minimization approach. While this work found success, the multimodal nature of Lamb waves was not exploited.  

More recently, a multimodal scene reconstruction approach for localizing defects in thin plates has been proposed by the 

authors.
17

 This approach inverts a multimodal Lamb wave based model through exploitation of the sparsity of the 

defects. It considers both symmetric and anti-symmetric fundamental propagating Lamb modes and constructs model-

based dictionaries for each mode, taking into account the associated dispersion and attenuation through the medium. 

Image recovery is performed jointly across the two modes using the group sparsity constraint.
17-21

 While this method 

provides good results, it does not take advantage of the separability of the modes and associated signals, which is offered 

by excitation of the individual modes at distinct frequencies as considered in this paper. In the current work, using two 

unique transducer-frequency combinations, model-based dictionaries are constructed  and utilized, in conjunction with a 

mode-separable signal,  to reconstruct the image jointly across the two modes within the multiple measurement vector 

framework. The effectiveness of the proposed method is demonstrated using simulated data for an aluminum plate.  

The remainder of the paper is organized as follows. In Section 2, we describe the signal propagation model and present 

the sparse reconstruction algorithm for exploitation of the multifrequency-multimodal propagating Lamb modes. Results 

based on simulated data are discussed in Section 3. Section 4 contains the concluding remarks.   

 

2. MULTIMODAL SIGNAL MODEL AND SPARSE RECONSTRUCTION  

A spatially distributed network of J transducers is considered.  Each sensor can both transmit and receive signals in the 

form of Lamb waves. The transducers are employed for data collection in pairs, in a pitch-catch mode. For J transducers, 

a total of      (   )  transmit-receive pairs are used. 

Consider the  th transmit-receive pair, with the transmitter and receiver located at position vectors          , 

respectively. The transmitter is excited by a waveform  ( ), whose center frequency is carefully chosen to match the 

transducer such that only a single mode (either the fundamental A0 mode, analyzed at center frequency    
, or 

fundamental S0 mode, analyzed at center frequency    
) is produced. The direct propagation between the transmitter and 

the receiver in the absence of any defects is considered first. Let   denote either the propagating A0 or S0 mode, 

depending on the frequency of operation. The direct received signal,     
   ( ),  can be expressed in the frequency domain 

as  

     
   ( )  (   ‖     ‖ )

    ( )    (     ‖     ‖    ( )), (1) 

where  ( ) is the Fourier transform of  ( ),    is the frequency-dependent phase speed for the mode  ,    is a 

normalizing constant for the distance of the lth transmit-receive pair. The attenuation caused by the geometrical 

spreading of the circular wavefront is captured by the inverse square root dependence on ‖     ‖    The time-domain 

equivalents of the A0 and S0 signals,      

   ( )          

   ( )  are the inverse Fourier transforms of equation (1) for    A0 

and S0, respectively. Thus, the baseline signal corresponding to the  th transmit-receive pair for the   mode is given by 
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It is noted that, in addition to the direct signal, the received signal may contain scattering from the boundaries of the 

plate. These additional contributions, however, are quite weak provided that the plate boundaries are sufficiently far 

away from the area being interrogated. As such, they are not included in the baseline signal in eq. (2). 

Next, consider a defect located at position vector   . In addition to the direct propagation of the   mode, signals 

scattered by the defect arrive at the receiver. If the defect is symmetric, the scattered signal will consist of a single mode, 

the   mode.  On the other hand, asymmetric defects can spawn additional scattered modes. As a result, the scattered 

signal can contain both fundamental modes. It is assumed here that the dominant scattered mode is the   mode.  The 

received scattered wave in the frequency domain for the   mode is given by, 
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where     and      are the respective normalizing constants for the distances of the lth transmitter and receiver to the pth 

defect,      is the frequency-domain defect response for the   mode, which is typically a function of frequency, the 

incident angle       and the scattered angle       .  The equivalent time-domain version,      
  ( )  is the respective inverse 

Fourier transform of eq. (3) for mode   . In the presence of the defect at   , the total received signal at    is the sum of 

the direct and scattered signal components corresponding to the   mode, 

     ( )      
   ( )       

  ( )    (4) 

For the case of P structural defects in the plate, the total received signal, corresponding to the  th transmit-receive pair, is 

the superposition of the direct signal and the scattered modes produced by all defects, which can be expressed as  

     ( )      
   ( )  ∑ (     

  ( ))   
       (5) 

Note that the interactions between the defects are ignored in this model. Background subtraction is applied as follows, 

           ( )      
   ( )  ∑ (     

  ( ))   
       (6) 

The lth difference signal,      , contains only the scattered signal components for mode  .  The direct components are 

the same over the two measurements and are, thus, removed from the difference signal.  

2.2 Multimodal Linear Signal Model  

Consider the special case of angle- and frequency-independent defect scattering responses, i.e.      
(              )   

     
 and       

(              )       
         Future work will consider the more general case of frequency- and angle-

dependent scattering responses.  

The equivalent matrix-vector representation of the difference signals,                  , corresponding to mode  , 

is obtained as follows. The area under investigation, or region of interest (ROI) is conceptualized as a uniform grid of M 

points representing the potential defect locations. M is assumed to be much greater than P, which corresponds to the 

sparsity assumption that most of the area is assumed to be defect-free. Let    
 and    

 be the concatenated     scene 

reflectivity vectors corresponding to the spatial sampling grid under the A0 and S0 modes, respectively. Vectors    
and 

   
are the outputs of weighted indicator functions. If the pth defect exists at the mth grid-point, the element m of these 

vectors takes the values      
 and      

, respectively; otherwise, the element m is equal to zero. The lth difference signal, 

       is sampled at times                 to obtain a     vector      Then, using equations (3) and (6), we 

obtain the relationship between the lth difference signal for mode   and the corresponding scene reflectivity vector as 
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where      
 and      

are dictionary matrices of dimensions      The mth column of      
consists of the scattered A0 

wave at the center frequency    
  corresponding to a defect at the mth grid-point     and the kth element of the mth 

column can be written as 
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Likewise, the mth column of      
consists of the scattered S0 wave at the center frequency    

  corresponding to a defect 

at    with its kth element given by 
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Equations (7) and (8) consider the contribution of only one transmit-receive pair. For each mode, stacking the difference 

signal vectors corresponding to all L pairs allows the formation of the      vector: 
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where the superscript ‘ ’  e otes the matrix transpose operation.  Eqs. (7), (8), and (11) together yield the linear system 

of equations 
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where 

    [    
       

           
 ]

 
    for    A0, S0.   (14) 

denote the respective dictionaries of size      corresponding to the A0 and S0 propagation modes at the center 

frequencies    
 and    

  respectively. 

2.3 Multifrequency Block Diagonal Group Sparse Reconstruction 

Signal propagation and reception occur independently at the two distinct frequencies (   
 and    

) for the two modes.  It 

is assumed here that the reflectivity of the defects will depend on the nature of the fundamental mode (A0 or S0) that is 

incident upon it.  Therefore, no prior knowledge of the exact relationship between    
and    

 can be assumed. 

Nevertheless, it is clear that both reflectivity vectors represent the same scene. Hence, they share a common support. 

That is, if a particular element of    
is nonzero, then so should be the corresponding element of    

  This correlation 

lends itself to a group sparse reconstruction.  Furthermore, the resolvability of the distinct A0 and S0 components of the 

received signal, by virtue of operation at two separate frequencies, permits a block diagonal structure to be utilized for 

group reconstruction, as described next.  

The separable modal contributions     are stacked into a tall vector         

       

   .  A stacked signal model is 

formed from equations (12) and (13) as 

          (15) 

with a stacked scene reflectivity vector       

      

    and a combined multimodal dictionary,        (   
 

   
)  (

   
 

    

), where   represents a zero matrix of size     .  

Owing to the aforementioned group sparse nature of the problem at hand, the nonzero values in   will appear in groups 

of length two rather than being arbitrarily spread throughout the stacked vector. The group-sparse vector   can be 

recovered from the measurements    in equation (15) through a mixed       norm optimization
18

 or a block version of 

the Orthogonal Matching Pursuit algorithm (BOMP)
19

. The latter will be utilized in this work for scene recovery. Once 

the stacked vector has been reconstructed, the recovered vectors  ̂  
and  ̂  

 are combined to obtain a single composite 

scene representation  ̃. This is achieved by calculating the    norm across the elements of these vectors as
17
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3. SIMULATION RESULTS 

Consider a network of ten transducers (A, B, C, D, and E; and A',B',C',D', and E') located circumferentially around a 

circle of radius 250mm, centered at the center of a 1.22m square plate.  The transducer coordinates are specified in Table 

1 and the geometry is presented in Fig.2.  The prime (') denotes transducers that generate the S0 wave mode (depicted as 

larger green circles in Fig. 2); non-primed transducers (represented by smaller red circles in the Fig. 2) have an A0 modal 

bias. The ROI is a 400mm by 400mm square centered at the center of the plate, as shown by the cyan mesh-grid in Fig. 

2. All coordinates are relative to the origin, denoted by the blue circle in Fig. 2 in the lower left-hand corner of the 500 

mm square that perfectly circumscribes the transducer circle.  

 

 

Figure 1. Schematic of the simulation setup.  Only the part of the plate containing the transducers and the defects is shown. 

 

PZT X(mm) Y(mm)  PZT X(mm) Y(mm) 

A 250 500  A' 375 467 

B 467 375  B' 500 250 

C 467 125  C' 250 0 

D 125 34  D' 34 125 

E 0 250  E' 34 375 

 

Table 1. Transducer locations, X-Y coordinates in millimeters. 

For each mode, there are five transducers resulting in 20 transmit-receive pairings. However, it is understood that for the 

case of a single wave mode propagating from the transmitter to the receiver, the path from A to B is identical to the path 

from B to A; therefore, we can eliminate the double counts, i.e. we consider      distinct combinations for each 

mode.  The excitation is chosen to be a Hanning-windowed, five-cycle burst of a sinusoidal signal.  For A0 mode, the 

sinusoidal burst was centered at 100 kHz and generated using the non-prime transducers. For the S0 mode, the center 

frequency was selected to be 175 kHz using the primed transducers.  The choice of using separate transducers reflects 

experimental constraints by which separate and different transducers must be utilized in order to isolate solitary wave 

modes
12

. The corresponding phase velocities,    
 and    

, for the A0  and S0 modes are frequency dependent; therefore, 



 
 

dispersion is accounted for in the dictionary matrices.  The ROI is divided into 31  31 (       ) grid points. Two 

defects are introduced to the scene and modeled as point scatterers with modal bias, i.e. they will scatter either the A0 

mode or the S0 mode, but not both.  The first defect is located at (160,160) mm, and it reflects S0, such that      
  , 

while      
    .  The second defect, located at (340,340) mm, produces a strong A0  mode, with      

  , while not 

reflecting the S0 mode (     
    .) The scattered signal corresponding to each transmit-receive pair is sampled at 1 

MHz for each mode and consists of        time samples; thus, the total number of samples for all ten transmit-

receive pairs is 10240 for each mode.  Therefore, the length of    in equation (15) is 20480 samples. White Gaussian 

noise was added with -20 dB signal-to-noise ratio (SNR) to the simulated signal measurements. The individual modal 

dictionaries,    
 and    

, corresponding to the individual A0 and S0 modes, are of size 10240  961 each; thus, the 

block-diagonal multimodal dictionary   of equation (15) has the dimensions 20480  1922.  

First, consider the single-mode based sparse scene recovery in which    
 and    

 are utilized individually and 

independently. Orthogonal matching pursuit
21

 (OMP) is used to reconstruct the sparse vector    
 by only considering the 

linear signal model of equations (12), while    
 is reconstructed using OMP and the signal model in equation (13). For 

the reconstruction, the number of OMP iterations was set to 2 in each case; hence, the single-mode reconstructions 

operate under an over-specified sparsity parameter, sine only a single defect can be seen by a specific mode. Figs. 3(a) 

and 3(b) depict the single-mode sparse reconstruction results for the A0 and S0 modes, respectively. Since one defect 

preferentially reflects A0 mode and the other defect biases the S0 mode, each single mode reconstruction predictably only 

identifies one of the two true targets, while placing its other selection at a false position.  

Instead of the joint reconstruction of the two reflectivity vectors under the group sparsity framework, we first consider 

averaging the intensities of the independent single-mode reconstructions to yield the composite reconstructed scene 

image, shown in Fig. 4(a). In so doing, both true defect locations are identified; however, two additional false selections 

are also present. Next, we utilize the group sparse reconstruction using BOMP with 2 iterations. The group sparse result, 

is displayed in Fig. 4(b).  It is clear from Fig. 4(b) that the proposed multimodal, multifrequency group sparse 

reconstruction approach provides superior performance in high noise scenarios, as it correctly detects and localizes both 

defects without introducing any false alarms.  

In order to quantify the performance of the multimodal-multifrequency approach over single-mode reconstructions, we 

use the Earth Movers Distance (EMD)
23-24

 metric, which calculates the power necessary to transform the reconstructed 

image into the ground truth image. For the simulations, consider the same two defect scenario as above, with the same 

modal biases. The simulation is averaged over 100 Monte Carlo runs. The averaged mean and standard deviation of the 

EMD are plotted versus the SNR in Fig. 5 for the single  mode  only reconstructions only,  the multimodal reconstruction 

   
(a)              (b) 

Figure 3. Single-mode sparse reconstruction results using the (a) A0 mode dictionary only, and (b) the S0 mode dictionary 

only.   

 



 
 

   
(a)              (b) 

Figure 4. Multimodal sparse reconstruction results using the (a) the intensity average of the A0 only with the S0 only result, 

and (b) the group sparse appraoch based on the multimodal multifrequency dictionary. 

 

Figure 5. Plots of the mean and standard deviation of the EMD for the two single and two multimodal approaches. 

Reconstructions more closing matchign the ground truth obtain EMD values closer to zero.  

obtained via the intensity average of the two single-mode reconstructions, and the group sparse reconstruction. For the 

Monte Carlo runs, SNR values in the [-20 20] dB range were considered with 10 dB increments.  For all considered 

cases, both the mean value and the standard deviation of the EMD predictably decrease as SNR increases.  However, it is 

noted that only when considering both modes does the EMD curve approach a zero mean value with a small standard 

deviation. This validates the superior performance of a multimodal approach over a single mode reconstruction.  

Furthermore, when considering unfavorable SNR conditions (-15dB and below), a clear advantage is seen in the block 

diagonal group approach.  

Through these simulations, the shortcoming of a single-mode reconstruction is highlighted in case of biased defects.  It is 

well known that different defects interact differently with each of the fundamental modes
9
.  Hence, reconstruction based 

only on a single mode may fail to detect and localize all defects, assuming the bias of the defects is unknown. Since prior 

knowledge of the defect type present in the structure being interrogated is not typically available, an accurate and robust 

reconstruction is ensured by exploiting the multimodal nature of Lamb waves.   



 
 

4. CONCLUSION 

This paper proposed a sparse reconstruction approach, which exploits both the symmetric and anti-symmetric 

fundamental Lamb modes in order to identify and localize defects in thin plates. Two separate excitation frequencies are 

employed to ensure resolvability of the multimodal scattered signals. Model-based dictionaries are constructed for each 

mode, whereby one dictionary considers an S0 biased frequency and the other a separate frequency at which A0 mode is 

more dominant. These dictionaries incorporate the associated dispersion and attenuation through the medium. Using 

these dictionaries, sparse reconstruction of the area being interrogated is performed jointly across the two modes using 

the notion of group sparsity, and by exploiting the block diagonal structure of the combined dictionary, which naturally 

arises in the multifrequency approach.  Simulations for a thin aluminum plate are used to demonstrate the superior 

performance of the multimodal approach over the single-mode sparse reconstruction. Current pursuits involve 

experimental verification of the proposed multimodal multifrequency reconstruction approach.  
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