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ABSTRACT  

Lamb waves are utilized extensively for structural health monitoring of thin structures, such as plates and shells. Normal 

practice involves fixing a network of piezoelectric transducers to the structural plate member for generating and 

receiving Lamb waves. Using the transducers in pitch-catch pairs, the scattered signals from defects in the plate can be 

recorded. In this paper, we propose an l1-norm minimization approach for localizing defects in thin plates, which inverts 

a multimodal Lamb wave based model through exploitation of the sparseness of the defects. We consider both symmetric 

and anti-symmetric fundamental propagating Lamb modes. We construct model-based dictionaries for each mode, taking 

into account the associated dispersion and attenuation through the medium.  Reconstruction of the area being 

interrogated is then performed jointly across the two modes using the group sparsity constraint. Performance validation 

of the proposed defect localization scheme is provided using simulated data for an aluminum plate. 
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1. INTRODUCTION 

Structural Health Monitoring (SHM) is emerging as a primary technology for the assessment of the integrity of a variety 

of structures.
1-4

  Much of the recent attention garnered by this field is attributed to the fact that SHM enables self-sensing 

capabilities in structures. Within the application areas of SHM, the use of guided ultrasonic waves for real-time imaging 

of defects in thin-walled structures has grown considerably.  Such thin-walled structures include airplanes, bridges, and 

windmills. The addition of a self-sensing system to such structures would carry both safety and economic advantages.
5
  

Lamb waves are the preferred wave mode for SHM of thin plate and shell structures due to their ability to travel large 

distances without significant attenuation, while providing rich interactions with defects.
6-8

 This preference has only 

recently emerged, facilitated by advances in computing, processing, and electronics that can handle the complexities of 

Lamb waves. Lamb waves are the solutions to the wave equation unique to a thin plate with traction free conditions on 

the plate surfaces.
9,10

  The waves are multimodal and the solutions can be separated into symmetric (S) and anti-

symmetric (A) modes.  The number of symmetric and anti-symmetric modes present can be regulated by the frequency 

of the generated signal. While higher frequencies will offer an overabundance of wave modes, only the S0 and A0 modes 

will be present at low frequencies.  Additionally, the phase and group velocities of the individual modes are frequency-

dependent. As a result,   the shape of the waves changes during propagation due to dispersion.  Edge reflections and the 

scatterer-spawning of additional wave modes further complicate the guided Lamb wave signal.
5,11

 

Despite the complexity of the propagating Lamb waves, exploitation of the information contained in the various modes 

provides an enhanced assessment of the health of the structure.  For example, the S0 mode is appropriate for detecting 

transverse cracks in the middle of plates, while the S1 mode is better suited at detecting smaller transverse cracks on the 

surface of plates.  On the other hand, the A0 and A1 modes interact with delamination cracks lying in a plane parallel to 

the plane of the plate.
12

 

In order to utilize Lamb waves in SHM, typically, a network of piezoelectric (PZT) transducers is attached to the surface 

of the structure.  Windowed sinusoidal pulses excite a transmitting transducer, which incites elastic stress waves – the 

Lamb waves – that travel through the thin-walled structure and arrive at the receiving transducers in the network. During 

their propagation through the structure, the Lamb waves interact with any scatterers present. Once the scattered signal is 

received,  it must be processed in order  to extract defect information from it.  This processing can take on various forms.  
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However, most often, it first involves the subtraction of a baseline signal (signal received with no defect present) from 

the received signal so that the residual displays primarily the effects of the defect.
5 

This is followed by an image 

formation process to reconstruct the scene, i.e., the area under investigation. Both data-independent and adaptive 

beamforming approaches have been employed for scene reconstruction in order to detect the presence of defects.
13,14

 

However, none of these methods exploit the sparsity of scattering sources or defects in the structure for image recovery. 

In a very recent work, the defect imaging problem in Lamb wave based SHM was cast in a sparse reconstruction 

framework by recognizing that the number of defects is typically small.
5
 Reasonably accurate imaging results with 

sufficient resolution of neighboring defects in the presence of noise were obtained with l1-norm minimization approach. 

However, this work did not take into account the presence of multiple modes.  

In this paper, we present a multimodal scene reconstruction approach for localizing defects in thin plates, which inverts a 

multimodal Lamb wave based model through exploitation of the sparsity of the defects. We consider both symmetric and 

asymmetric fundamental propagating Lamb modes and construct model-based dictionaries for each mode, taking into 

account the associated dispersion and attenuation through the medium. Image recovery is then performed jointly across 

the two modes using the group sparsity constraint.
15-18

 The effectiveness of the proposed method is demonstrated using 

simulated data for an aluminum plate.  

The remainder of the paper is organized as follows. In Section 2, we describe the signal propagation model and present 

the sparse reconstruction algorithm for exploitation of the multiple propagating Lamb modes. Results based on simulated 

data are discussed in Section 3. Section 4 contains the concluding remarks.   

 

2. MULTIMODAL SIGNAL MODEL AND SPARSE RECONSTRUCTION  

2.1 Lamb Wave Propagation and Scattering 

Consider a thin plate with a spatially distributed network of J PZT transducers attached to its surface, where each sensor 

can both transmit and receive signals in the form of Lamb waves. A pitch-catch mode of operation is assumed, i.e., 

transducers are employed for data collection in pairs with one transducer transmitting the signal and the other acting as 

the receiver. For J transducers, a total of � = �(� − 1)/2 transmit-receive pairs are used. 

For the 
th transmit-receive pair, let the transmitter and receiver be located at position vectors �� 	and	��, respectively. 

The transmitter is excited by a waveform ℎ(�). Since transmission by PZT transducers is omnidirectional and multi-

modal, both symmetric and anti-symmetric modes propagate from the transducer, but with different frequency-dependent 

speeds. Let the center frequency of the transmitted signal be chosen such that the only modes propagating in the plate are 

the fundamental A0 and S0 modes. First, consider propagation between the transmitter and the receiver in the absence of 

any defects. The A0 and S0 components, ��,��
��� (∙)	and	��,��

���(∙), of the direct received signal can be expressed in the 

frequency domain as  

 ��,��
��� (�) = (��/‖�� − ��‖!)".$%(�) exp()	2*�‖�� − ��‖!/+��(�)), (1) 

 ��,��
���(�) = (��/‖�� − ��‖!)".$%(�) exp()2*�‖�� − ��‖!/+��(�)), (2) 

where %(�) is the Fourier transform of ℎ(�), +�� and +��  are the frequency-dependent phase speeds of the A0 and S0 

modes, �� is a normalizing constant for the distance of the lth transmit-receive pair. The attenuation caused by the 

geometrical spreading of the circular wavefront is captured by the inverse square root dependence on ‖�� − ��‖!.  The 

time-domain equivalents of the A0 and S0 signal components, ,�,��
��� (�)	and	,�,�����(�),	are the inverse Fourier transforms of 

(1) and (2), respectively. The total received direct signal corresponding to the 
th transmit-receive pair is given by 

 -����(�) = ,�,��
��� (�) +	,�,����� (�), (3) 

which serves as the baseline signal for background subtraction. It is noted that additional modes are also generated by 

signal scatterings from the boundaries of the plate. However, these modes are quite weak provided that the plate 

boundaries are sufficiently far away from the area being interrogated and are, thus, ignored in this work. 

Next, consider a defect located at position vector /0.  In addition to the direct propagation, both S0 and A0 waves will be 

scattered by the defect towards the receiver at  �� . The received scattered waves in the frequency domain for the two 

modes are given by, 
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where B�0 and C�0  are the respective normalizing constants for the distances of the lth transmitter and receiver to the pth 

defect, <0,�� and <0,�� are the respective frequency-domain scatterer responses under the A0 and S0 modes, which are 

typically functions of frequency, the incident angle =�,�> and the scattered angle =�,?@A.  The equivalent time-domain 

versions, ,�0,��
12 (�)	and	,�0,��12 (�),	are the respective inverse Fourier transforms of eqs. (4) and (5). In the presence of the 

scatterer at /0, the total received signal at �� 	is the sum of the direct and scattered signal components corresponding to 

the S0 and A0 modes, 

 -�(�) = ,�,��
��� (�) +	,�,����� (�) + ,�0,��

12 (�) + ,�0,��12 (�).   (6) 

For the case of P structural defects in the plate, the total received signal, corresponding to the 
th transmit-receive pair, is 

the superposition of the direct signal and the scattered modes produced by all defects, which can be expressed as  

 -�(�) = ,�,��
��� (�) +	,�,����� (�) + ∑ E,�0,��

12 (�) + ,�0,��12 (�)FG8H0I" .   (7) 

Note that the interactions between the defects are ignored in this model. Background subtraction is applied as follows, 

 J-� = -�(�) − -����(�) = ∑ E,�0,��
12 (�) + ,�0,��12 (�)FG8H0I" .   (8) 

The lth difference signal, J-�, contains only the scattered signal components.  The direct components are the same over 

the two measurements and are thus removed from the difference signal.  

2.2 Multimodal Linear Signal Model  

In this section, we consider the special case of angle- and frequency-independent defect scattering responses. That is, 

<0,��(�, =�,�>, =�,?@A) 	= K0,�� and  <0,��(�, =�,�> , =�,?@A) = K0,�� ,	∀	�, 
.	The more general case of frequency- and angle-

dependent scattering responses will be considered in future work.  

An equivalent matrix-vector representation of the difference signals, J-� , 
 = 0,1,⋯ , � − 1, can be obtained as follows. 

The area being investigated is conceptualized as a uniform grid of M points representing the potential defect locations, 

where M is assumed to be much greater than P. That is, most of the area is assumed to be defect-free. Let O�� and O�� be 

the concatenated P × 1 scene reflectivity vectors corresponding to the spatial sampling grid under the A0 and S0 modes, 

respectively. Vectors O��and O��can be viewed as the outputs of weighted indicator functions, which take the values 

K0,�� and K0,��, respectively, if the pth defect exists at the mth grid-point; otherwise, the values are equal to zero. 

Sampling the lth difference signal J-� 	at times �R, S = 0,1,⋯ , T − 1, we obtain a T × 1 vector ∆V� . Then, using (4), (5), 

and (8), we obtain the relationship between the lth difference signal and the scene reflectivity vectors as 

 ∆V� = W�,��O�� +W�,��O�� ,   (9) 

where W�,�� and W�,��are dictionary matrices of dimensions T ×P. The mth column of W�,��consists of the scattered A0 

wave corresponding to a defect at the mth grid-point /X and the kth element of the mth column can be written as 
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Likewise, the mth column of W�,��consists of the scattered S0 wave corresponding to a defect at /X with its kth element 

given by 
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]
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Eq. (9) considers the contribution of only one transmit-receive pair. Stacking the difference signal vectors corresponding 

to all L pairs forms the T� × 1 vector 



 

Figure 1. Structure of the dictionary corresponding to a single mode. Each column corresponds to a particular grid-point and 

consists of L blocks. Each block corresponds to a unique transmit-receive pair and consists of K elements resulting from K time 

samples per pairing. 

 

 ∆V = b∆V"c				∆VHc 		⋯			∆Vd8Hc ec ,   (12) 

where the superscript ‘f’ denotes the matrix transpose operation.  Eqs. (9) and (12) together yield the linear system of 

equations 

 ∆V = W��O�� +W��O�� ,   (13) 

where 

 W�� = YW",��
c 		WH,��

c 	⋯		Wd8H,��
c Zc ,			W�� = YW",��

c 		WH,��
c 	⋯		Wd8H,��

c Zc   (14) 

denote the respective dictionaries of size T� ×P corresponding to the A0 and S0 propagation modes. The structure of 

each dictionary is illustrated in Fig. 1. 

2.3 Group Sparse Reconstruction 

The reflectivity of the defects usually tends to vary under the two fundamental modes. In general, no prior knowledge of 

the exact relationship between O��and O�� can be assumed. However, since both reflectivity vectors represent the same 

scene, they share a common support. That is, if a particular element of O��is nonzero, then so should be the 

corresponding element of O�� . This calls for a group sparse reconstruction, which is described below.  

First, the vectors O��and O��are stacked to form a single tall vector O = bO��
c 		O��c ec . Then,  ∆V can be expressed as  

 ∆V = WO,   (15) 

where W = bW��			W��e. The nonzero values in	O appear in groups of length two rather than being arbitrarily spread 

throughout the vector. The group-sparse vector O can be recovered from the measurements ∆V in (15) through a mixed 


!/
H norm optimization
15

 or a block version of the Orthogonal Matching Pursuit algorithm (BOMP)
16

. In this work, we 

employ the latter for scene recovery.  

In order to exploit the power received through multimodal propagation, the recovered vectors Og��and Og��have to be 

combined to obtain a single composite scene representation Oh. We achieve this by calculating the 
!	norm across the 

elements of these vectors as
17

  

 bOheX = KiX = 7bKjX,�� 				KjX,��ec7k.   (16) 

 

3. SIMULATION RESULTS 

We consider a network of 4 transducers (A, B, C, and D) located in the corners of a 2 ft × 2 ft square region, which is 

centered on the surface of a 4 ft × 4 ft aluminum plate of thickness 3 mm,  as shown in Fig. 2.  There are a total of  � = 6  



 

Figure 2. Schematic of the simulation setup.  Only the part of the plate containing the transducers and the defects is shown. 

distinct transmit-receive pairs, which are used in a sequential manner. The excitation is chosen to be a Hanning-

windowed, five-cycle burst of a 100 kHz sinusoidal signal.  The corresponding velocities, +�� and +��, for the A0  and S0 

modes at 100 kHz are 2700 m/s and 5400 m/s, respectively. However, the phase speeds vary with frequency and this 

dependency is built into the dictionary matrices.  The origin of the coordinate system is positioned at the lower left 

transducer, labeled as “A” in Fig. 2. The region under investigation is selected as a 1ft × 1ft square, centered at (1, 1) ft 

and divided into 49 × 49 (P	 = 	2401) grid points. Two defects, modeled as point scatterers, are located at (0.8, 0.9) ft 

and (1.1, 1.2) ft, respectively. The former is assumed to produce a strong scattered S0 mode (K",�� = 1) but a weak A0 

mode (K",�� = 0.1), whereas the latter produces a strong A0  mode (KH,�� = 1) and a weak S0 mode (KH,�� = 0.1). The 

scattered signal corresponding to each transmit-receive pair is sampled at 1 MHz and consists of T = 600 time samples. 

White noise with 0 dB signal-to-noise ratio (SNR) is added to the simulated measurements. Thus, the concatenated 

received signal, ∆V, corresponding to all 6 transmit-receive pairs comprises 3600 time samples. Various components of 

the noise-free concatenated scattered signals are depicted in Fig. 3. We observe that the modal contributions are 

separable in this case while the contribution from each defect for a given wave mode is unresolvable. However, this will 

not always be the case as it depends on the number and locations of defects, the choice of the operational frequency, and 

the transducer network configuration. The dictionaries, W��  and W�� , corresponding to the individual A0 and S0 modes, 

are of size 3600 × 2401 each, whereas the multimodal dictionary W of (15) has the dimensions 3600 × 4802.  

We first use single-mode based sparse scene recovery by employing W��  and W�� independently. That is, we use 

orthogonal matching pursuit
19

 (OMP) to reconstruct the sparse vector O��(O��)	by only considering the linear signal 

model ∆V = W��O��  (∆V = W��O��). The number of OMP iterations was set to 2. Figs. 4(a) and (b) depict the single-

mode sparse reconstruction results for the A0 and S0 modes, respectively, each of which is averaged over 100 Monte 

Carlo runs. With one defect preferentially reflecting A0 mode and the other defect favoring the S0 mode, each single 

mode reconstruction is able to identify only one of the two targets. The location of the second grid-point, populated by 

OMP, is distributed throughout the scene across the various Monte Carlo runs and, as such, is not visible within the 

dynamic range of the averaged results in Figs. 4(a) and (b). We next use BOMP with 2 iterations to perform the proposed 

group sparse multi-modal reconstruction. The corresponding result, averaged over 100 Monte Carlo runs, is shown in 

Fig. 4(c), which clearly provides superior performance by correctly detecting and locating both defects.  

This example highlights the shortcoming of single-mode based sparse reconstruction.  Since different defects may favor 

one fundamental mode over another
8
, reconstruction based only on A0 mode may fail to detect and localize all defects. In 

the absence of any prior knowledge of the type of defect that may be present in the structure under examination, the only 

way to ensure an accurate and robust reconstruction is to utilize the multimodal approach. 



 

Figure 3. Various components of the cconcatenated received signal:  Scattered S0 modes from the first (red) and second 

(magenta) targets, and the scattered A0  modes from the first (blue) and second (cyan) targets. 

   
(a)              (b) 

 
(c) 

Figure 4. Sparse reconstruction results using the (a) A0 mode dictionary only, (b) the S0 mode dictionary only, and (c) group 

sparse appraoch based on the multimodal dictionary. 



4. CONCLUSION 

We have proposed a sparse reconstruction approach, which exploits both symmetric and anti-symmetric fundamental 

Lamb modes for localizing defects in thin plates. We constructed model-based dictionaries for each mode, taking into 

account the associated dispersion and attenuation through the medium, followed by sparse reconstruction of the area 

being interrogated jointly across the two modes using the notion of group sparsity. Superior performance of the 

multimodal approach relative to single-mode sparse reconstruction was demonstrated using simulation results. We are 

currently working on experimental validation of the proposed multimodal approach. 
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