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ABSTRACT  

The presence of multiple modes in guided-wave structural health monitoring has been usually considered a nuisance and 

a variety of methods have been devised to ensure the presence of a single mode. However, valuable information 

regarding the nature of defects can be gleaned by including multiple modes in image recovery.  In this paper, we propose 

an effective approach for localizing defects in thin plates, which involves inversion of a multimodal Lamb wave based 

model by means of sparse reconstruction. We consider not only the direct symmetric and anti-symmetric fundamental 

propagating Lamb modes, but also the defect-spawned mixed modes arising due to asymmetry of defects. Model-based 

dictionaries for the direct and spawned modes are created, which take into account the associated dispersion and 

attenuation through the medium.  Reconstruction of the region of interest is performed jointly across the multiple modes 

by employing a group sparse reconstruction approach. Performance validation of the proposed defect localization 

scheme is provided using simulated data for an aluminum plate. 
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1. INTRODUCTION  

Structural Health Monitoring (SHM) is a primary technology for the assessment of the integrity of a variety of 

structures.
1-4

 SHM enables self-sensing capabilities in structures, and guided ultrasonic waves within SHM can be used 

for real-time imaging of defects in thin-walled structures, such as airplanes, bridges, and windmills. Guided ultrasonic 

waves, such as Lamb waves, can travel large distances without experiencing significant attenuation, and they provide 

rich interactions with defects. Therefore, they are the preferred wave mode for SHM of thin plate and shell structures.
5-7

 

Lamb waves are the solutions to the elastic wave equation for a thin plate with traction free surface conditions.
8,9

  The 

solutions are infinite in number and the waves, multimodal by nature, can be separated into symmetric (S) and anti-

symmetric (A) modes.  While an infinite number of symmetric and anti-symmetric modes exist, the number present in a 

given structure can be regulated by the frequency of the generated signal. Higher frequencies will offer an 

overabundance of wave modes, while lower frequencies induce only the fundamental symmetric and anti-symmetric (S0 

and A0) modes.  The phase and group velocities of each individual mode are frequency-dependent, leading to dispersion, 

which causes the shape of the waves to change during propagation.   

Despite the complexity of the propagating Lamb waves, recent advances in computing, processing, and electronics have 

enabled the exploitation of the information contained in the various modes.  Proper utilization of the various modes 

provides a more robust assessment of the health of the structure as the different modes may contain different 

information: the S0 mode is well suited to detecting transverse cracks in the middle of plates, the S1 mode is biased 

toward detecting smaller transverse cracks on the surface of plates, and the A0 and A1 modes interact strongly with 

delamination cracks lying in a plane parallel to the plane of the plate.
10

 

Recently, the defect imaging problem was cast within the sparse reconstruction framework by recognizing the inherent 

property that the number of defects is typically much smaller than the number of locations at which a defect could 

exist.
11, 12

 Employing an l1-norm minimization approach, relatively accurate imaging results were obtained using a single 

mode in Ref. [11]. More recent work in Ref. [12] accounted for the multimodal nature of Lamb waves
 
by exploiting 

fundamental symmetric and anti-symmetric modes in unison for scene recovery. However, this multimodal approach did 
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not consider the mode conversion phenomenon whereby an asymmetric defect produces both an S0 and an A0 wave after 

interaction with either an A0 or an S0 wave.
13

  That is, while only two waves, A0 and S0, leave a transducer and strike a 

defect, four corresponding wave modes are received at the receiving transducer, namely, the reflected A0 and S0 modes 

and the two converted modes: the S0 wave that was spawned at the defect by an A0 mode and the A0 wave that was 

spawned at the defect by an S0 mode. 

In this paper, we present a four-mode multimodal scene reconstruction approach for localizing defects in thin plates. We 

invert a multimodal Lamb wave based model through exploitation of the sparsity of the defects. We consider model-

based dictionaries, one for each of the two excited fundamental modes, which consider the associated dispersion and 

attenuation through the medium. Additionally, we construct two dictionaries which account for conversion of the excited 

S0 and A0 modes into each other at discontinuities and/or asymmetric defects. Joint recovery of the image of the region 

of interest (ROI) is performed across all excited and converted modes using the group sparsity constraint.
14-17

 We 

validate the effectiveness of the proposed method through simulated data for an aluminum plate.  

The remainder of the paper is organized as follows. In Section 2, we describe the multimodal signal propagation model 

and present the sparse reconstruction algorithm for exploitation of the multiple fundamental and converted propagating 

Lamb modes. Supporting simulation results are provided in Section 3. Section 4 presents the concluding remarks. 

2. MULTIMODAL SIGNAL MODEL AND SPARSE RECONSTRUCTION 

2.1 Signal model  

Assume that a network of piezoelectric (PZT) transducers is adhered to the surface of the structure. The transducers are 

assumed to be employed in a pitch-catch mode for data collection. That is, the transducers work in pairs with one 

transducer transmitting the signal and the other acting as the receiver. Let there be a total of L unique transmitter-

receiver combinations used for interrogating the ROI. The transmitter and receiver corresponding to the  th pair are 

located at position vectors    and   , respectively. Consider P structural defects in the plate. The total received signal 

corresponding to the lth transmitter-receiver pair is the superposition of the complete set of scattered modes produced by 

the P defects present and the background signal, and is given by 
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where )(tbl  represents the background signal containing both direct path signals and edge reflections for the lth 

transmitter-receiver pair. The signals )(
0, tg Alp , )(

0, tg Slp , )(
00 /, tg SAlp , and )(

00 /, tg ASlp are the
 

received signal 

components corresponding to the direct and converted modes due to the pth defect when the lth transmitter-pair is active 

and are defined as the respective inverse Fourier transforms of eqs. (2)-(5). 

 
))(/)(2exp()()(

00 22
, fcfjfHxfG Aplplp,AAlp 0

sst  r  (2) 

 ))(/)(2exp()()(
000 22

, fcfjfHxfG Splplp,SSlp sst  r  (3) 

))
)()(

(2exp()()(

00

00

22
/,

fcfc
fjfHxfG

S

pl

A

pl

/Sp,ASAlp 00

sst 





r
  (4)  

))
)()(

(2exp()()(

00

00

22
/,

fcfc
fjfHxfG

A

pl

S

pl

/Ap,SASlp 00

sst 





r
       (5) 

Here, H(f) is the Fourier transform of the excitation waveform h(t),    is the position vector of the pth defect,  and 

 are the frequency-dependent phase speeds of the A0 and S0 modes, respectively, and the parameters ,
0p,Ax ,

0p,Sx  

,
00 /Sp,Ax  and 

00 /Ap,Sx  are the respective scatterer reflectivities under the excited and converted modes. The reflectivities 

are assumed to be independent of frequency and the aspect angle (angle relative to the transmitter and receiver) of the lth 

pair.  
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Note that the model in eq. (1) ignores interactions between the defects Assuming access to the background signals in the 

absence of the defects permits background subtraction to be performed, which results in a difference signal containing 

only the defect-scattered waveforms, 
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The ROI is divided into a uniform grid of M (>> P) pixels, each representing a potential defect location.    Let 
0Ax  and 

0Sx  represent the lexicographically ordered 1M  scene reflectivity vectors, corresponding to the spatial sampling grid 

under the A0 and S0 modes, respectively.  Similarly, 
00 / SAx  and 

00 / ASx  are the scene reflectivity vectors for the 

converted modes of the incident A0 and S0 modes, respectively. Sampling the lth difference signal lz  at times

1,...1,0,  Kktk ,  yields a 1K  vector lz .  Using eqs. (2)-(6), the linear relationship between the lth difference signal 

and the scene reflectivity vectors can be obtained as 

 
000000000000 /AS/Al,S/SA/Sl,ASl,SAl,Al xΨxΨxΨxΨz   (7)   

where
0l,AΨ ,

0l,SΨ ,
00 /Sl,AΨ , and 

00 /Al,SΨ are the dictionary matrices corresponding to the direct and the converted modes, 

each of dimension MK  . The mth column of 
0l,AΨ consists of the scattered A0 wave that corresponds to a defect at the 

mth grid-point ms  where the kth element of the mth column is given by 

  
k

0 tt
Amlmlk,ml,A fcfjfHF



  ))(/)(2exp()(
022

1
sst][Ψ r .   (8) 

The mth column of 
0l,SΨ consists of the scattered S0 wave corresponding to a defect at ms  with its kth element expressed 

as 
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In a similar manner, the (k, m)th elements of the converted mode dictionary matrices are expressed as 
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While eq. (7) only considers the contribution of a single transmitter-receiver pair, the measured data vector z  for all L 

transmitter-receiver combinations is obtained simply by stacking all L difference signal vectors into a single column 

vector  TT
1L

T
1

T
0  zzzz   of dimension 1KL , given by 
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where the superscript ‘T’ denotes the matrix transpose operation and  

  TTTT
Λ ΨΨΨΨ 1,ΛL1,Λ0,Λ   for 000000 /,/,, SAASSA   (13) 

is the dictionary matrix of size .MKL   Note that if downsampling in the time and/or spatial domains is desired, it can 

be incorporated into the signal model simply by premultiplying z  by a downsampling matrix  . Details on the design 

of the matrix   can be found in Ref. [18].  

 

 



 

 
 

 

2.2 Group sparse reconstruction  

Although the direct fundamental symmetric and anti-symmetric modes and the two converted modes have different 

defect reflectivities, the corresponding reflectivity vectors share a common sparsity pattern. That is, if a particular 

element of
0Ax  is nonzero, then so must be the corresponding elements of

0Sx ,
00 / SAx , and ,

00 / ASx  since the elements 

are representing the same location in the same scene. As such, a group sparse reconstruction approach is applied as 

follows. The reflectivity vectors
0Ax ,

0Sx ,
00 / SAx , and 

00 / ASx are stacked to form a single 14 M  vector 

  .
000000 //

TTTTT
xxxxx ASSASA  The measurement vector, z , can then be expressed as  

 Ψxz     (14) 

where  
000000 // ASSASA

ΨΨΨΨΨ  is a composite dictionary matrix of dimension MKL 4 . The scene vector 

x  exhibits a group sparse structure, whereby the group extends across the four considered modes for each pixel location. 

The vector x , can be recovered from the measurements z through either a mixed 12 / ll  norm optimization,
19

 

  
1,2

2

22

1
minargˆ xΨxzx 

x
,  (15) 

where  






1

0 2
1,2 000000

ˆˆˆˆ
M

m

T

/Am,S/Sm,Am,Sm,A
xxxxx and   is a regularization parameter, or a block version of the 

Orthogonal Matching Pursuit algorithm (BOMP).
20

  In this work, BOMP is preferred for scene recovery.  

 

Once the recovered vector x̂  has been obtained, the individual reflectivity vectors ,/,/,,  ,ˆ
000000 ASSASAx  

contained within ,x̂  are combined to obtain a single composite scene representation x~  by simply calculating the 2l norm 

across the elements of these vectors as
19 
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3. SIMULATION RESULTS 

3.1 Simulation parameters and setup 

Let the simulation environment consist of a 3.12 mm thick aluminum plate, whose square base dimension is 1.22 m.  A 

network of five transducers is attached to its surface, at the locations shown in Fig. 1, which provide a total of 10L

transmitter-receiver combinations.  The transducers are excited with a Hanning-windowed, five-cycle burst of a 150 kHz 

sinusoidal signal. Let the ROI be a 400 mm square area at the center of the plate surface.  This choice ensures that the 

plate boundaries are sufficiently far from the transducers; therefore, boundary reflections are considered insignificant 

and not included in the simulated data.  The ROI is divided into a 3131  pixel-grid resulting in a total of 961M

pixels. The sampling rate is 1 MHz, which results in 400K  recorded samples over a time interval of 400 µs. The 

resultant measurement vector has a length of 4000. The individual dictionaries corresponding to the direct and converted 

modes have a dimension of  9614000  each; thus, the composite multimodal dictionary in eq. (14) has dimensions 

.38444000   

Consider two defects, both modeled as point scatterers. The first defect is located at (160,160) mm and is assumed to 

interact strongly with the incident A0 mode (reflectivities are set to  0.1
00 ,Ax  and 1.0

00 ,sx ). The second defect is 

located at (340,340) mm, and similarly biases the incident S0 mode (reflectivities are 1.0
01 ,Ax  and 0.1

01 ,Sx ). The 

two converted modes are assumed to be spawned with equal strength by the defects, such that the converted mode 

reflectivities are set to 50
00000000 1010 .xxxx /S,A/S,A/A,S/A,S  . White Gaussian noise with a signal-to-noise ratio 

(SNR) of 10 dB is added to the simulated measurements. While 10 distinct transmitter-receiver pairings exist, spatial 

downsampling is considered, according to which measurements from only 5 randomly chosen transmitter-receiver pairs 



 

 
 

 

 

Figure 1.  Schematic of the simulation setup. Red triangles represent transducers with coordinates listed in millimeters. Blue 

mesh-grid represents the pixelized ROI.  All coordinates are relative to the coordinate system displayed with origin 

indicated by the circle in lower left-hand corner. 

are utilized in the reconstruction.  The resultant spatially downsampled measurement vector consists of only 2000 

samples and the individual dictionaries corresponding to each of the four modes have dimensions 9612000 , while the 

composite multimodal dictionary is of size .38442000   

The first attempt at scene recovery employs single-mode based sparse scene recovery for the A0 and S0 modes 

individually. Orthogonal matching pursuit (OMP)
21

 reconstructs the corresponding reflectivity vectors 
0Sx and

0Ax  by 

considering the individual single-mode linear signal models 
00 SS xΨz   and 

00 AA xΨz  , respectively, after 

premultiplication by the appropriate downsampling matrix. This reconstruction process is repeated 100 times, where a 

different randomly selected set of 5 transmitter-receiver pairs is chosen per trial run. The number of OMP iterations in 

each case was set to 2. The results of the single-mode sparse reconstruction simulation, averaged over the 100 Monte 

Carlo runs, are shown in Figs. 2(a) and 2(b) for the A0 and S0 modes, respectively. The image intensity in each figure is 

such that the maximum intensity value is normalized to 0 dB. As expected, each single-mode reconstruction can 

confidently detect and localize only one of the two defects.  

Next, the proposed 4 mode multimodal approach, which utilizes the direct and converted modes, is employed for scene 

reconstruction. Two iterations of BOMP are employed for the group sparse recovery of the multimodal target reflectivity 

vector. As in the single-mode reconstruction, the multimodal reconstruction is repeated 100 times with the averaged 

result shown in Fig. 3(b). For comparison, Fig. 3(a) displays the multimodal reconstruction results while ignoring the 

two converted modes. Fig. 3 clearly demonstrates that the multimodal approach provides superior performance over the 

single mode reconstructions as it properly detects and localizes both defects. Furthermore, the multimodal result with the 

inclusion of the converted modes provides a ‘cleaner’ image compared to the one that ignores them. 

4. CONCLUSION 

This work proposed a sparse reconstruction approach for detecting defects in thin plates, which exploited the directly 

scattered fundamental symmetric and anti-symmetric Lamb modes as well as defect spawned converted modes by 

imposing a block sparse structure across the modes.  Model-based dictionaries accounting for the associated dispersion 

and attenuation through the medium were constructed for the four modes Simulation results validated the proposed 

approach by exposing the shortcomings of single mode only reconstructions and highlighting the superior performance 

of the 4-mode multimodal block reconstruction approach. 



 

 
 

 

 

     (a)                                                                         (b) 

Figure 2 shows the results of the single-mode sparse reconstructions using OMP for the A0 mode (a) and the S0 mode (b) 

individually. The true defect locations are located by blue circles and the transducer locations are represented by red 

triangles. 

 

 

 

  (a)                            (b) 

 

Figure 3 displays the multimodal reconstruction using BOMP. Blue circles denote the correct defect locations while the red 

triangles mark the transducer locations. (a) Employs just the two fundamental modes, while (b) exploits four modes by 

using the converted modes and the fundamental modes. 
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