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Abstract—This paper presents a multipath exploitation approach for defect imaging in thin-

walled structures using Lamb waves under the sparse reconstruction framework. An image 

of the defects in the region of interest is obtained by inverting a multipath propagation model 

via group sparse reconstruction. This permits accurate imaging of regions close to the 

structure boundary without the introduction of ‘false’ defects or ghosts. Real-data 

measurements of defects close to the edge of an aluminum plate are used to demonstrate the 

effectiveness of the multipath exploitation scheme. 

 
 

Index Terms—Sparse reconstruction, Lamb waves, multipath exploitation, structural 

health monitoring. 

I. INTRODUCTION 

Use of Lamb waves is emerging as a primary means for the assessment of the integrity of thin-

walled structures [1-4]. Lamb waves are the unique solutions to the elastic wave equation for a 

thin plate with traction free surface conditions [5].  These solutions are multimodal in nature, with 

the modes being separated into sets of symmetric (S) and anti-symmetric (A) modes.  The number 

of distinct propagating modes in a given structure is a function of the plate thickness and the 

excitation frequency. Transducer size also affects the relative strength of the individual modes. As 

such, the propagating wave can be reduced to a single dominant (A or S) mode by an appropriate 
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choice of the transducer and the excitation frequency [6]. 

A number of approaches have been developed for imaging defects in thin-walled structures 

using guided Lamb waves generated by arrays of ultrasonic piezoelectric transducers [7].  An 

efficient technique is the use of an array of ultrasonic transducers that generate and receive guided 

waves in a pitch-catch configuration. Signals received by the transducers in the array can be 

processed with appropriate algorithms to reveal the presence of defects.  Among these, the delay 

and sum algorithm is simple to implement, though it is prone to imaging errors [8].  Tomographical 

methods have been developed as well, but these techniques require a dense array of transducers 

[7].  Sparse reconstruction methods have emerged recently as viable techniques to image defects 

using a sparse array of transducers [9, 10].  For a small number of defects, these methods have 

been shown to be robust in reconstructing the images of defects in the structure.  

When interrogating a structure such as a plate with single-mode Lamb waves, the received 

signals not only contain the direct scatterings from the structural defects, but also the secondary 

reflections arising due to wave interactions with the defect and plate boundaries. These multipath 

reflections have typically been avoided by restricting the region of interest (ROI) to only the 

interior regions of the plate under examination [8-11]. However, this hinders the localization of 

defects in regions close to the structure boundaries. Some recent work using data-driven model-

based approaches has shown robustness in examining regions in the presence of accounted-for and 

unaccounted-for interference from edge reflections [12, 13]. However, these authors have not 

attempted to exploit the additional information provided by edge reflections. To address this issue, 

we propose a Lamb wave based sparse reconstruction method to exploit the defect information in 

multipath reflections to provide enhanced localization capability in regions close to the structure 

edges.   
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Multipath contributions have been utilized in the recent past for defect imaging in 

nondestructive evaluation (NDE) and Structural Health Monitoring (SHM) applications [14-17]. 

In [14], the authors exploited the multipath returns in delay-and-sum beamforming to reveal 

shadowed parts of the defects, thereby enabling defect perimeter detection in ultrasonic NDE. In 

[15], the authors proposed a multipath guided wave imaging method, which generates an enhanced 

image of the ROI by comparing, via deconvolution, the received signals with a database of 

scattered signal estimates. The latter were obtained from wavefield data collected with a scanning 

laser vibrometer. Time-reversal methods were applied in [16] to exploit multipath propagation in 

SHM. In [17], multiple ultrasonic echoes caused by reflections from the plate’s boundaries are 

considered and an analytical model is proposed to estimate the envelope of scattered waves. 

Correlation between the estimated and experimental data is used to generate images. However, the 

aforementioned methods do not utilize the sparsity property of the defects in an otherwise pristine 

structure for image reconstruction. This provides the motivation for our work which exploits 

multipath propagation to enhance defect imaging within the sparse reconstruction framework. 

This paper focuses on the formulation and experimental validation of a sparsity-based 

multipath exploitation scheme. It significantly extends previous preliminary work by the authors 

[18] which presented results based on simulations.  Our scheme is based on a signal model that 

considers several multipath signals in addition to the direct path signal.  The fundamental anti-

symmetric mode (A0) is utilized to collect real-data measurements from an aluminum plate with 

one and two symmetric defects. Using the group sparsity constraint, image reconstruction is 

performed jointly across all signal contributions.  

The remainder of the paper is organized as follows. In Section II, we present the signal model 

and the group sparse reconstruction framework for the sparsity-based multipath exploitation 



 4 

approach. Section III describes the experimental setup and presents the reconstruction results. 

Section IV contains the concluding remarks.  

 

II. SIGNAL MODEL 

Assume a network of 𝑀𝑀 piezoelectric transducers attached to the surface of a thin plate and 

operated in pitch-catch mode. These 𝑀𝑀 transducers provide 𝐿𝐿 = 𝑀𝑀(𝑀𝑀− 1)/2 unique transmitter-

receiver combinations. Let the transmitter and receiver locations corresponding to the 𝑙𝑙th pair be 

denoted by 𝐭𝐭𝑙𝑙 and 𝐫𝐫𝑙𝑙, respectively. Assume the excited waveform, ℎ(𝑡𝑡), is a windowed sinusoidal 

signal, whose frequency is selected to provide a single dominant A0 mode. Access to baseline 

signals collected with no defect present is assumed [9, 10] and Optimal Baseline Subtraction is 

employed to minimize temperature-dependent baseline mismatch [19].  

Consider 𝑃𝑃 defects present in the plate with the pth defect located at 𝐬𝐬𝑝𝑝. Let the ROI be divided 

into N ≫ 𝑃𝑃 pixels. For each transmitter-defect-receiver combination, there exists a number of 

scattering paths due to the structural edge multipath phenomenon. For illustration, we consider the 

scenario depicted in Fig. 1(a) and 1(b), where one direct scatter path, two first-order multipath 

(involving single interaction with the boundary), and one second-order multipath (also referred to 

as the “W” path involving boundary reflection before and after interaction with the defect) exist 

between the transmitter and the receiver via the pth defect. The baseline-subtracted received signal, 

z𝑙𝑙(𝑡𝑡), corresponding to the lth transmitter-receiver pair, can be written as 

 

z𝑙𝑙(𝑡𝑡) = ∑ �𝑔𝑔𝒍𝒍𝒍𝒍𝟎𝟎 (𝑡𝑡) + 𝑔𝑔𝒍𝒍𝒍𝒍𝟏𝟏 (𝑡𝑡) + 𝑔𝑔𝒍𝒍𝒍𝒍𝟐𝟐 (𝑡𝑡) + 𝑔𝑔𝒍𝒍𝒍𝒍𝟑𝟑 (𝑡𝑡)�,𝑷𝑷−𝟏𝟏
𝒍𝒍=𝟎𝟎          (1) 
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where {𝑔𝑔𝒍𝒍𝒍𝒍𝒎𝒎(𝑡𝑡),𝑚𝑚= 0,1,2,3} are direct and multipath defect scattered waves. These signals can be 

expressed utilizing their respective Fourier transforms as 

 

𝐺𝐺𝑙𝑙𝑝𝑝0 = 𝑥𝑥𝑝𝑝,0𝐻𝐻(𝑓𝑓) exp�
𝑗𝑗2𝜋𝜋𝜋𝜋��𝒕𝒕𝑙𝑙−𝒔𝒔𝑝𝑝�2+�𝒓𝒓𝑙𝑙−𝒔𝒔𝑝𝑝�2�

𝑐𝑐A0(𝜋𝜋) �          (2) 

 

𝐺𝐺𝑙𝑙𝑝𝑝1 = 𝑥𝑥𝑝𝑝,1𝐻𝐻(𝑓𝑓) exp�
𝑗𝑗2𝜋𝜋𝜋𝜋��𝒕𝒕𝑙𝑙

′−𝒔𝒔𝑝𝑝�2+�𝒓𝒓𝑙𝑙−𝒔𝒔𝑝𝑝�2�

𝑐𝑐A0(𝜋𝜋) �         (3) 

 

𝐺𝐺𝑙𝑙𝑝𝑝2 = 𝑥𝑥𝑝𝑝,2𝐻𝐻(𝑓𝑓) exp�
𝑗𝑗2𝜋𝜋𝜋𝜋��𝒕𝒕𝑙𝑙−𝒔𝒔𝑝𝑝�2+�𝒓𝒓𝒍𝒍

′−𝒔𝒔𝑝𝑝�2�

𝑐𝑐A0(𝜋𝜋) �        (4) 

 

𝐺𝐺𝑙𝑙𝑝𝑝3 = 𝑥𝑥𝑝𝑝,3𝐻𝐻(𝑓𝑓) exp�
𝑗𝑗2𝜋𝜋𝜋𝜋��𝒕𝒕𝑙𝑙

′−𝒔𝒔𝑝𝑝�2+�𝒓𝒓𝒍𝒍
′−𝒔𝒔𝑝𝑝�2�

𝑐𝑐A0(𝜋𝜋) �        (5) 

where 𝐻𝐻(𝑓𝑓) is the Fourier transform of ℎ(𝑡𝑡), 𝒔𝒔𝑝𝑝 is the position vector of the pth defect, 𝑐𝑐A0(𝑓𝑓) is 

the frequency-dependent phase speed of the A0 mode, ‖∙‖2 denotes the 𝑙𝑙2-norm (square root of the 

sum of the vector square magnitudes), and {𝑥𝑥𝑝𝑝,𝑚𝑚,𝑚𝑚 = 0,1,2,3} are the respective defect 

reflectivities corresponding to the direct and multipath scatterings. The defect reflectivities are 

assumed to be independent of both frequency and aspect angle. It is noted that variations in defect 

scattering across the transducer pairs can be readily incorporated by using a block diagonal 

structure for the dictionary, as detailed in [10].  𝒕𝒕𝑙𝑙′  and 𝒓𝒓𝑙𝑙′ represent locations of the lth virtual 

transmitter-receiver pair. The virtual transducers are obtained by reflecting the multipath about the 

structure boundary, as depicted in Fig. 1(c).  This alternate virtual geometry is simply employed 

to ease the computation of the propagation delays associated with multipath scatters [20]. For 
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illustration, consider the first-order multipath depicted in Fig. 1(c) between the transmitter at 𝐭𝐭𝑙𝑙 

and receiver at 𝐫𝐫𝑙𝑙 via the defect at 𝒔𝒔𝑝𝑝. The propagation delay associated with this path is identical 

to that of the path from the virtual transmitter at 𝒕𝒕𝑙𝑙′ to the defect at 𝒔𝒔𝑝𝑝 and then on to the receiver 

at 𝐫𝐫𝑙𝑙 (also depicted in Fig. 1(c)). Such alternate virtual geometry can be determined for any 

multipath involving reflections at an edge. 

Let 𝐳𝐳𝑙𝑙   be the  𝐾𝐾 × 1 vector obtained by sampling z𝑙𝑙(𝑡𝑡) at time instants, 𝑡𝑡𝑘𝑘, 𝑘𝑘 = 0,1, … ,𝐾𝐾 −

1. Let 𝐱𝐱𝑚𝑚, 𝑚𝑚 = 0,1,2,3, represent the 𝑁𝑁 × 1 image or scene reflectivity vector corresponding to 

the mth propagation path. Note that only 𝑃𝑃 entries corresponding to the defect locations are 

nonzero in each image vector. A linear relationship can be established between the lth signal vector 

and the image vectors using equations (1) through (5). This relationship can be expressed as [18] 

𝒛𝒛𝑙𝑙 = 𝚿𝚿𝑙𝑙,0𝐱𝐱0 + 𝚿𝚿𝑙𝑙,1𝐱𝐱1 + 𝚿𝚿𝑙𝑙,2𝐱𝐱2 + 𝚿𝚿𝑙𝑙,3𝐱𝐱3.   (6) 

Here, the (k, n)th elements of the 𝐾𝐾 × 𝑁𝑁 dictionary matrices  𝚿𝚿𝑙𝑙,0, 𝚿𝚿𝑙𝑙,1, 𝚿𝚿𝑙𝑙,2, and 𝚿𝚿𝑙𝑙,3  are, 

respectively, given by  

 

�𝚿𝚿𝑙𝑙,0�𝑘𝑘,𝑛𝑛
= ℱ−1 � 𝐻𝐻(𝑓𝑓) exp �𝑗𝑗2𝜋𝜋𝜋𝜋(‖𝒕𝒕𝑙𝑙−𝒔𝒔𝑛𝑛‖2+‖𝒓𝒓𝑙𝑙−𝒔𝒔𝑛𝑛‖2)

𝑐𝑐A0(𝜋𝜋) ���
𝑡𝑡=𝑡𝑡𝑘𝑘

   (7) 

 

�𝚿𝚿𝑙𝑙,1�𝑘𝑘,𝑛𝑛
= ℱ−1 � 𝐻𝐻(𝑓𝑓) exp�

𝑗𝑗2𝜋𝜋𝜋𝜋��𝒕𝒕𝑙𝑙
′−𝒔𝒔𝑛𝑛�2+‖𝒓𝒓𝑙𝑙−𝒔𝒔𝑛𝑛‖2�

𝑐𝑐A0(𝜋𝜋) ���
𝑡𝑡=𝑡𝑡𝑘𝑘

   (8) 

�𝚿𝚿𝑙𝑙,2�𝑘𝑘,𝑛𝑛
= ℱ−1 � 𝐻𝐻(𝑓𝑓) exp�

𝑗𝑗2𝜋𝜋𝜋𝜋�‖𝒕𝒕𝑙𝑙−𝒔𝒔𝑛𝑛‖2+�𝒓𝒓𝒍𝒍
′−𝒔𝒔𝑛𝑛�2�

𝑐𝑐A0(𝜋𝜋) ���
𝑡𝑡=𝑡𝑡𝑘𝑘

   . (9) 
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(a)                                                                            (b) 

 

                                                          (c)                              

Fig. 1. Schematic showing multiple pathways for waves to travel from a transmitter to a receiver 
after being scattered by a defect and the plate boundary: (a) the direct scatter path (𝑚𝑚 = 0) and a 
first-order multipath (𝑚𝑚 = 1); (b) a first order multipath (m=2) and a second-order “W” path (𝑚𝑚 =
3); (c) virtual transmitter model; the case of the virtual receiver is constructed analogously. Shaded 
region represents region of plate. 
 

�𝚿𝚿𝑙𝑙,3�𝑘𝑘,𝑛𝑛
= ℱ−1 � 𝐻𝐻(𝑓𝑓) exp�

𝑗𝑗2𝜋𝜋𝜋𝜋��𝒕𝒕𝑙𝑙
′−𝒔𝒔𝑛𝑛�2+�𝒓𝒓𝒍𝒍

′−𝒔𝒔𝑛𝑛�2�

𝑐𝑐A0(𝜋𝜋) ���
𝑡𝑡=𝑡𝑡𝑘𝑘

    (10) 

where ℱ−1 denotes the inverse Fourier transform and 𝐬𝐬𝑛𝑛 is the location of the nth pixel. 
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Stacking the received signal vectors {𝐳𝐳𝑙𝑙 , 𝑙𝑙 = 0,1,⋯ , 𝐿𝐿 − 1},  we obtain the 𝐾𝐾𝐿𝐿 × 1 vector 𝒛𝒛 =

[𝒛𝒛0𝑇𝑇 𝒛𝒛1𝑇𝑇 … 𝒛𝒛𝐿𝐿−1𝑇𝑇 ]𝑇𝑇 as 

 

𝒛𝒛 = 𝚿𝚿0𝐱𝐱0 + 𝚿𝚿1𝐱𝐱1 + 𝚿𝚿2𝐱𝐱2 + 𝚿𝚿3𝐱𝐱3,   (11) 

                   

 (a)                                   (b) 

Fig. 2. (a) Schematic of the layout for experiments 1 through 5. The transducer locations are 
indicated by red triangles. The corresponding virtual transducer locations are shown as magenta 
triangles. The imaged region is represented by the dense cyan grid, while the green rectangle 
represents the physical plate boundaries; (b) Actual experimental setup with the inset showing the 
symmetric defect (steel rods glued to the top and bottom surfaces). 

 

where the superscript ‘T’ denotes matrix transpose and the matrix 𝚿𝚿q of size 𝐾𝐾𝐿𝐿 × 𝑁𝑁  is given by 

  

𝚿𝚿𝑞𝑞 = �𝚿𝚿0,𝑞𝑞
𝑇𝑇   𝚿𝚿1,𝑞𝑞

𝑇𝑇  ⋯   𝚿𝚿𝐿𝐿−1,𝑞𝑞
𝑇𝑇 �

𝑇𝑇
,  for 𝑞𝑞 = 0,1,2,3.            (12) 

 

Note that the model does not require the multipath signals to be resolvable. Further, although 

only first-order and one second-order multipath are considered herein, higher-order multipath 

involving multiple boundary interactions can be readily incorporated into the signal model. These 

are ignored in this work because of higher attenuation due to longer associated propagation path 
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lengths, thereby rendering the arriving wave packets to be of negligible amplitudes [20]. Further, 

we have only considered a single propagating mode in the signal model. However, in a similar 

manner to incorporating additional multipath, one could expand the signal model to the multimodal 

case by creating additional dictionary matrices for various paths under another mode, as dictated 

by the unique phase velocity curve for that mode.  Lastly, additional structural complexities, such 

as stiffeners, which would also produce multipath, can be readily accounted for and exploited in 

the signal model.   

Since the direct and multipath scatterings describe the same underlying scene, the image 

vectors 𝒙𝒙0, 𝒙𝒙1, 𝒙𝒙2, and 𝒙𝒙3 exhibit a group sparse structure, where the individual groups extend 

across the four paths for each pixel location. It should be noted that group sparsity does not refer 

to the physical span of the defects. To be specific, group sparsity here implies that each modeled 

multipath dictionary examines the same physical scene. Therefore, if a particular pixel location is 

assigned a nonzero value (implying a defect is present) in one image vector, the same location 

must also be assigned a nonzero value in all the other image vectors, since every image vector is 

capturing the same physical space. As such, group sparse reconstruction can be employed to 

recover 𝒙𝒙0,𝒙𝒙1,𝒙𝒙2, and 𝒙𝒙3  from the measurements 𝒛𝒛.  This amounts to either solving the problem 

[21, 22] 

𝐱𝐱� = arg min
𝐱𝐱

1
2
‖𝒛𝒛 − 𝚿𝚿𝐱𝐱‖22 + 𝜆𝜆‖𝐱𝐱‖2,1,   (13) 

 

where 𝚿𝚿 = [𝚿𝚿0    𝚿𝚿1    𝚿𝚿2    𝚿𝚿3],    𝐱𝐱 = [𝐱𝐱0𝑇𝑇  𝐱𝐱1𝑇𝑇  𝐱𝐱2𝑇𝑇  𝐱𝐱3𝑇𝑇]𝑇𝑇 ,  

and   ‖𝐱𝐱‖2,1 = ∑ �[𝑥𝑥𝑛𝑛,0    𝑥𝑥𝑛𝑛,1    𝑥𝑥𝑛𝑛,2 𝑥𝑥𝑛𝑛,3]𝑇𝑇�
2

𝑁𝑁−1
𝑛𝑛=0 ,   𝑥𝑥𝑛𝑛,𝑞𝑞 is the nth element of the qth image 

𝒙𝒙𝑞𝑞 , 𝑞𝑞 = 0,1,2,3, and 𝜆𝜆 is a regularization parameter, or recovering the group sparse vector 𝐱𝐱  

through the use of greedy algorithms [23, 24].  In this work, we choose to use a greedy algorithm, 
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namely, the block version of Orthogonal Matching Pursuit (OMP) for its exceptional efficiency in 

providing accurate reconstructions in CPU time on the order of 2-3 seconds [24].  Once the 

recovered vector 𝐱𝐱� has been obtained using the chosen algorithm, a single composite scene 

representation 𝐱𝐱�  can be obtained as [18]: 

[𝐱𝐱�]𝑛𝑛 = 𝑥𝑥�𝑛𝑛 = �[𝑥𝑥�𝑛𝑛,0    𝑥𝑥�𝑛𝑛,1    𝑥𝑥�𝑛𝑛,2    𝑥𝑥�𝑛𝑛,3]𝑇𝑇�
2
              (14) 

III. EXPERIMENTAL RESULTS 

A. Setup and Reconstruction Results 

Data measurements were performed using a 1220 mm × 1220 mm aluminum plate with a 

thickness of 3.125 mm. While the experiments were performed with an isotropic plate, an 

extension to an anisotropic plate can be made by properly incorporating the corresponding material 

properties in the wave propagation model of Section II.  

Six different experiments were conducted. More specifically, experiments 1-4 and 6 

correspond to a single defect positioned at several different locations, while experiment 5 considers 

a two-defect case. The primary imaged region for experiments 1 through 5 is a 200 mm × 400 mm 

rectangle, as shown in Fig. 2(a). The region is divided into a 21 × 41 grid resulting in 861 pixel 

locations. For experiment 6, the ROI is shifted to concentrate on the corner of the plate, away from 

the transducer array as depicted in Fig. 3. This region is a 150 mm × 150 mm square, and is 

divided into a 16 × 16 pixel grid providing 256 pixels. 

A 100 kHz 5-cycle Hanning windowed toneburst was used to induce a dominant A0 wave mode 

in the plate. The signal was generated using a National Instruments (NI) PXI 5142 Arbitrary 

Waveform Generator, in conjunction with a Krohn-Hite Model 7500 Amplifier, whose gain was 

set to 40 dB so as to ensure a strong incident wave. The received data measurements were collected



 11 

 

Fig. 3. Schematic of the experimental layout for the corner defect, experiment 6. The actual 
transducer locations are indicated by red triangles. The imaged region is represented by the dense 
cyan grid and the green rectangle represents the physical plate boundaries. The magenta triangles 
located outside the plate represent the locations of the virtual transducers. Note that the bottom of 
the physical plate has been cut off in the shifted schematic shown here. 

 

via an NI PXI 5105 Digitizer operating at a sampling rate of 1 MHz. The data measurements were 

averaged over 5000 collections in LabView. Both the PXI 5142 and 5105 were housed in an NI 

PXI 8108 Embedded Controller. Four Lead Zirconate Titanate piezoelectric transducers were 

located on a semi-circle of radius 300 mm centered at the midpoint of the left plate boundary, as 

shown in Fig. 2(a). The transducers are manufactured by APC International, with specifications of 

0.22 mm thickness, 10 mm diameter, and polarization such that grounding the plate will ground 

the bottom surface of the transducer; thereby, a charge flows to the transducer through a wire 

soldered to the top of the disc. Each defect was introduced by gluing steel rods symmetrically to 

the top and bottom of the plate, as shown in Fig. 2(b).  

Signals were collected for the six distinct transmitter-receiver pairs both in the absence and 

presence of the defects. Typical signals received from a transmitter receiver pair, in the 

experimental arrangement of  Fig.  2(a),  are shown in  Fig. 4.   Fig.  4(a)  shows a baseline signal 
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(a)                                   (b) 

 

(c) 

Fig. 4. (a) Baseline signal from a transmitter-receiver pair from the experimental arrangement 
shown in Fig. 2(a).  The baseline signal is collected in the absence of defects.  (b) Signal collected 
from the same transmitter-receiver pair in the presence of a defect. (c) The differenced signal 
obtained by subtracting the signal in Fig. 4(a) from Fig. 4(b).  
 

obtained in the absence of defects in the ROI.  When a defect is present in the ROI, the received 

signal is altered by the defect as shown in Fig. 4(b).  The baseline-subtracted received signal of 

Fig. 4(c), corresponding to z𝑙𝑙(𝑡𝑡) in Eqn. (1), is obtained by subtracting the baseline signal of Fig. 

4(a) from the defect-influenced received signal of Fig.4(b).  Differenced signal vectors such as in 
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Fig. 4(c), obtained from all transmitter-receiver pairs, can be stacked to obtain the experimental 

signal vector, z, of Eqn.(11).   

TABLE 1 
EXPERIMENTAL DEFECT LOCATIONS AND METRIC VALUES 

Exp. # Fig. # Defect 1 
Location 

(mm) 

Defect 2 
Location 

(mm) 

NMSE 
(dB) 

SCR 
(dB) 

Distance 
From nearest selection 
to true location (mm) 

1 
4 (a) 

(-460, 120) N/A 
2.1932 -∞ 140.4 

4 (e) -2.0873 1.0436 7.0 

2 
4 (b) 

(-560, 100) N/A 
0 -∞ 50.0 

4 (f) -9.9846 4.9923 0.0 

3 
4 (c) 

(-560, -100) N/A 
0.5382 -∞ 31.6 

4 (g) -6.5619 3.2809 0.0 

4 
4 (d) 

(-410, -200) N/A 
0 -∞ 210.9 

4 (h) -6.6891 3.3445 0.0 

5 
5 (a) 

(-540, -100) (-460, 120) 
0 0.6117 64.8 

5 (b) -9.1393 +∞ 0.0 

6 6 (a) (-470, 500) N/A 0 -∞ 51.0 
6 (b) 0 -∞ 14.1 

 

Image reconstructions were performed in Matlab utilizing Block OMP (BOMP) for the 

proposed multipath approach, and OMP for the conventional sparse reconstruction approach, 

which does not exploit multipath; hence, no group sparsity is employed in the latter. The sparsity 

estimate for both reconstructions was prescribed as two in all experiments. That is, the sparsity is 

overdetermined for all experiments except experiment 5. In experiment 5, the reconstruction result 

corresponds to the case when the sparsity estimate exactly matches the number of defects present 

in the specimen. 

The defect locations for all six experiments and the corresponding associated figure numbers 

depicting the reconstruction results are provided in Table 1. Figs. 5(a)-5(d) show the reconstruction 

results for experiments 1-4 using the conventional sparse reconstruction approach which ignores 
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multipath contributions, while Figs. 5(e)-5(h) depict the results obtained with the proposed group 

sparse multipath exploitation approach. In all figures, the actual defect location is identified by a 

black circle. The predicted location(s) of the defect are indicated by colored squares. The left plate 

boundary and the transducer locations (triangles) are also superimposed on the images. Note that 

experiments 1-4 correspond to a variety of defect positions within the ROI. More specifically, the 

defect is located away from the plate edge (Figs. 5(a) and 5(e)), close to the plate edge in the upper 

half of the ROI (Figs. 5(b) and 5(f)), close to the plate edge in the lower half of the ROI (Fig. 5(c) 

and 5(g)), and near the corner of the ROI blocking one of the transducers (Fig. 5(d) and 5(h)). We 

observe from Fig. 5 that the proposed multipath approach was successful in accurately localizing 

the defect in all considered cases, with the strongest selection assigned to the true target location. 

In contrast, the conventional approach, which does not account for multipath, failed to properly 

localize the defect in all instances. These results clearly demonstrate the validity of the proposed 

approach and show that the proposed approach does not exhibit any bias toward a particular region 

of the ROI (despite the use of a non-uniformly spaced sparse transducer array). The approach was 

even successful in the challenging scenario of experiment 4 where some of the transmitter-receiver 

pairs could not contribute to the reconstruction due to the defect blocking the transducer.  

In addition to the qualitative comparison, we employ two metrics, namely, the signal-to-clutter 

ratio (SCR) and the normalized mean square error (NMSE) to compare the performance of the 

proposed and conventional approaches. The SCR is defined as the ratio  of  the  maximum  intensity  

of pixels occupying the actual target region (ground truth) to the average intensity of the pixels 

occupying the clutter region [25]. The clutter region of the image is defined as the area spanned 

by the physical plate excluding the target region. On the other hand, the NMSE is defined as 
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NMSE = 10 log10�𝐱𝐱� |𝐱𝐱�|max −⁄ 𝐱𝐱𝑔𝑔 |𝐱𝐱𝑔𝑔|max⁄ �
2
2

     (15) 

where  𝐱𝐱𝑔𝑔 |𝐱𝐱𝑔𝑔|max⁄  is the normalized ground truth image. For the scenario at hand, the ground 

truth image pixel corresponding to the true target location assumes a unit value, while all other 

pixels are zero. The resultant metric values corresponding to each image in Fig. 5 are presented in 

Table 1. Note that the conventional approach’s inability to provide any localization inside the 

target region results in a negatively infinite value for the SCR. Further, the NMSE provided in 

decibels describes a more successful reconstruction by a negative number, thereby implying a 

small error, whereas non-negative values for the NMSE imply a lack of proper localization inside 

the target region.  

The reconstruction results for the two defect case of experiment 5 are depicted in Fig. 6. The 

defect locations are specified in Table 1. Again, both defects are properly localized by the proposed 

multipath approach, as seen in Fig. 6(b), whereas only one of the two defects is accurately localized 

by the conventional approach, as depicted in Fig. 6(a). The success of the proposed approach and 

the failure of the conventional approach are also captured in the corresponding values of the 

aforementioned metrics provided in Table 1. Note that since all of the selections in this case lie 

within the target region for the multipath approach, the clutter region is empty; therefore, the SCR 

approaches a positively infinite value. 

For experiment 6, which considers a single defect located near the plate corner far from the 

transducer array, the complexity of the signal model is increased due to the presence of two edges 

in close proximity of the defect. Nevertheless, the signal model of equation (13) is easily extended 

via superposition to account for the first- and second-order multipath scatters from the two edges 

(four paths, as shown in Fig. 1, corresponding to each edge). It should be noted that, in addition to 

the “W” path associated with each edge, other second-order multipath also exist in consideration 
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of a two edge interaction whereby the signal scatters off one edge during the transmit path and 

then off the second edge on the receive path after interaction with the defect and vice versa.  These 

two additional second-order multipath scatters, when included in the signal model, did not provide 

any reconstruction improvement beyond that achieved with the eight paths involving single-edge 

based multipath. As such, these are excluded from the remainder of the discussion in this section.   

Fig. 7(a) depicts the reconstruction result for experiment 6 when multipath is ignored, whereas 

Fig. 7(b) shows the image obtained using the proposed multipath exploitation approach. The 

corresponding values of the SCR and NMSE are listed in Table 1.  Compared to the conventional 

approach which fails to localize the defect, the proposed approach puts the strongest pixel selection 

in close vicinity of the defect (displaced by l4 mm approximately from the target region in Fig. 

7(b)). This localization lies well within the tolerance limit for most engineering applications. The 

same acceptability, however, does not apply to Fig. 7(a), wherein the displacement of the strongest 

pixel selection is approximately 51 mm from the target region. Hence, despite a small bias, the 

proposed approach still outperforms the conventional approach for the challenging case of a defect 

located near the plate corner far from the transducer array. The biased reconstruction of experiment 

6 can be attributed to the significantly higher attenuation for all considered paths due to the longer 

propagation distances between the defect location and the transducer array, as compared to the 

scenes considered in experiments 1-4.  Improved results can be obtained by choosing transducer 

locations closer to the plate corner. 

B. Performance Analysis  

Some discussion is in order with regard to the effects of noisy observations and variations in 

prescribed scene sparsity on the performance of the proposed multipath exploitation approach. To 

this  end,  we  first  varied  the  prescribed  scene  sparsity  from  1 to 3 in unit increments and  the 
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                                   (a)                                                   (e) 

              
                                 (b)                                                                                           (f)                      

                        
                                 (c)                                                                                                     (g) 

                          
                                    (d)                                                                                                       (h) 
Fig. 5. Reconstructed images for experiments 1 to 4 using (a)-(d) conventional sparse reconstruction not 
accounting for multipath, and (e)-(h) proposed multipath exploitation approach. The true defect location in 
each experiment is represented by the black circle. Vertical black line to the left indicates physical plate 
boundary. The red triangles represent the transducer locations.  
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                             (a)                                 (b) 
Fig. 6. Reconstruction results for the two defect case using (a) conventional sparse reconstruction, 
and (b) proposed multipath exploitation approach. The true defect locations are indicated by the 
black circles. Vertical black line to the left indicates physical boundary of the plate. The red 
triangles represent the transducer locations. 

                      
                            (a)                                   (b) 
Fig. 7. Reconstructed images for the corner defect case using (a) conventional sparse 
reconstruction, and (b) proposed multipath exploitation approach. The ROI has been shifted to 
correspond to the topology depicted in Fig. 3. The true defect location is represented by the circle. 
Vertical black lines to the left and top of the image indicate physical boundaries of the plate.  Note 
that only two of the transducers are visible in the images. 

images corresponding to experiments 1-4 were reconstructed using BOMP for each sparsity value. 

The corresponding NMSE and SCR metrics were computed for each reconstructed image and the 

averaged values across the four different experiments for each specified sparsity are provided in 

Table 2. As expected, the performance degrades for overdetermined scene sparsity. This is because 

a higher amount of background noise is reconstructed with increasing number of BOMP iterations. 
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It is noted that cross validation can be employed to avoid early or late termination of greedy 

reconstruction algorithms [26]. 

Next, white Gaussian noise was added to the measurements for experiments 1-4. The signal-

to-noise ratio (SNR) was varied from -15 to +20 dB in increments of 5 dB, and the corresponding 

images were reconstructed using BOMP with a prescribed sparsity of 2. The noise was added to 

each individual transmitter-receiver pair independently such that the SNR for each pair achieved 

the desired value. The NMSE and the SCR, averaged over 25 Monte Carlo runs and all four 

experiments, are plotted vs. SNR in Fig. 8. For SNR values of -5 dB and above, the proposed 

approach provides, on average, an SCR of 5 dB and NMSE of -10 dB approximately.  

TABLE 2 
NMSE AND SCR FOR VARYING SPARSITY  

Sparsity NMSE 
(dB) 

SCR (dB) 

1 -∞ +∞ 
2 -6.33 3.55 
3 -4.64 3.17 

 

 

Fig. 8. NMSE and SCR (averaged over 25 Monte Carlo runs and experiments 1-4) vs. SNR. 
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IV. CONCLUSION 

In this paper, we have successfully formulated and experimentally validated a sparsity-based 

multipath exploitation approach for defect localization in thin-walled plates. Dictionaries, 

accounting for the associated attenuation and dispersion of Lamb wave propagation, were created 

for the direct scatter path as well as the first- and second-order (“W”) multipath scatters. The group 

sparse structure of the image vectors associated with the considered propagation paths was 

exploited for accurate reconstruction. Both qualitative and quantitative comparisons demonstrated 

that the multipath exploitation approach significantly outperforms conventional sparse image 

reconstruction which ignores multipath. Qualitatively, the proposed approach exhibits sufficient 

robustness to consistently provide accurate reconstruction results. Quantitatively, the considered 

metrics objectively testify to the accuracy and superiority of the proposed approach.  

It is important to note that the proposed approach can be easily modified to account for 

complexities such as anisotropic plates, the presence of stiffeners, or thickness variations. These 

complexities and their associated effect on propagations physics can be incorporated into the signal 

model which produces the dictionary matrix and therefore dictates the reconstruction. By 

accounting for such complexities, the proposed approach can be used to inspect more complex 

scenes than the one considered herein.  
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