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ABSTRACT 

In this paper, multi-frequency co-prime arrays are employed to perform direction-of-arrival (DOA) 

estimation with enhanced degrees of freedom (DOFs). Operation at multiple frequencies creates 

additional virtual elements in the difference coarray of the co-prime array corresponding to the 

reference frequency. Sparse reconstruction is then used to fully exploit the enhanced DOFs offered 

by the multi-frequency coarray, thereby increasing the number of resolvable sources. For the case 

where the sources have proportional spectra, the received signal vectors at the different frequencies 

are combined to form an equivalent single measurement vector model corresponding to the multi-

frequency coarray. When the sources have nonproportional spectra, a group sparsity based 

reconstruction approach is used to determine the direction of signal arrivals. Performance evaluation 

of the proposed multi-frequency approach is performed using numerical simulations for both cases 

of proportional and non-proportional source spectra. 
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1. INTRODUCTION 

Direction-of-arrival (DOA) estimation has been an area of continued research interest due to its 

wide range of applications in radar, sonar, and wireless communications [1-3]. A main parameter in 

DOA estimation is the maximum number of sources that can be resolved. Traditional high-resolution 

DOA techniques, such as MUSIC [4] and ESPRIT [5], can only estimate up to (� − 1) sources 

when applied to an �-element uniform linear array (ULA). Numerous nonuniform array geometries 

and signal processing techniques have been introduced to increase the number of resolvable sources 

beyond that offered by a ULA for a given number of physical sensors [6-13]. 

 Minimum redundancy arrays (MRAs) and minimum hole arrays (MHAs) are two common 

classes of nonuniform linear arrays [6-9].  Both MRAs and MHAs provide the ability to resolve 

more sources than the number of physical sensors by reducing the number of redundant virtual 

elements in the difference coarray. The difference coarray is defined as the set of all pairwise 

differences of array element locations, and, thus, it specifies the set of “lags” at which the spatial 

correlation function may be estimated [10, 11]. For a given number of physical sensors,  MRAs are 

arrays with the lowest possible redundancy and without any missing lags or ‘holes’ in the 

corresponding coarray, whereas MHAs (also known as Golombs arrays) have a minimum number of 

holes and zero redundancy. More recently, nested co-prime array configurations have been proposed 

[12, 13]. Nested structure is obtained by systematically nesting two uniform linear subarrays, with 

one subarray assuming a unit inter-element spacing, and can provide �(��)	DOFs using only 

�	physical sensors. A nested array generates a coarray with no holes. The co-prime array consists of 

two uniform linear subarrays having 		 and � sensors with specific inter-element spacings, where 

	 and � are co-prime, and offers �(	�) degrees of freedom.  The co-prime array produces a 

coarray that has both redundancy and holes.  
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High-resolution DOA estimation with nonuniform arrays can be accomplished based on two 

main approaches, namely, covariance matrix augmentation [14] and spatial smoothing method for 

covariance matrix construction [12, 13, 15]. In the former approach, the constructed augmented 

covariance matrix is not guaranteed to be positive semi-definite and requires positive definite 

Toeplitz completion [16, 17].  The latter approach vectorizes the covariance matrix of the 

nonuniform array to emulate observations at a virtual array whose sensor positions are given by the 

difference coarray. Since the source signals are replaced by their powers in this case, rendering the 

source environment coherent, spatial smoothing is utilized to decorrelate the sources and to restore 

the rank of the corresponding covariance matrix. However, the spatial smoothing based method can 

only be applied to that part of the difference coarray that has a contiguous number of elements 

without any holes, implying that this technique cannot fully utilize the DOFs offered by co-prime 

arrays.   

In [18], multiple frequencies were employed to exploit all of the DOFs of co-prime arrays, thus, 

increasing the number of resolvable sources.  Measurements made at carefully chosen additional 

frequencies were used to fill in the missing elements in the difference coarray [19]. In so doing, the 

filled part of the difference coarray is extended, which in turn, increases the maximum number of 

sources resolved by high-resolution DOA estimation techniques. However, the increase in DOFs 

comes with a restriction on the sources’ spectra. More specifically, the sources are required to have 

proportional spectra at the considered frequencies [18, 20]. Although this method provides the 

ability to utilize all of the DOFs of the co-prime array, only a small portion of the additional 

measurements at frequencies other than the reference frequency are used; the rest are discarded. 

In this paper, sparse reconstruction is considered to make use of the full measurement set 

corresponding to the multi-frequency operation for DOA estimation with co-prime arrays. This 
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enhances the DOFs beyond those offered by single-frequency operation due to the additional virtual 

elements generated in the coarray under multi-frequency operation. For sources with proportional 

spectra, the observations at the different frequencies are cast as a single measurement vector model, 

which corresponds to a virtual array whose element positions are given by the union set of the 

difference coarrays corresponding to the multiple operational frequencies. Sparse reconstruction can 

then be applied for estimating the directions of signal arrivals. For the case where the sources have 

nonproportional spectra, the source signal vectors corresponding to the different frequencies have a 

common support, as the sources maintain their DOA even if their power varies with frequency. The 

common structure property of the sparse source vectors suggests the application of a group sparse 

reconstruction. It is noted that sparse recovery was previously applied for DOA estimation with co-

prime arrays in [21, 22]; however, it was limited to single-frequency operation and did not consider 

enhancement of the DOFs of co-prime arrays through multi-frequency operation. 

Performance evaluation of the proposed sparsity-based methods is conducted using numerical 

simulations. We consider three different cases for DOA estimation using sparse reconstruction at 

multiple frequencies. In the first case, all sources are assumed to have the same bandwidth and all 

sensors operate at the same multiple frequencies. The second and third cases violate the above 

assumption with a subset of sensors only operating at multiple frequencies and the sources having 

nonidentical bandwidth but overlapping spectra. 

The remainder of the paper is organized as follows. In Section 2, the multi-frequency signal 

model for co-prime arrays is presented. In Section 3, the sparse reconstruction based DOA 

estimation for multi-frequency co-prime arrays under proportional spectra is discussed. The case of 

sources with nonproportional spectra is considered in Section 4 and the group sparsity based 

reconstruction is presented. The performance of the proposed methods is evaluated in Section 5 
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through numerical simulations, and Section 6 concludes the paper. 

Notation 

Vectors and matrices are denoted by lower-case and upper-case bold characters, respectively. 

Superscript (. )� denotes the transpose of a matrix or a vector, whereas their conjugate transpose is 

denoted by superscript (. )�. The Kronecker product and the Khatri-Rao product [1] are denoted by 

the symbols ⊗ and ⊙, respectively. �{. } denotes the statistical expectation operator, ���(. ) denotes 

the vectorized form of a matrix which is obtained by stacking the columns of the matrix to form a 

long vector, and �����{∙} denotes block diagonal matrix.  

2. MULTI-FREQUENCY SIGNAL MODEL 

In its basic configuration, a co-prime array consists of two uniformly spaced linear subarrays. 

The first subarray has 	 elements with ��� inter-element spacing, and the second one has � 

elements with 	�� spacing, where 	 and � are co-prime numbers, and �0 = �0/2 is the unit 

spacing with  �0 being the wavelength at a reference frequency !0 [13]. In this work, we deal with 

an extended co-prime array configuration, proposed in [15], which has twice the number of elements 

in one of the subarrays. More specifically, we assume 	 to be less than � with the first subarray 

having 2	 elements, as shown in Fig. 1. The elements of the two subarrays are arranged along a 

single line with the zeroth elements coinciding, resulting in a co-prime array with a total of (2	+
�−1) non-uniformly spaced physical elements. The difference coarray of the extended co-prime 

array can be expressed as 

 #� = {±(	%�� − 	�&��)}, (1) 

where 0 ≤ % ≤ � − 1, and 0 ≤ & ≤ 2	 − 1. The coarray has an aperture of length 2(2	 − 1)���  

with contiguous elements between −(	� +	 − 1)�� and (	�+	−1)�0, as depicted in Fig. 2.  
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Assume that ) sources are impinging on the (2	+�−1)−element co-prime array from 

directions *+1, +2,… , +)-, where + is the angle relative to broadside. The (2	+�−1)×1	received 

data vector is expressed as 

 /(!�) = 0(!�)1(!�) + 2(!�), (2) 

where 1(!�) = *34(!�)	3�(!�)	…	35(!�)-6 is the source signal vector at !0, and 2(!�) is the 

(2	+�−1)×1	noise vector at !0. The (2	+�−1)×)	matrix 0(!�) is the array manifold at 

!0, whose columns are the steering vectors corresponding to the sources directions. That is, 

0 = *7(+4)	7(+�)… 	7(+5)- with the steering vector 7(+8) corresponding to the direction +� given 

by 

 7(+8) = 9	�:;<=> ?@A(BC), … , �:;<=2M+N-1 ?@A(BC)G6. (3) 

Here, H0 = 2I/�0 is the wavenumber at the reference frequency !0, and J�, � = 0,1,… ,2	+�−1, 
is the location of the �th array element. Assuming that the sources are uncorrelated and the noise is 

spatially and temporally white with variance K%2	 and uncorrelated from the sources, the 

autocorrelation matrix of the received data is given by 

 L==(!�) = �{/(!�)/(!�)M} = 0(!�)LNN(!�)0M(!�) + KO�P, (4) 

where L33(!0) is the source correlation matrix which is diagonal with the source powers at !0, 
K12(!0), K22(!0), … , K)2 (!0), populating its main diagonal, and P is a (2	+�− 1)× (2	+�− 1) 
identity matrix. In practice, the autocorrelation matrix is estimated as a sample average of the 

received signal snapshots.  

Following the formulation in [13], the autocorrelation matrix is vectorized as 

 Q(!�) = ���RL==(!�)S = 0T(!�)U(!�) + KO�(!�)Ṽ, (5) 

where 0T(!0) = 0∗(!0)⊙0(!0) = *7∗(+1)⨂7(+1) 	…	7∗(+))⨂7(+))-	, U(!�) is the sources 
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powers vector at !0,	U(!�) = 	 *K4�(!�)	K��(!�)…	K5�(!�)-6, and Ṽ is the vectorized form of P. The 

vector Q(!�) behaves as the received signal vector at a longer virtual array with sensor positions 

given by the difference coarray at !0 of the physical array. In this model, the sources are replaced by 

their respective powers and, as such, act as mutually coherent sources, and the noise is deterministic. 

Traditional subspace-based high-resolution methods, such as MUSIC, can no longer be applied 

directly to perform DOA estimation. Spatial smoothing can be used to restore the rank of the 

correlation matrix of Q(!�) [23]. However, it can only be applied to the filled part of the difference 

coarray and the usable DOFs are reduced to approximately one-half of the total number of 

contiguous coarray elements. Sparsity based DOA estimation can help extend the usable DOFs to 

the number of positive lags in the coarray [24].  

Consider operating the physical co-prime array at Z different frequencies with the qth frequency 

given by ![ = \[!�	, where \[	is a constant. Note that it is not required for the reference frequency 

!� to be one of the Q operational frequencies. If it is included in the operational frequency set, the 

corresponding \[ assumes a unit value. The received signal at each considered frequency can be 

extracted by decomposing the array output vector into multiple nonoverlapping narrowband 

components by using the discrete Fourier transform (DFT) [25, 26]. The observation time is 

assumed to be sufficiently long to resolve the different frequencies. The received signal vector 

corresponding to the qth operational frequency can be expressed as, 

 /R![S = 0R![S1R![S + 2R![S. (6) 

Here, 1R![S and 2R![S are the source signal and noise vectors at !], and 0R![S is the array 

manifold at !] with its (�, ^)th element given by 
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 90R!]SG�,^ = �^H]J�3�%_+^`, H] = 2I\]
�0 =	\]H0	 (7) 

where H] is the wavenumber at !]. We observe from (7) that the array manifold at !] is equivalent 

to the array manifold of a scaled version of the physical co-prime array, with the position of the �th 

sensor in this scaled array given by \]J�. This, in turn, results in the difference coarray at !] to be a 

scaled version of the difference coarray of Fig. 2 (at the reference frequency !0), with \] being the 

scaling factor [19]. If !] is higher than the reference frequency, !0, the coarray at !]	is an expanded 

version of the one at the reference frequency. On the other hand, for !] lower than !0, the 

equivalent coarray at !]	is a contracted version of that in Fig. 2. For illustration, consider an 

extended co-prime array with 	 = 3 and � = 7 and the sensor positions given by 

*0�0	3�0	6�0	7�0	9�0	12�0	14�0	15�0	18�0	21�0	28�0	35�0-. The corresponding difference 

coarray at !0 is shown in Fig. 3(a). Operating the array at frequency !1 = 8/7!0, which is larger 

than !0, results in stretching the difference coarray of Fig. 3(a), as shown in Fig. 3(b). On the other 

hand, if the array is operated at a smaller frequency, say !1 = 6/7!0, the difference coarray 

undergoes contraction as depicted in Fig. 3(c). 

For multi-frequency DOA estimation, we employ the normalized autocorrelation matrices at 

each of the Z operational frequencies [20]. The (�, ^)th element of the normalized autocorrelation 

matrix  LhJJR!]S	is defined as 

 9LhJJR!]SG�,^ =
9LJJR!]SG�,^

1
(2	+�−1)�i/�R!]S/R!]Sj

= � k9/R!]SG�9/∗R!]SG^l
1

(2	+�−1)�i/�R!]S/R!]Sj
, (8) 

where 9/R!]SG� is the �th element of the received data vector at frequency !]. It can be readily 

shown that in the normalized autocorrelation matrix LhJJR!]S, the source and noise powers are 

replaced by their normalized values, which can be expressed as 
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 KhH2R!]S = KH2R!]S
∑ K�2R!]S)�=1 +	K%2R!]S

 (9) 

 Kh%2R!]S = K%2R!]S
∑ K�2R!]S)�=1 +	K%2R!]S

 (10) 

where KH2R!]S and K%2R!]S denote the respective powers of the Hth source and the noise at !].  

Similar to (5), we can express LhJJR!]S	 in vectorized form as 

 QnR![S = ��� _Lh==R![S` = 0TR![SUhR![S + KnO�R![SṼ, (11) 

where UhR!]S =	 9Kh12R!]S	Kh22R!]S…	Kh)2 R!]SG�. The measurement vector QnR!]S emulates 

observations at the difference coarray corresponding to !].  

The measurement vectors QnR![S, ] = 1,2, … , Z, can be combined to establish an appropriate 

multi-frequency linear model that permits DOA estimation within the sparse reconstruction 

framework. In the sequel, we distinguish two cases of normalized source spectra. In the first case, 

we assume the normalized power of each source to be independent of frequency, 

 Kn;�R![S = K;�,	for	all	H, ], (12) 

whereas the normalized source powers are allowed to vary with frequency in the second case.  

3. SPARSITY-BASED DOA ESTIMATION UNDER PROPORTIONAL SPECTRA 

We discretize the angular region of interest into a finite set of t ≫ ) grid points, 

v+�1, +�2, … ,+�tw, with +�1 and +�t being the limits of the search space. The sources are assumed to 

be located on the grid. Several methods can be used to modify the model in order to deal with off-

grid targets [27, 28]. Then, (11) can be rewritten as 

 QnR![S = 0TxR![S/hR![S + KnO�R![SṼ, (13) 
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where the columns of the (2	 + � − 1)� × t matrix 0TxR![S are the steering vectors at !]	 

corresponding to the defined angles in the grid. The vector /hR!]S	is a D-sparse vector whose support   

corresponds to the source directions with the nonzero values equal to the normalized source powers.  

For a high signal-to-noise ratio (SNR), a sufficient condition for (12) to hold is that the sources 

must have proportional spectra at the employed frequencies [20]. That is, 

 
KH2R!]S
Ky2R!]S

= zH,y, H, y	 ∈ {1,2,… ,)}, ]	 ∈ {1,2,… ,Z}. (14) 

 This case is applicable e.g. when the D sources are BPSK or chirp-like signals.  Under proportional 

source spectra, the source vector UhR![S is no longer a function of ![ , i.e., UhR![S = Uh =

*Kn4�	Kn��…	Kn5�-6 for	all	],	which implies that vector /hR![S = /h	for	all	]. As such, the measurement 

vectors QnR![S	at the Z operating frequencies can be stacked to form a single Z(2	 + � − 1)� ×
1	vector,  

 Qnx = |Tx/h + Ṽx, (15) 

where Qnx = }Qn(!4)6	Qn(!�)6…	QnR!~S6�
6
,  Ṽx = }KnO�(!4)��6	KnO�(!�)��6…	KnO�R!~S����

6
, and the 

dictionary |Tx = }0Tx(!4)6	0Tx(!�)6…	0TxR!~S6�
6 . The measurement vector is equivalent to that of 

a virtual array, whose element positions are given by the combined difference coarrays at the Q 

frequencies, i.e.,  

 #x = {\4#�, \�#�, … , \~#�}, (16) 

where #0 is defined in (1).  It is noted that in the case of overlapping points in the Q coarrays, an 

averaged value of the multiple measurements that correspond to the same coarray location can be 

used. This results in a reduction in the dimensionality of Qnx. More specifically, the length of Qnx 
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becomes equal to the total number of unique lags in the combined difference coarray, which is given 

by  

 #x =�\[#�
~

[�4
, (17) 

The dictionary matrix and the noise vector would be changed accordingly. 

It should be noted that not all the physical sensors must operate at all Z frequencies. Situations 

may arise due to cost and hardware restrictions that only a few sensors can accommodate a diverse 

set of frequencies. The overall difference coarray is still the union of coarrays at the individual 

frequencies. However, the difference coarray at each frequency may no longer be a scaled version of 

the difference coarray at the reference frequency. 

Given the model in (15), DOA estimation proceeds in terms of sparse signal reconstruction by 

solving the following constrained minimization problem 

 /� = argmin/h ‖/h‖4 	subject	to	�Qnx − |Tx/h�� < �	and	/h ≽ �, (18) 

where � is a user-specified bound which depends on the noise variance. The constraint /h ≽ � forces 

the search space to be limited to nonnegative values [22]. This is due to the fact that the nonzero 

elements of /h correspond to the normalized source powers which are always positive. This 

constraint accelerates the convergence of the solution by reducing the search space. Various 

techniques can be used to solve the constrained minimization problem in (18), examples being 

Lasso, OMP, and CoSaMP [29, 30, 31]. In this paper, we use Lasso which solves an equivalent 

problem to (18), 

 /� = argmin/ �12 �Qnx − |Tx/h�� + ��‖/h‖� 	subject	to	/h ≽ �,  (19) 
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where the y2-norm is the least squares cost function and the y1-norm encourages a sparse solution. 

The regularization parameter �� is used to control the weight of the sparsity constraint in the overall 

cost function. Increasing �� results in a sparser solution at the cost of an increased least squares 

error. Several methods have been proposed to estimate the regularization parameter, such as the 

discrepancy principle [28, 32] and cross validation [29]. 

The maximum number of resolvable sources using the proposed method depends on the number 

of unique lags in the combined difference coarray. According to [33], the sparsity based 

minimization problem in (19) is guaranteed to have a unique solution under the condition & ≥ 2), 

where & is equal to the number of independent observations or the number of unique lags in the 

combined difference coarray. As a result, the maximum number of resolvable sources is equal to the 

number of unique positive lags in the combined coarray. At the reference frequency, the difference 

coarray extends from −(2	 − 1)��� to (2	− 1)��0, and it has a total of (	− 1)(�− 1) holes, 

which means that the number of unique lags at each frequency is equal to (3	�+	−�), and the 

highest number of possible unique positive lags is (3	�+	−�− 1)/2. Therefore, the maximum 

number of resolvable sources at each frequency is (3	�+	−�− 1)/2. Taking into account the 

overlap between the lags at the different employed frequencies, the maximum number of resolvable 

sources with the multi-frequency technique is bounded as follows 

 
(3	�+	−�−1)

2 < ) ≤ Z (3	�+	−�−1)
2 − (Z−1). (20) 

The term (Z − 1) is subtracted from the upper bound due to the unavoidable overlap between the Z 

difference coarrays for the zero lag. 

4. SPARSITY-BASED DOA ESTIMATION UNDER NONPROPORTIONAL SPECTRA 

When the source powers vary with frequency, the single measurement vector model of (15) is no 
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longer applicable. However, the D sources have the same directions *+4, +�, … , +5- regardless of 

their power distribution with frequency. As such, the vectors /hR![S, ] = 1, 2, … , Z, in (13) have a 

common support. That is, if a certain element in, e.g., /h(!4)) has a nonzero value, the corresponding 

elements in /hR![S, ] = 2,…Z,		should be also nonzero. The common structure property suggests 

the application of a group sparse reconstruction. We, therefore, propose a DOA estimation approach 

based on group sparsity for the nonproportional spectra case. 

The received signal vectors QnR!]S in (13) corresponding to the Q frequencies are stacked to form 

a long vector 

 Qnx = �Tx/� + Ṽx, (21) 

where �Tx = �����i0Tx(!4), 0Tx(!�),⋯ , 0TxR!~Sj, and /� = }/h(!4)6	/h(!�)6…	/hR!~S6�
6 . The 

vector /� is a group sparse vector where each group consists of the source powers corresponding to a 

specific direction at all operating frequencies. The group sparse solution is obtained by minimizing 

the following mixed y4 − y� norm cost function 

 &�%�Qnx − �Tx/��� + z�‖/�‖�,4, (22) 

where  

 ‖/�‖�,4 = 	�  9J̅¢(!4), J̅¢(!�), … , J̅¢R!~SG6 �

£¤4

¢��
.	 (23) 

This means that the variables belonging to the same group are combined using the y�-norm, and the 

y4-norm is then used across the groups to enforce group sparsity. Different algorithms can be utilized 

to perform sparse reconstruction with grouped variables. These algorithms include group Lasso and 

Block Orthogonal Matching Pursuit (BOMP) [34, 35], among many others. In this paper, group 

Lasso is considered to perform DOA estimation in the case of sources with nonproportional spectra. 
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Further, similar to the method discussed in Section 3, a constraint can be added to force the elements 

of the solution vector /� to be nonnegative.  

It is noted that this formulation results in a smaller number of achievable DOFs compared to the 

case where the sources have proportional spectra. The maximum number of resolvable sources is 

now limited by the number of observations or unique lags at each frequency [28]. This means that up 

to (3	� +	 −� − 1) sources can be resolved. 

5. NUMERICAL RESULTS 

In this section, we present DOA estimation results for the proposed sparse reconstruction 

techniques using multi-frequency co-prime arrays and provide performance comparison with the 

sparsity-based approach for single-frequency co-prime array. We consider both cases of proportional 

and nonproportional source spectra. For all of the examples in this section, an extended co-prime 

array configuration with six physical elements is considered with 	 and � chosen to be 2 and 3, 

respectively. The six sensors positions are given by *0, 2��, 3��, 4��, 6��, 9��-. The corresponding 

difference coarray, shown in Fig. 4, consists of 17 virtual elements. The coarray aperture extends 

from −9�� to 9�� with two holes at ±8��. Further, in all the examples, the choice of the simulation 

parameters, such as the SNR and the number of snapshots, is typical of radio frequency (RF) 

applications. 

In the first example, sparse signal reconstruction is applied under single frequency operation to 

perform DOA estimation. Since the difference coarray has 8 positive lags, sparse reconstruction can 

be applied to resolve up to 8 sources. A total of eight BPSK sources, uniformly spaced between 

−60° and 60°, are considered.  The number of snapshots used is 1000. Spatially and temporally 

white Gaussian noise is added to the observations and the SNR is set to 10	dB for all sources. The 
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search space is discretized uniformly between −90° and 90° with a 0.2° step size, and the 

regularization parameter ��, is empirically chosen as  0.7 in this example. The normalized spectrum 

obtained using sparse signal recovery is shown in Fig. 5. The dashed vertical lines in the figure 

indicate the true source directions. A small bias can be noticed in the estimates, and the root mean 

squared error (RMSE), computed across the angles of arrival, is found to be 1.05° in this case. 

In the second example, sparse reconstruction is applied under dual-frequency operation. The 

physical co-prime array is now operated at both frequencies !�	and !4 = 8/9!�. Sources with 

proportional spectra are assumed and, thus, the single measurement vector formulation of Section 3 

can be used. The combined difference coarray is shown in Fig. 6. It has a total of 33 unique lags, 

which makes it capable of resolving up to 16 sources, theoretically. However, this number is not 

achievable because of the high mutual coherence of the dictionary. Since some of the virtual sensors 

in the combined coarray are closely separated, leading to highly correlated observations, 

deterioration in performance is observed if the number of sources is increased beyond eleven.  We 

consider eleven BPSK sources with proportional spectra, which are uniformly spaced between −75° 
and 75°. The SNR is set to 10	dB for the sources at the two frequencies, and the total number of 

snapshots is equal to 2000. The regularization parameter �� is set to 0.25 and the search space is 

divided into 181 bins of size 1°. Fig. 7 shows the normalized spectrum obtained using this method. 

It is evident that all the sources are correctly resolved. The RMSE in this example is equal to 0.84°. 
A different choice of the two operational frequencies may reduce the mutual coherence, thereby 

permitting a larger number of sources to be estimated. For illustration, the second frequency is now 

set to !4 = 2!�. By choosing a frequency which is an integer multiple of !�, the combined coarray 

positions are guaranteed to be integer multiples of ��. As a result, the minimum separation between 

two consecutive coarray elements is equal to ��. The combined difference coarray is shown in Fig. 
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8. The coarray has 13 unique positive lags, which means that the maximum number of resolvable 

sources is equal to 13. This is tested by considering 13 uniformly spaced sources between −75° to 

75°. The SNR is again set to 10	dB and the number of snapshots is set to 2000. The regularization 

parameter is again set to 0.25 and the search space is divided into 181 angle bins. Fig. 9 shows the 

normalized spectrum using the dual-frequency sparse reconstruction method. It is evident that all the 

sources are correctly estimated. The RMSE is found to be 0.26° in this case. 

In the following example, the entire array is operated at !�, but only the elements at 

*2��	4��	9��- also operate at the second frequency !4 = 2!�. The combined difference coarray is 

shown in Fig. 10, where the difference coarray at !� is shown in black, and the additional lags, 

obtained by operating the subarray at !4, are shown in red. The overall difference coarray has 10 

positive lags which implies that up to 10 sources can be resolved. This is tested by considering 10 

sources with respective DOAs [-60°, -49°, -29°, -20°, -9°, 3°, 18°, 29°, 47°, 60°].  The number of 

snapshots is set to 2000 at each frequency, and the SNR is 10	dB. The regularization parameter is set 

to 0.7 in this example, and the search space is kept the same. Fig. 11 shows the normalized spectrum 

using the dual-frequency sparse reconstruction method. It can be noticed that all the sources are 

correctly estimated, and the corresponding RMSE is 0.86°. 
The following example examines the case when sources have nonproportional spectra. In this 

case, group sparse reconstruction is applied. The two operational frequencies are selected to be !� 

and 2!�. Eight sources with nonproportional spectra are considered. The SNR of all the sources at 

the first frequency is set to 10	dB. At the second frequency, the SNR of each source is a realization 

of a uniformly distributed random variable between 5	dB and 15	dB. This ensures that the sources 

have nonproportional spectra. The noise variance is set to unity at the two frequencies and a total of 

2000 snapshots are used. Fig. 12 shows the normalized spectrum obtained using the formulation in 



17 

 

Section 3 which mistakenly assumes proportional source spectra. Consequently, this method is 

expected to fail as evident in the spectrum of Fig. 12. One of the sources is not resolved and several 

spurious peaks appear in the spectrum. The DOA estimation is next repeated using group sparse 

reconstruction which was discussed in Section 4. This method does not require the sources to have 

proportional spectra. The mean of the recovered spectra at the two employed frequencies is 

computed and shown in Fig. 13. It can be seen that group sparse reconstruction is successful in 

localizing the DOAs of all the sources. The RMSE is found to be 0.6° in this case. 

The next example confirms the increase in the number of resolvable sources by using group 

sparse reconstruction compared to the single-frequency sparse reconstruction. As stated in the first 

example, the maximum number of resolvable sources using single-frequency sparse reconstruction is 

equal to the number of unique positive lags in the difference coarray, which is 8 in this case. A total 

of 16 sources with nonproportional spectra is considered in the example. The sources are uniformly 

spaced between −75° and 75°. Twenty uniformly spaced frequencies between !� and 2!� are 

employed. The SNR of each source at each frequency is chosen randomly between −5	dB and 5	dB, 

and the number of snapshots at each frequency is set to 1000. Fig. 14 shows the normalized mean 

spectrum obtained using group sparse reconstruction. It can be seen that all the sources are correctly 

estimated, and the RMSE is equal to 0.35° in this case. Fig. 15 shows the normalized spectrum for 

the single-frequency sparse reconstruction case. This figure confirms that sparse reconstruction 

using a single frequency completely fails in estimating the sources. This is due to the fact that single-

frequency sparse reconstruction can only resolve up to 8 sources which is smaller than the total 

number of sources in this example. 

The final example examines the case where the source signals have overlapping spectra but do 

not share the same bandwidth. Group sparse reconstruction can still be used to perform DOA 
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estimation. Thirty percent of the source powers at the employed frequencies in the previous example 

are randomly set to zero. The remaining parameters are kept the same. Fig. 16 shows the normalized 

spectrum using group sparse reconstruction. It is evident that all sources are correctly estimated. 

Some spurious peaks are present in the spectrum, and an increase in the estimates bias is obtained. 

The RMSE is found to be 0.61°. 

6. CONCLUSION 

A sparse reconstruction method has been proposed for DOA estimation using multi-frequency 

co-prime arrays. The proposed approach offers an enhancement in the degrees of freedom over the 

single-frequency co-prime array. For sources with proportional spectra, all observations at the 

employed frequencies are combined to form a received signal vector at a larger virtual array, whose 

elements are given by the combination of the difference coarrays at the individual frequencies, 

thereby increasing the number of resolvable sources. In the case of sources with nonproportional 

spectra, the common support that is shared by the observations at the employed frequencies is 

exploited through group sparse reconstruction. Although the offered degrees of freedom are less than 

those of the multi-frequency approach for proportional spectra, they exceed those offered by single-

frequency co-prime array with sparse reconstruction. Numerical examples demonstrated the superior 

performance of the proposed multi-frequency approach compared to its single-frequency 

counterpart. 

LIST OF ABBREVIATIONS 

CoSaMP Compressive Sampling Matched Pursuit 

DFT Discrete Fourier Transform 
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DOA Direction of Arrival 

DOF Degree of Freedom 

Lasso Least absolute shrinkage and selection operator 

MHA Minimum Hole Array 

MRA Minimum Redundancy Array 

OMP Orthogonal Matching Pursuit 

RMSE Root Mean Squared Error 

SNR Signal-to-noise ratio 

ULA Uniform Linear Array 
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