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Abstract 

In this letter, direction-of-arrival (DOA) estimation of a mixture of coherent and uncorrelated 

targets is performed using sparse reconstruction and active nonuniform arrays. The data 

measurements from multiple transmit and receive elements can be considered as observations 

from the sum coarray corresponding to the physical transmit/receive arrays. The vectorized 

covariance matrix of the sum coarray observations emulates the received data at a virtual array 

whose elements are given by the difference coarray of the sum coarray (DCSC). Sparse 

reconstruction is used to fully exploit the significantly enhanced degrees-of-freedom offered by 

the DCSC for DOA estimation. Simulated data from multiple-input multiple-output minimum 

redundancy arrays and transmit/receive co-prime arrays are used for performance evaluation of 

the proposed sparsity-based active sensing approach. 

Index Terms — Active sensing, direction finding, sparse reconstruction, coherent targets 

 

I. INTRODUCTION 

Direction-of-arrival (DOA) estimation is an important application of array signal processing 

and is an area of continued research interest [1-4]. The problem of DOA estimation becomes 

challenging in the presence of coherent sources or a mixture of coherent and uncorrelated 

sources, which often arise in the presence of multipath propagation. Traditional subspace-based 



DOA estimation techniques, such as MUSIC [5], can no longer be directly applied due to the 

rank deficiency of the noise-free covariance matrix. Spatial smoothing can be used to restore the 

rank of the covariance matrix [6]. However, it can only be applied to specific array structures and 

always results in reducing the degrees-of-freedom (DOF) that are available for DOA estimation.  

Sparse reconstruction techniques have also been applied for DOA estimation of coherent 

sources [7–9]. In [7], an ℓ� − SVD method is proposed to perform sparsity-based DOA 

estimation. In this method, the singular value decomposition (SVD) is employed to reduce the 

dimensionality of the signal model, followed by a mixed ℓ�,� − norm minimization, which 

assumes group sparsity across the time snapshots. The number of resolvable sources in ℓ� −SVD 

is limited by the number of sensors in the array. Joint ℓ� approximation, which is a related 

method to ℓ� −	SVD, has been proposed in [8]. This method uses a mixed ℓ�,� −	norm 

minimization, instead of ℓ�,�, in order to enforce sparsity in the reconstructed DOAs. Another 

sparsity-based method for DOA estimation of more correlated sources than sensors was 

presented in [9]. This method adopts a dynamic array configuration, wherein different sets of 

elements of a uniform linear array (ULA) are activated in different time slots, and uses sparse 

reconstruction to estimate the vectorized form of the source covariance matrix to resolve the 

sources.  

All of the aforementioned schemes employ passive or receive-only arrays for DOA 

estimation. An active or transmit/receive sensing method was proposed in [10] for direction 

finding in a coherent environment. This method generalizes the spatial smoothing decorrelation 

technique to encompass active arrays, where the transmitters illuminate the field of view, and the 

receivers detect the reflections from the targets. The recorded data emulates measurements at the 

corresponding sum coarray. Using the coarray equivalence principle, the sum coarray 



measurements can be considered as originating from a virtual transmit/receive array, which,  

compared to the physical transmit/receive array, provides a different tradeoff between the 

number of resolvable targets and the maximum number of mutually coherent targets that can be 

resolved.  The number of resolvable targets for this active sensing scheme is limited by the 

number of receivers in the virtual transmit/receive array. In [11], a sparse reconstruction scheme 

for DOA estimation in co-located multiple-input multiple-output (MIMO) radar was proposed. 

The received data is arranged in a vector which emulates measurements at the sum coarray, and 

either ℓ� −	SVD or a reweighted minimization is applied to reconstruct the signal. For this 

method, the number of resolvable targets is limited by the number of sum coarray elements. 

In this letter, we perform DOA estimation of a mixture of coherent and uncorrelated targets 

by using the covariance matrix of the data vector that emulates measurements at the sum coarray 

of active nonuniform arrays. In so doing, the number of DOFs is significantly increased, owing 

to the fact that the vectorized covariance matrix of the sum coarray observations can be thought 

of as a single measurement at a virtual array whose elements are given by the difference coarray 

of the sum coarray (DCSC). The DCSC has a much higher number of elements compared to the 

sum coarray itself [12]. Sparse reconstruction is employed to fully exploit the enhanced DOFs by 

estimating the vectorized form of the source covariance matrix, which is linearly related to the 

vectorized data covariance matrix of the sum coarray observations. Two different nonuniform 

array geometries are considered for performance evaluation using simulated data. The first 

configuration is the MIMO minimum redundancy array (MRA), which maximizes the number of 

elements in the DCSC [12], whereas the second is the transmit/receive co-prime arrays [13, 14]. 

Simulation results clearly demonstrate the superior performance of the proposed scheme over 

existing methods in terms of the number of resolvable targets for a given number of 



transmitters/receivers.  

The remainder of the letter is organized as follows. In Section II, the signal model for active 

sensing is reviewed, and the proposed sparsity-based DOA estimation approach is presented. The 

MIMO MRA and co-prime configurations are also discussed in this section. The performance of 

the proposed method is evaluated in Section III through numerical simulation, and Section IV 

concludes the letter. 

II. PROPOSED DOA ESTIMATION APPROACH 

A. Signal Model 

We consider an �-element linear transmit array and an 	-element linear receive array. The 

two arrays may or may not share common elements. These arrays are assumed to be co-located 

so that a target in the far-field appears to have the same direction at all transmitters and receivers. 

The scene is illuminated by multiple sequential narrowband transmissions of center frequency 
� 

from the different transmitters. This group of transmissions, one from each transmitter, is 

referred to as a single “snapshot”. We assume the field of view to consist of � point targets in 

directions �
�, 
�, … , 
��, where 
 is the angle relative to broadside of the transmit or receive 

array. The target distribution consists of both uncorrelated and coherent targets. Then, the output 

of the receive array can be expressed as an �	 × 1 vector [15, 16] 

 ���� = ��t�
q�⨂�r�
q� q���
�

!"�
+ $���, (1) 

where the operator ⨂ denotes the Kronecker product,  q��� is the reflection coefficient of the %th 

target at snapshot �,  and �t�
q� and �r�
q� are the steering vectors of the transmit and receive 

arrays corresponding to the direction of the %th target, respectively. The &th element of �t�
q� is 

given by exp	�−*+��m sin 
q� where �m is the location of the &th transmitter and +� = 20
�/2 is 



the wavenumber at frequency 
� with c being the speed of light, and the 3th element of �r�
q� is 

given by exp	�−*+�4n sin 
q� where 4n is the location of the 3th receiver. The vector $��� in (1) is 

the �	 × 1 noise vector. The noise is assumed to be independent and identically distributed 

following a complex Gaussian distribution.  

 The term �t�
q�⨂�r�
q� in (1) is equivalent to the steering vector of a virtual receive-only 

array, whose elements are given by the sum coarray of the transmit and receive arrays. The sum 

coarray elements are defined as the set {�46 + �7�, 0 ≤ 3 ≤ 	 − 1, 0 ≤ & ≤ � − 1} [17]. Let ; 

be the number of unique elements in the sum coarray. Then, a new ;	 × 1 received data vector 

can be formed from (1) as 

 �sum��� = >sum?��� + $@A7���, (2) 

where >sum = ��sum�
1�, �sum�
2�,… , �sum�
Q�� is the ; × � array manifold corresponding to 

the sum coarray, ?��� = � 1���	,  2���,… ,  Q����B, and �sum�
q� is the steering vector of the sum 

coarray in direction 
q. It should be noted that if two or more transmit/receive element pairs 

contribute to the same sum coarray point, either the average or one of the corresponding 

measurements could be used in �sum���. The ℓ� −	SVD method can be applied to the sum 

coarray data vector �sum��� for sparsity-based DOA estimation [11].  However, the maximum 

number of resolvable targets in this case is limited to the number of unique elements in the sum 

coarray [18]. 

B. Correlation Matrix Based Sparse Reconstruction Approach 

The ; × ; covariance matrix of the sum coarray data can be expressed as 

 Csum = D{�sum����sumE ���} = >sumCss>sumE + Fn�G, (3) 

where D{∙} is the expectation operator, Fn
� is the noise variance, and G is an ; × ; identity 

matrix.	Css  is the � × � source correlation matrix, which contains the powers of the reflections 



from the targets on its main diagonal and the cross-correlations between the targets in the off-

diagonal terms. In practice, the covariance matrix is estimated by a sample average over multiple 

snapshots. 

In order to perform DOA estimation of the coherent and uncorrelated targets, we estimate Css  

using Csum [9]. To this end, we proceed as follows. The angular region of interest is discretized 

into a finite set of I ≫ � grid points, K
LM , 
LN , … , 
LOP, with 
LM  and 
LO being the limits of the 

search space. The targets are assumed to be located on the grid. Several methods can be used to 

modify the model in order to deal with off-grid targets [7, 19]. We define the ; × I array 

manifold >Qsum whose columns are the steering vectors corresponding to the defined angles in the 

grid, and the I × I CQss which holds the auto- and cross-correlation between the potential targets 

at the defined angles. Equation (3) can then be rewritten as 

 Csum = >QsumCQss>QsumE + Fn�G. (4) 

Since I ≫ �, CQss is a sparse matrix. Sparse reconstruction can then be applied to estimate CQss, 

and consequently resolve the targets. The nonzero terms on the main diagonal of CQss correspond 

to the powers of the target reflections present in the field of view, and the nonzero off-diagonal 

terms correspond to the correlations between the coherent targets. As a result, the target 

directions can be obtained by identifying the nonzero terms on the main diagonal. 

The covariance matrix Csum is vectorized by stacking its columns to form a tall vector, which 

emulates a single snapshot at a virtual array whose elements are given by the DCSC of the 

transmit and receive arrays. With the sum coarray containing ; unique elements at positions 

Sℓ, ℓ = 0,… , ; − 1, the DCSC elements are given by the set Ω = KSℓM − SℓN , ℓ� = 0,… , ; −

1	and ℓ� = 0,… , ; − 1P. It can be readily shown that the ;� × 1 vectorized form of Csum can be 

expressed as [9, 20], 



 UV2�Csum� = �>Qsum∗ ⨂>Qsum�UV2�CQss�, (5) 

where UV2�∙� denotes the vectorization operation and the superscript ‘*’ denotes complex 

conjugation. Given the model in (5), the constrained optimization problem for reconstructing the 

I� × 1 UV2�CQss�  can be expressed as [21], 

 CXss = argminCQss
[UV2�Csum� − �>Qsum∗ ⨂>Qsum�UV2�CQss�[� + \[UV2�CQss�[�, (6) 

where the ℓ� −	norm is the least squares cost function to maintain data fidelity, and the ℓ� − 

norm encourages sparsity in the reconstructed vector. The regularization parameter \ is used to 

control the weight of the sparsity constraint in the overall cost function. 

C. Maximum Number of Resolvable Targets 

The maximum number of resolvable targets using the proposed method depends on the 

number of unique lags in the DCSC and the number of coherent targets. Each pair of coherent 

targets corresponds to two nonzero off-diagonal terms in CQss, and each target contributes a 

nonzero term on the main diagonal. Due to conjugate symmetry in CQss, only the lower triangle 

matrix can be estimated. This implies that, instead of I� terms, only I�I + 1�/2  elements of 

CQss need to be estimated. According to [22], the sparsity based minimization problem in (6) is 

guaranteed to have a unique solution under the condition ] ≥ 2_, where ] is equal to the 

number of independent observations or the number of unique elements in the DCSC and _ is the 

number of nonzero terms in the lower triangle of CQss, which can be expressed as _ = � + `, 

where ` is the number of pairs of coherent targets. 

The number of unique lags P in the DCSC is a function of the transmit and receive array 

geometries. For a given number of transmitters and receivers, active array configurations 

specifically designed to be optimal in the sense that the number of unique elements in the DCSC 

is maximized, would yield the highest number of resolvable sources. MIMO MRAs are one such 



type of arrays which are designed under the constraint that the DCSC has no holes [12]. 

However, the use of such optimal array configurations is not mandatory, and the proposed 

technique can be applied to other nonuniform arrays, such as co-prime arrays. Co-prime arrays 

consist of two interleaved ULAs with co-prime number of elements and co-prime element 

spacing [13, 14]. Table I summarizes the number of unique elements in the sum coarray and the 

DCSC of three different implementations (Configurations A, B, and C) of a co-prime array 

comprising a �2�a − 1� element ULA with 	a\�/2			inter-element spacing and a second ULA 

having 	a elements spaced by �a\�/2; �a and 	a are co-prime integers, the two ULAs share 

the first element at 0, and \� is the wavelength at the frequency 
�. Configuration A uses the first 

ULA to transmit and the second ULA to receive. Configuration B employs the first ULA for 

transmission and both ULAs for reception. Configuration C uses the entire co-prime array to 

transmit and receive.  These implementations provide different tradeoffs between cost, hardware 

complexity, and the maximum number of unique elements in the DCSC. We observe from Table 

I that the advantage of the proposed method over the ℓ� − SVD method applied directly to the 

sum coarray of the co-prime arrays is more evident for higher values of �a and 	a. For large �a 

and 	a values, a three-fold increase in the DOFs occurs for configurations B and C. 

III. NUMERICAL RESULTS 

In this section, DOA estimation results for the proposed sparse reconstruction technique 

using nonuniform active arrays are presented, and a comparison with the ℓ� − SVD method is 

also provided. Both MIMO MRAs and co-prime arrays are considered. The root mean square 

error (RMSE) with respect to the directions is used to compare the two methods.  

In the first example, we consider a MIMO MRA, which consists of two receivers positioned 

at b0, 7d�e and three transmitters positioned at b0, d�, 3d�e, where d� = \�/2. Fig. 1 shows the 



corresponding sum coarray and the DCSC. The sum coarray consists of six elements positioned 

at b0, 1, 3, 7, 8, 10ed�, whereas the DCSC consists of 21 consecutive virtual elements and its 

aperture extends from −10d� to 10d�. As such, ℓ� − SVD applied to the sum coarray 

measurements can estimate up to six sources, whereas the proposed method can estimate up to 

ten nonzero elements in the lower triangle of the source covariance matrix. This is tested by first 

considering six targets at directions b−60°, −20°, −15°, 10°, 30°, 40°e, with the reflections from 

the first three targets being mutually coherent. The total number of snapshots is set to 500. 

Spatially and temporally white Gaussian noise is added to the observations, and the SNR for the 

six targets is set to b10, 0, 5, 0, 10, 0e	dB. The search space is discretized uniformly from −90° 
and 90° with 1° increment, and the regularization parameter \ is set empirically to 0.5 for the 

proposed method. The normalized spectrum obtained using ℓ� − SVD and averaged across the 

snapshots is shown in Fig. 2(a). Fig. 2(b) depicts the normalized values on the main diagonal of 

the estimated source covariance matrix using the proposed approach. The dashed vertical lines in 

both figures indicate the true target directions. We observe that the proposed method has 

correctly estimated the target directions. However, ℓ� − 	op_ misses two targets with low SNR, 

and produces biased estimates for the remaining targets. The RMSE is 0° for the proposed 

method. 

Next, the same MIMO MRA is used, but the number of targets is increased to seven with the 

first three being mutually coherent. The targets are positioned at 

b−55°, −40°, −15°, 5°, 20°, 45°, 65°e. A 10 dB SNR is used for all the targets. The regularization 

parameter \ is set to 0.3. Figs. 3(a) and 3(b) show the estimated spectra using ℓ� − SVD and the 

proposed method, respectively. Clearly, ℓ� − SVD fails to estimate the targets since the total 

number of targets exceeds the number of sum coarray elements. The proposed method, on the 



other hand, is successful since the number of nonzero elements in the lower triangle is equal to 

10. The corresponding RMSE is 0.24°. The number of targets is then increased to 10, which is 

equal to the maximum number of nonzero elements in the lower triangle of the covariance matrix 

that can be estimated using the proposed method. The target directions are uniformly spaced 

between −50° and 50°. The reflections from all the targets are assumed to be uncorrelated in this 

example, and the other simulation parameters are kept the same as before. Fig. 4(a) shows the 

estimated spectrum using ℓ� − SVD, which fails to estimate the target directions because the 

number of targets is larger than the number of sum coarray elements. The estimated spectrum 

using the proposed approach is shown in Fig. 4(b). As expected, this method correctly estimates 

all the DOAs, and the RMSE is equal to 0.2° in this example. 

Next, we consider a co-prime array with �a = 3 and 	a = 4, i.e., the first ULA consists of 

five physical sensors with positions b4, 8, 12, 16, 20ed�, and the second ULA consists of four 

sensors positioned at b0, 3, 6, 9ed�. Configuration B is considered, which implies that the first 

ULA is used to transmit and both ULAs are used to receive. The corresponding sum coarray 

consists of 25 elements, and the DCSC consists of 67 elements. We consider 30 targets, 

uniformly spaced between −0.95 and 0.95 in the reduced angular coordinate sin�
�,	with three 

targets being mutually coherent. The rest of the simulation parameters are the same as in the 

previous examples. Figs. 5(a) and 5(b) show the estimated spectra using ℓ� − SVD and the 

proposed method, respectively. We observe that ℓ� − SVD fails to estimate the target directions, 

since the number of targets exceeds the number of sum coarray elements. The proposed method 

correctly estimates the DOAs since the number of nonzero elements in the lower triangle of the 

source covariance matrix in this case is _ = � + ` = 30 + 3 = 33, and the number of unique 

elements in the DCSC is ] = 67 which is greater than 2_. The corresponding RMSE is 0.03°. 



IV. CONCLUSION 

A sparse reconstruction method has been proposed for DOA estimation using active 

nonuniform arrays. The proposed approach offers a significant enhancement in the DOFs over 

the currently employed methods by using the covariance matrix of sum coarray measurements to 

emulate observations at the difference coarray of the sum coarray. The proposed method was 

tested using two nonuniform array configurations and was shown to successfully estimate the 

directions of a mixture of coherent and uncorrelated targets. 
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Figure 1.  MIMO MRA, sum coarray and DCSA 
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NUMBER OF UNIQUE ELEMENTS IN THE SUM COARRAY AND THE DCSA 

 Sum Coarray Unique Elements DCSA Unique Elements 

Configuration A �2�a − 1�	a �5�a − 3�	a −�a 

Configuration B �2�a − 1��	a + 1� �7�a − 5�	a +�a 

Configuration C �2�a��	a + 1� − 1 �7�a − 3�	a +�a 
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Figure 2.  MIMO MRA, six targets (3 mutually coherent), (a) qr − SVD, (b) Proposed method 
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Figure 3.  MIMO MRA, seven targets (3 mutually coherent), (a) qr − SVD, (b) Proposed method 

-100 -50 0 50 100
0

0.2

0.4

0.6

0.8

1

θθθθ (degrees)

N
o

rm
a
li

z
e
d

 S
p

e
c
tr

u
m

-100 -50 0 50 100
0

0.2

0.4

0.6

0.8

1

θθθθ (degrees)

N
o

rm
a
li

z
e
d

 S
p

e
c
tr

u
m

 
(a) 
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Figure 4.  MIMO MRA, 10 uncorrelated targets, (a) qr − SVD, (b) Proposed method 
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Figure 5.  Co-prime array, 30 targets (3 coherent), (a) qr − SVD, (b) Proposed method 
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