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Abstract—Feature selection based on combined Doppler and
range information improves fall detection and enables better dis-
crimination against similar high Doppler non-rhythmic motions,
such as sitting. A fall is typically characterized by an extension
in range beyond that associated with sitting, which is determined
by the seat horizontal depth. In this paper, we demonstrate, using
time-frequency (TF) spectrograms, that range-Doppler radar
plays a fundamental and important role in motion classification
for assisted living applications. It reduces false alarms along with
the associated cost in the unnecessary deployment of the first
responders. This reduction is considered vital for the development
of in-home radar monitoring and for casting it as a viable
technology for aging-in-place.

I. INTRODUCTION

American Association of Retired Persons (AARP) identifies
fall detection as a major innovation opportunity to allow
seniors to live independently [1]. It is reported that one out
of three elderly will fall every year, resulting in injuries and
reduced quality of life. Eventually, those with a high risk of
falling will move to institutionalized care, which costs roughly
$3,500/month. Centers for Disease Control and Prevention
(CDC) estimates the direct medical cost of falls to be $34
billion annually [2].

Prompt fall detection saves lives, leads to timely interven-
tion and most effective treatment, and reduces both private and
public medical expenses [3]. Fall detection systems also reduce
the burden on families that care for senior family members
regularly or remotely.

Most researchers divide fall devices into two general types:
wearable and non-wearable [4]. The wearable devices are
more mature and prevalent. They include accelerometers, push
button devices and smartphones, while non-wearable devices
include technologies, such as infrared sensors, microphones,
pressure sensors, radar, and cameras [5]. The most common
non-wearable systems involve cameras. There are, however,
several problems with camera systems, as privacy issues are
a major concern with elderly users [6]. Further, occlusion
and dim lighting are obvious technology limitations. Floor
and microphone sensors as well as the others systems remain
more in the background as research studies rather than viable
commercial solutions.

In this paper, we focus on non-wearable fall detection
schemes using radar [7]–[11]. We show improved performance

using range-Doppler radar over existing Doppler-only tech-
niques. In general, a robust and smart fall detector is the one
that achieves high sensitivity and high specificity. Sensitivity
is defined as the ability to correctly classify a fall, i.e., high
probability of detection, whereas specificity is the ability to
correctly classify a non-fall activity during daily living, i.e.,
low fall false alarm probability.

Range-Doppler radar systems have clear advantages over
Continuous Wave (CW) or Doppler radars in terms of range
resolution which is particularly important for indoor human
detection. Range estimation for ground and airborne tar-
gets and tracking techniques is a mature subject and well-
established in the literature [12], [13]. However, the effec-
tiveness of the ultra-wideband (UWB) radar for detection of
human motion activities in buildings and inside enclosed struc-
tures has not received much attention in the past, especially
for the case of fall detection.

The main challenge to radar fall detection is reducing false
alarms. One source of false alarms is the possible confusion
of fall with sitting and other sudden non-rhythmic motion
articulations. The Doppler signatures for the two activities of
sitting and falling vary on a case-by-case basis. In many cases,
their difference in the TF domain can prove insignificant,
depending on how slow or fast each activity is. A situation
may arise where the highest Doppler frequency in the two
motions assumes close values. In this situation, it has been
shown that the radar fall detector, which is only based on
Doppler information and employing maximum frequency as a
primary feature, suffers from high misclassification rates [14].

In order to avoid mixing falling with sitting, we recognize
one subtle difference between these two resembling motions.
Unlike falls, the sitting action has limited range extent. This
extent is typically determined by the type of the chair and,
at most, it is equal to the chair seat horizontal depth. Falls,
on the other hand, can extend over a downrange that is
equal or longer than the body height. Accordingly, combined
range-Doppler information, gained from UWB radar, can be
effectively utilized to reduce miss-classification.

The paper is organized as follows. In section II, UWB
radar system and the signal model are described. Section III
presents three different radar domains, namely, 1) Range-slow
time domain, 2) TF domain (Micro-Doppler signatures), 3)
Range-Doppler domain. In section IV, experimental setup and



description of the database are provided. In section V, feature
extraction methods and algorithms based on different radar
domains are explained. In section VI, experimental results are
provided showing that the proposed fall detection algorithm
has superior performance over only Doppler and range-time
domain processing. Conclusions are drawn in section VII.

II. UWB RADAR SYSTEM

Extensive data measurements were conducted to demon-
strate the contribution of the range-Doppler information for
fall detection. The UWB system used in the experiments,
named SDR-KIT 2500B, is developed by Ancortek, Inc. This
system has built in compact-size, light weight, low-power soft-
ware defined RF modules and field programmable gate array
(FPGA) - based processor module operating in K band (25
GHz). The system offers the ability of integrating transmitter-
receiver modules for industry automation, medical monitoring,
public safety, security and academic research.

The CW radar is the most commonly used radar type in
fall detection. Its main disadvantage is that, without frequency
modulation, target range cannot be determined. The CW radar,
as such, fails to provide the time difference between the
transmit and receive cycles, preventing conversion of time
delay to target position.

The employed radar uses linear frequency modulation
(LFM) waveforms and is capable of providing both range
and Doppler information. LFM waveforms provide a range
resolution ∆R,

∆R =
c

2∆f
(1)

where c is the speed of light and ∆f is the maximum differ-
ence between the modulated signal and the carrier frequency,
f0.

In a frequency modulated continuous-wave (FMCW) radar,
both transmitter and receiver ends of the systems are left
open for an extended period of time, and this leads to an
improved signal-to-noise ratio (SNR). The center frequency of
the transmitted signal increases linearly as a function of time
over the sweep period, as shown in Fig. 1. The transmitted
signal, st(t), for the nth sweep can be written as

st(t) = sin(2πt(f0 +
∆ft

2
)) (2)

The received signal, sr(t), contains valuable information of
the moving target which is located at a distance RT with radial
velocity of v. The received signal can be expressed as

sr(t) = a sin(2π(t− td)(f0 +
∆f(t− td)

2
)) (3)

where td = 2RT /c and α is the impact of the target’s distance
and RCS. Generally, most of the FMCW radar systems employ
mixing operation between transmitted and received signals to
estimate RT and v. The mixed signal is passed through a low-
pass filter which results in a signal with frequency proportional
to the target distance. In this paper, we work with the discrete
version of the processed baseband radar return, s(n), i.e.,

s(n) = s(t)|t=nTs , n = 0, 1, . . . , N − 1. (4)

Fig. 1: Transmitted and received LFM signals

where Ts is the sampling period.

III. TRI-DOMAIN FEATURE EXTRACTION

The received signal, given in (2), is highly non-stationary
and contains information about the target’s time-dependent
range and velocity. This information can be revealed in three
different domains, namely, 1) Range-time domain, 2) TF do-
main (Micro-Doppler signatures), 3) Range-Doppler domain.

A. Range-Slow Time Domain

The received signal can be represented as a two dimensional
matrix with each row corresponding to a range bin and
each column corresponding to a different pulse, which also
represents slow time. To proceed, upon measuring the discrete
baseband returned in-phase and quadrature components with
a sweep rate 1/T , we organize the complex data into a two
dimensional array. Then, the range profiles of the target can
be extracted by applying the Fast Fourier Transform (FFT).
Range maps for falling and sitting are shown in Fig. 4-(a) and
(d), respectively. A low-pass filter is typically applied in order
to remove stationary clutter.

B. Time-Frequency Domain

Micro-Doppler is caused by rotating, oscillating, or vi-
brating parts of a target, and results in additional frequency
modulations centered around the main Doppler shift. The latter
is caused by the translational motion of the target [15]. In the
case of humans, the complex motions of the limbs, which
occur in the course of any motion articulation, result in a
micro-Doppler signatures that can be visually distinguishable
in the TF domain [16]–[22]. These signatures can be obtained
by adding all radar returns over all range bins during the
observation period, and then apply a linear or bilinear time-
frequency transform of the agglomerate radar range data.

In this paper, we apply short time Fourier transform (STFT)
to the slow-time data. The spectrogram SPEC(n, k), which
can be interpreted as how the signal power varies with slow
time n and Doppler frequency fd, is the most commonly
used time-frequency method for analyzing complex human
motions. In this paper, we deal with the radar returns as a



deterministic signal rather than a stochastic process [23]–[25].
The spectrogram can be mathematically expressed as

SPEC(n, k) =

∣∣∣∣∣
N−1∑
m=0

s(n+m)h(m)e−2πmk/N

∣∣∣∣∣
2

(5)

where h(m) is a window function that affects both time
and frequency resolutions. In this work, spectrograms were
generated using 1024 frequency samples, a Hanning window
of length 128, and a window overlap of 32 samples. Spectro-
grams for falling and sitting are given in Fig. 4-(b) and (e),
respectively.

C. Range-Doppler Domain

The range-Doppler representation of the radar signal returns
is a well-established method that combines both effects of the
target velocity and range [26]–[28]. A typical range-Doppler
frame is sparse, and contains significant vacant space in both
range and Doppler, owing to the small number of targets and
short processing interval.

Generally, range-Doppler frame may be constructed by
applying Fourier transform over a period of slow time, called
coherent processing interval (CPI). A longer CPI duration
leads to improved Doppler resolution. The application of the
Fourier transform to the range-slow time domain creates a
three dimensional data cube, denoted by I(x, ncpi), where
x = [f, r] corresponds to the range and Doppler coordinates
[29]. This process is illustrated in Fig. 2 for fall motion.
Range-Doppler processing delivers fairly high resolution in
both Doppler and range domains to resolve closely spaced
targets with similar velocities. These targets might be non-
resolvable by examining range-slow time domain or micro-
Doppler signatures separately.

IV. DATA EXPERIMENTAL SETUP

The UWB radar data sets were collected in the Radar
Imaging Lab at the Center for Advanced Communications,
Villanova University. An example configuration is depicted in
Fig. 3. The UWB radar parameters are: transmitting frequency
24 GHz, the pulse repetition frequency 1000 Hz, bandwidth
2 GHz which provides 0.075 m range resolution, and the
total duration for each data collection was determined as 10
seconds.

Fig. 2: Traditional range-Doppler processing

Fig. 3: Schematic of the test configuration

Measurements were made for four different human motion
articulations: falling, sitting, bending over, and walking. Each
articulation was recorded several times for a duration of 10
seconds, depending on the activity, for 4 subjects, yielding
a total of 106 data collections. Out of this number, 40
experiments corresponded to falling and the remaining 66
experiments were related to the three considered non-fall
motions. The test subjects posed heights ranging from 1.73
m to 1.90 m, weights ranging from 70 kg to 100 kg, and
included 4 males.

V. FALL DETECTION ALGORITHMS

A. Time-Frequency based Features

Time-frequency characteristics of the radar return contain
intrinsic properties about the human motion articulation. As
evident from in Fig. 4-(b) and (e), human fall and sit motions
have their own unique signatures, which vary depending on
speed and kinematics. From these figures, it can be revealed
that different joints of the human body have distinguishable
signatures. For example, in the case of a fall, human head has
the highest Doppler frequency which is formed as an outer
envelope in the complete signature, whereas, the Doppler fre-
quency of the lower body is convened densely and compactly
in the lower frequency bands. Extracting these important
characteristics from the micro-Doppler signature provides, in
many but not all cases, discriminative information about the
motion.

In this work, three different features were extracted from the
spectrograms for fall detection: 1) Extreme (highest) Doppler
frequency, 2) Torso frequency, and 3) Length of the event.
Details of these feature extraction methods can be found in
[30]. An example output of the extreme Doppler frequency at
each time instant can be seen in Fig. 4-(b), depicted as red
dashed line.

B. Range Spread Feature

Both sitting and falling generate high Doppler frequency
components in the TF domain, albeit, falling typically exhibits
higher Doppler frequency due to accelerating motion of the
body towards to ground. However, slow fall can appear as
fast sitting. In this case, and many others, the contribution
of the range information becomes important in discriminating
motions that have resembling Doppler signatures [31].



(a) (b) (c)

(d) (e) (f)

Fig. 4: Tri-domain representations of falling (a) Range-slow time (b) Micro-Doppler signature (c) Time-integrated range-
Doppler map and tri-domain representations of sitting (d) Range-slow time (e) Micro-Doppler signature (f) Time-integrated
range-Doppler map

To determine the range spread, the range bin which has the
most power is first found. This process is repeated for each
slow time index, and the entire range vector is constructed.
Then, the difference between the minimum and maximum
values of the range vector is determined. An example output
of the algorithm is depicted in Fig. 4-(a).

C. Combined Range-Doppler Features

Generally, moving target signatures appear as focused and
localized in target’s range and Doppler away from the origin,
whereas stationary targets and clutter are centered around zero
Doppler. In this work, we focus on the time-integrated range-
Doppler map which is constituted by agglomeration of the con-
secutive range-Doppler frames [27]. Time-integrated range-
Doppler maps have micro-Doppler properties while also pro-
viding the range information. Time integrated range-Doppler
maps for falling and sitting motions are depicted in Fig. 4-
(c) and (f), respectively. We examined three different types of
feature sets, namely, PCA-based, correlation-based template
matching and integrated range-Doppler motion trajectory to
show the offerings of the time-integrated range-Doppler maps
in fall detection.

1) PCA-based Features: Most of the proposed radar fall
detectors are based on manual-hand picked feature extraction
methods which also can be time consuming and highly depen-
dent on parameter tuning and thresholding. In this paper, to es-

tablish a baseline performance, we propose an PCA-based fall
detection approach [32]. The time integrated range-Doppler
maps are processed as grayscale images and used as inputs to
the eigen decomposition. The PCA-based approach has similar
steps to those typically employed in face recognition [33].
The training involves the following initialization operations
for each sample:

1) Acquire a initial set of grayscale time integrated range-
Doppler images

2) Compute the eigenimages from each training image,
keeping only the 5 images that correspond to the highest
eigenvalues.

Employing the initialized training system, the following
steps can then be used to recognize new samples:

1) Compute a set of weights based on the input test sample
and 5 eigenimages.

2) Determine the class of the test sample by using mini-
mum Euclidean distance to find the closest match in the
training data.

2) Correlation-based Template Matching Features: The
second approach for fall detection consists of a correlation-
based template matching algorithm [26]. It is generally ap-
plied to consecutive range-Doppler frames, but we only apply
it, in context of motion detection, to the time integrated



TABLE I: Scores (%) for each feature set by six different metrics

Accuracy Sensitivity Specificity Fall detection rate False alarm rate Missed rate

TF-based 91.98 94.93 89.39 88.70 4.73 11.3
TF-based + range spread 95.27 93.45 95.22 95.20 6.67 4.78
Range-Doppler: PCA-based 92.18 95.15 89.58 88.90 4.53 11.10
Range-Doppler: Correlation-based 98.00 99.77 96.35 96.20 0.22 0.41
Range-Doppler: Integrated motion trajectory 99.60 99.62 99.59 99.60 0.37 0.41

range-Doppler images. The correlation between two different
grayscale images can be defined as

ccor =

rm∑
r=0

fs/2∑
f=−fs/2

P1(r, f)P2(r, f)

√√√√ rm∑
r=0

fs/2∑
f=−fs/2

P 2
1 (r, f)

√√√√ rm∑
r=0

fs/2∑
f=−fs/2

P 2
2 (r, f)

(6)

where fs is the sampling frequency, P1 and P2 are the different
gray-scale time integrated range-Doppler images, and rm is the
maximum range, which in our case is 8 meters.

The training and testing schemes are similar to the PCA
approach. After the training set is constructed, correlation
between test and each training image is computed. Test image
is classified as the label of the training image which provides
the highest correlation. An example of a correlation map is
depicted in Fig. 5. It is evident that the fall and non-fall
classes of motions have their unique regions, albeit, it is also
noticed that some of the fall and non-fall samples have high
correlation. The latter is caused by the similarity between slow
falling and fast sitting motions. This confusion is expected
considering that the algorithm still depends on the Doppler
information.

3) Integrated Range-Doppler Features: This approach is
designed to take advantage of the target trajectory information
in both range and Doppler. An example of the range-Doppler
trajectory of a fall is depicted as dashed red line in Fig. 4-
(c). Since different motions manifest their unique characteristic

Fig. 5: Correlation map between training and test samples

based on the motion boundaries or trajectories in the range-
slow time domain and in the TF domain, we also seek to
determine the motion trajectory in the time integrated range-
Doppler maps.

An energy-based thresholding algorithm is established to
determine the trajectory of the integrated time range-Doppler
map. First, the energy in the range bin r is computed as

ER(r) =

M∑
k=1

P (r, k) (7)

where k = 1, 2, ...,M are the Doppler indices. Next, for the
range index r, the first frequency bin whose corresponding
range-Doppler value is greater than or equal to the product of
a pre-determined threshold and ER is determined. The two-
step process is repeated for all r = 1, 2, ..., N , leading to
extraction of the motion trajectory.

VI. EXPERIMENTAL RESULTS

The five aforementioned feature sets were extracted for
comparison. A support vector machine (SVM) classifier with
a radial basis kernel function was used for TF-based, range
spread, integrated range-Doppler motion trajectory feature
sets. On the other hand, Euclidean distance classifier was
employed for both correlation-based template matching and
PCA-based feature sets. 60% of the recorded signals were
used for training the classifier, whereas the remaining 40%
were used as testing. Training and test samples were selected
in a random fashion to utilize the classifiers in a better
manner. Therefore, 1000 Monte Carlo trials were conducted to
eliminate the random selection effect on classification results.

We use a variety of performance criteria to evaluate the
different feature extraction methods. The first metric, accuracy,
is the proportion of the total number of fall and non-fall
predictions that are correctly classified. Accuracy, however,
is not a reliable metric to determine the real performance
of the system in which the training data set is unbalanced.
The second metric, sensitivity, measures the proportion of
the correctly classified falls, whereas specificity computes the
proportion of non-falls which are correctly identified. Fall
detection, false alarm and missed rates are commonly used
performance metrics which can also be exploited by examining
the confusion matrix.

Table 1 shows the score for each feature extraction algo-
rithm on each of the six metrics. TF-based features provide
a fairly high performance on sensitivity metric but fails to
provide low missed rate because of the similarity between slow



falling and fast sitting micro-Doppler signatures. The case
where the TF-based and range spread features are employed
together, missed rate is decreased to a level of 4.78% but still
there is a little confusion between walking and falling motions
due to the similar range spread values. Range-Doppler domain
PCA-based features fail to yield good classification results,
whereas both correlation-based template matching and mo-
tion trajectory features yield high classification performances.
Among the range-Doppler algorithms, motion trajectory fea-
tures produce the highest accuracy, sensitivity, specificity and
fall detection rates. The lowest missed rate is provided by
both template-based and motion trajectory features at a level
of 0.41%, whereas template-based features provide the lowest
fall alarm rate.

VII. CONCLUSION

In this paper, we have applied range-Doppler domain fea-
ture extraction methods for radar-based fall motion detection.
Real data measurements were collected corresponding to four
different motions: falling, sitting, picking up an object and
walking. The employed range-Doppler domain feature ex-
traction methods were PCA-based, correlation-based template
matching and target trajectory information. Experimental re-
sults were provided which demonstrated the superiority of the
range-Doppler domain-based features over the conventional
TF-based and range spread features in correctly between fall
and non-fall classes.
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