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Abstract - This paper presents multi-frequency 

operation for increasing the number of resolvable 

sources in high-resolution direction-of-arrival 

(DOA) estimation using co-prime arrays. A single-

frequency operation requires complicated and 

involved matrix completion to utilize the full extent 

of the degrees of freedom (DOFs) offered by the co-

prime configuration. This processing complexity is 

attributed to the missing elements in the 

corresponding difference coarray. Alternate single-

frequency schemes avoid such complexity by 

utilizing only the filled part of the coarray and, thus, 

cannot exploit all of the DOFs for DOA estimation. 

We utilize multiple frequencies to fill the missing 

coarray elements, thereby enabling the co-prime 

array to effectively utilize all of the offered DOFs. 

The sources are assumed to have a sufficient 

bandwidth to cover all the required operational 

frequencies. We consider both cases of sources with 

proportional and nonproportional power spectra at 

the employed frequencies. The former permits the 

use of multi-frequency measurements at the co-

prime array to construct a virtual covariance matrix 

corresponding to a filled uniformly spaced coarray 

at a single frequency. This virtual covariance matrix 

can be employed for DOA estimation. The 

nonproportionality of the source spectra casts a 

more challenging situation, as it is not amenable to 

producing the same effect as that of an equivalent 

single-frequency filled coarray. Performance 

evaluation of the multi-frequency approach based 

on computer simulations is provided under both 

cases of proportional and nonproportional source 

spectra. 
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I. INTRODUCTION 

Nonuniform linear arrays provide the ability to 

estimate the direction-of-arrival (DOA) of more sources 

than the number of physical sensors [1]-[6]. Recently, a 

new structure of nonuniform linear arrays, known as 

co-prime arrays, has been proposed [7], [8]. A co-prime 

configuration comprises two undersampled uniformly 

spaced subarrays with co-prime spatial sampling rates. 

Co-prime configurations have many advantages over 

other popular nonuniform configurations, including 

minimum redundancy arrays (MRA) [9], minimum hole 

arrays (MHA) [10], and nested arrays [11]. For a given 

number of physical sensors, MRAs and MHAs require 

an exhaustive search through all possible combinations 

of the sensors to find the optimal design [12], [13]. On 

the other hand, the positions of the sensors constituting 

the co-prime configuration have closed-form 

expressions. Although the same is true of nested arrays, 

the elements of one of the subarrays constituting the 

nested structure are closely separated, which may lead 

to problems due to mutual coupling between the 

sensors. Co-prime arrays reduce the mutual coupling 

between most adjacent sensors by spacing them farther  

apart [7]. Because of all of the aforementioned 

characteristics, co-prime arrays are finding broad 

applications in the areas of communications, radar, and 

sonar [14]-[20].  

Similar to other nonuniform arrays, high-resolution 

DOA estimation with co-prime arrays can be performed 

using two main approaches. The first approach employs 

covariance matrix augmentation [21]-[23], while the 

second method vectorizes the data covariance matrix to 

emulate observations at a virtual array whose elements 

are given by the difference coarray (the set of all spatial 

lags generated by the physical array [24]) [8], [11]. 

Since the difference coarray of a co-prime array 

contains multiple missing elements or ‘holes’, the latter 

approach employs only that part of the difference 

coarray which has contiguous elements with no holes. 

As such, only a subset of the total degrees of freedom 

(DOFs) offered by the co-prime structure can be 

utilized for high-resolution DOA estimation using the 

vectorized covariance matrix approach. The augmented 



 

covariance matrix approach, on the other hand, can 

exploit all the DOFs but at the expense of additional 

complicated matrix completion processing [23].  

In this paper, we consider multi-frequency 

operation to utilize all of the DOFs for DOA estimation 

in co-prime arrays. More specifically, a set of additional 

frequencies is employed to recover the missing lags 

through dilations of the coarray [25]. The sources are 

assumed to have a bandwidth large enough to cover all 

specific frequencies required for filling the holes. Only 

the array elements involved in filling the missing holes 

in the difference coarray are required to be operated at 

one or more of the additional frequencies. The multi-

frequency measurements are used to construct a virtual 

covariance matrix corresponding to an equivalent filled 

uniformly spaced coarray at a single frequency [26]. 

High-resolution subspace techniques, such as MUSIC 

[27], can then be applied to this virtual covariance 

matrix for DOA estimation. It is important to note that 

full utilization of the DOFs using multiple additional 

frequencies comes with a restriction on the sources’ 

spectra. More specifically, the source spectra at all 

operational frequencies are required to be proportional. 

Deviations from this restriction can lead to higher DOA 

estimation errors. 

Multiple frequencies have previously been used for 

alias-free DOA estimation of broadband sources [28], 

[29]. In [28], frequency diversity was exploited on a 

single spatial sampling interval to mitigate spatial 

aliasing in DOA estimation with a sparse nonuniformly 

spaced array. Ambiguities in the source location 

estimates were resolved by proper choice of chosen 

operational frequencies in [29] for arrays with periodic 

spatial spectra. Spatial sampling interval diversity at a 

single narrowband frequency was exploited in [7] to 

disambiguate aliased DOAs. Both spatial sampling and 

frequency diversity were exploited in [26] through 

multi-frequency coarray augmentation for high-

resolution DOA estimation. However, no attempt was 

made therein to select the best number of employed 

frequencies or determine their best values. We 

effectively apply the multi-frequency coarray 

augmentation to co-prime arrays in this paper. Our 

main contribution lies in exploiting the specific 

structure of the coarray corresponding to co-prime 

configuration to determine the number and values of the 

additional frequencies required for recovering the 

missing lags. We provide closed-form expressions for 

the additional frequencies, which are ‘best’ in the sense 

of minimum operational bandwidth requirements. We 

also describe when and how the redundancy in the 

coarray can be exploited to reduce the system hardware 

complexity for multi-frequency co-prime arrays. 

Further, we investigate the effects of noise and 

deviation from the proportional source spectra 

constraint on the DOA estimation performance of the 

multi-frequency co-prime arrays. 

The remainder of the paper is organized as follows. 

The single-frequency based high-resolution DOA 

estimation using co-prime arrays is reviewed in Section 

II. In Section III, we describe the multi-frequency 

approach for filling the missing elements in the coarray 

and utilizing all the DOFs offered by the co-prime 

configuration for DOA estimation. Section IV 

delineates the system bandwidth requirement for the 

multi-frequency operation, taking into account the 

specificities of the coarray structure corresponding to 

co-prime arrays. Coarray redundancy is also examined 

to reduce the number of antennas engaging in multiple 

frequency operation. In Section V, performance of the 

proposed method is evaluated through extensive 

simulations under both proportional and 

nonproportional source spectra and Section VI 

concludes the paper. 

II. HIGH-RESOLUTION DOA ESTIMATION USING 

SINGLE-FREQUENCY CO-PRIME ARRAYS  

A co-prime array consists of two undersampled 

uniform linear subarrays, one having � sensors 

positioned at �����, 0 ≤ � ≤ � − 1�, and the other 

comprising � sensors with positions ��
��, 0 ≤ 
 ≤� − 1� [11], � and � being co-prime integers and �� 

equal to one-half wavelength at the operating frequency ��. Without loss of generality, we assume � < �. 

With the two subarrays sharing the element at location 

0, the co-prime array has a total of � + � − 1 physical 

sensors. The element positions of the corresponding 

difference coarray form the set 

�� = �±(�
�� − 	����)�,		0 ≤ 
 ≤ � − 1, 0 ≤ � ≤ � − 1, 
(1) 

which extends from −�(� − 1)�� to �(� − 1)��, but 

only the elements from −(� + � − 1)�� and (� +� − 1)�� are contiguous. As such, high-resolution 

schemes, such as MUSIC, can estimate only up to � + � − 1 sources.  

An extended co-prime configuration was proposed in 

[8], wherein the number of elements in the subarray 

with fewer sensors were doubled, as depicted in Fig. 1. 

The difference coarray of this configuration, shown in 

Fig. 2, extends from −(2� − 1)��� to (2� − 1)���, 

and has a contiguous set of elements between −(�� +� − 1)�� and (�� + � − 1)��. Thus, high-resolution 

DOA estimation can be performed to estimate (�� +� − 1) sources using the extended co-prime 

configuration. We will consider the extended co-prime 

configuration with �	 < � in the remainder of this 

paper. 

Assume that � sources with powers ���(��), ���(��), … , ���(��) impinge on the extended 



 

co-prime array from directions ���, ��, … , ��  where � 

is measured relative to broadside. The received data 

vector at frequency �� can be expressed as !(��) = "(��)#(��) + $(��), (2) 

where #(��) = �%�(��)	%�(��)	…	%�(��) &is the 

source signal vector at ��, $(��)	is the corresponding 

noise vector, "(��)	is the array manifold matrix at ��, 

and the superscript (. )& denotes matrix transpose. 

The	((, ))th element of the array manifold can be 

expressed as �"(��) *,+ = ,+-./0sin4567, ( = 1, … ,2� + � − 1,) = 1,2, … , � 
(3) 

where 8* is the location of the (th physical sensor of the 

array, �+ is the DOA of the )th source, and 9� = ��/; 

is the wavenumber at ��	with ; being the speed of 

propagation in free space. Assuming that the sources 

are uncorrelated and the noise is spatially and 

temporally white, the covariance matrix is obtained as <//(��) = =�!(��)!>(��)�= "(��)<??(��)">(��)+ �@�(��)A, (4) 

where <??(��) = �(BC(����(��)	���(��) …	���(��) ) 

is the source covariance matrix, �@�(��) is the noise 

variance, A is an identity matrix, the superscript (∙)>  

denotes Hermitian operation, and =�. � denotes the 

statistical expectation operator. In practice, (4) is 

replaced by a sample average. 

After forming the covariance matrix, two approaches 

can be employed to perform high-resolution DOA 

estimation. The first approach uses covariance matrix 

augmentation [21]-[23]. Following [22], since the 

difference coarray is filled between −(�� + � − 1)�� 

and (�� + � − 1)��, a virtual covariance matrix 

corresponding to an equivalent (�� + �)-element 

filled ULA can be formed by collecting specific 

elements of the estimated spatial covariance 

matrix	<//(��) into a Toeplitz matrix. The resulting 

augmented covariance matrix may not always be 

positive definite and, thus, requires positive definite 

Toeplitz completion [22]. Subspace-based high-

resolution methods can then be applied to the 

augmented covariance matrix for estimating up to (�� + � − 1) sources. The number of resolvable 

sources can be increased to (2� − 1)� by considering 

a partially specified virtual covariance matrix 

corresponding to an equivalent (2� − 1)�+1-element 

filled ULA [23]. However, this comes at the expense of 

increased computational complexity due to a 

complicated and involved matrix completion process. 

The second approach vectorizes the covariance 

matrix <//(��) as [7] E(��) = F,;4<//(��)7= "G(��)����(��)	���(��) …	���(��) &+ �@�(��)H̃, (5) 

where "G(��) = "∗(��) ⊙ "(��), the symbol ‘⊙’ 

denotes the Khatri-Rao product, the superscript ‘*’ 

denotes complex conjugation, and L̃ is the vectorized 

form of A. The vector M(��) acts as the received signal 

vector of a longer array whose elements positions are 

given by the difference coarray. However, as the 

sources are replaced by their powers, the model in (5) is 

similar to that of a fully coherent source environment. 

Spatial smoothing can be used to decorrelate the 

sources [8], [30], provided that only the filled part of 

the difference coarray between −(�� + � − 1)�� and (�� + � − 1)�� is employed. As such, the rank of the 

smoothed covariance matrix is equal to (�� + �) [8], 

[11], which allows a maximum of (�� + � − 1) 

sources to be estimated by applying high-resolution 

techniques. 

 

III. HIGH RESOLUTION DOA ESTIMATION WITH 

MULTI-FREQUENCY CO-PRIME ARRAYS  

In this section, we describe how dual and multiple 

frequencies can be utilized to fill the holes in the 

coarray, thereby permitting the exploitation of the full 

DOFs that the co-prime configuration has to offer. The 

sources are assumed to have a bandwidth large enough 

to cover all frequencies required for filling the holes. 

Discrete Fourier transform (DFT) or filterbanks are 

used to decompose the array output vector into multiple 

non-overlapping narrowband components and extract 

the received signal at each considered frequency [31], 

[32]. The observation time is assumed to be sufficiently 

long to resolve the different frequencies. 

Consider the extended co-prime configuration of 

Fig. 1, where the unit spacing �� is assumed to be half-

wavelength at the reference frequency ��. The received 

signal at �� is the same as in (2), whereas that obtained 

by operating the physical co-prime array at a different 

 
 

Figure 1.  Extended co-prime array configuration. 
 

 

Figure 2.  Difference coarray of the extended co-prime 

array. 
 



 

frequency, �N = ON��, has the form 

!4�N7 = "4�N7#4�N7 + $4�N7, (6) 

where "4�N7 is the (2� + � − 1)	× 	�	array manifold 

at �N with its ((, ))th element given by 

Q"4�N7R*,+ = ,+-S/0sin4567. (7) 

In (7), 9N = �N/; is the wavenumber at �N. Since  9N = ON9� , (7) can be rewritten as 

Q"4�N7R*,+ = ,+-.TS/0sin4567. (8) 

Comparing (3) and (8), we observe that the array 

manifold at �N is equivalent to the array manifold at ��	of a scaled version of the physical co-prime array. 

The position of the (th element in the equivalent scaled 

array is given by ON8* . This results in the difference 

coarray at �N to be a scaled version of the coarray at the 

reference frequency	��	[33]. Values of �N higher than �� cause an expansion of the coarray, while the coarray 

contracts if �N is lower than ��. In other words, 

operation at the additional frequency adds extra points 

at specific locations in the coarray. A suitable choice of 

additional operating frequencies will cause some of 

these extra points to occur at the locations of the holes 

in the difference coarray at ��. 

A. Virtual Covariance Matrix Formation 

Let the total number of operational frequencies, 

including the reference, be U. As shown below, a 

virtual covariance matrix can be constructed using the 

multi-frequency measurements, which is equivalent to 

that of a ULA with (2� − 1)� + 1 elements operating 

at the reference frequency [26], [34]. This would allow 

DOA estimation of (2� − 1)� sources instead of (�� + � − 1) sources using (2� + � − 1) physical 

sensors of the co-prime array.  

A (2� + � − 1) × (2� + � − 1) support matrix V4�N7 is defined such that its ((, ))th element is given 

by [26], [34] 

QV4�N7R*,+ = ON8* −	ON8+ . (9) 

That is, the ((, ))th element of V4�N7	is the spatial lag 

or the coarray element position which is the support of 

the ((, ))th element of the covariance matrix <//4�N7 

<//4�N7 = = W!4�N7!4�N7>X= "4�N7<??4�N7">4�N7+ �@�4�N7A, (10) 

where <??4�N7 = �(BC4Q���4�N7	���4�N7…	���4�N7R7 

is the source covariance matrix at frequency �N . It 

should be noted that V4�N7 = ONV(��), where V(��)	is the support matrix at the reference frequency ��. Let VY(��) and <Z(��)	be the support and the 

covariance matrices corresponding to the desired ULA 

with (2� − 1)� + 1 sensors operating at ��. Given 

that the U operational frequencies are sufficient to fill 

all the holes in the difference coarray of the co-prime 

array, then �VY(��) *,+ = QV4�N7R[,\ ,	for some ], ^, _, and 

all ( and ) (11) 

 

Let ℎ be the map that arranges selected elements of the 

multi-frequency support matrices, �V4�N7�Na�bc�,	into the 

desired virtual support matrix VY(��). Using the same 

map, the virtual covariance matrix <Y(��) 

corresponding to the equivalent ULA can then be 

constructed from the covariance matrices �<//4�N7�Na�bc�	corresponding to the U operational 

frequencies [26].  

For illustration, we consider a co-prime array with � = 2 and � = 3. The sensor positions of the two 

uniform linear subarrays are given by �0, 2��, 4��  and �3��, 6��, 9�� , respectively. The support matrix V(��)	at the reference frequency takes the form 

V(��) =
hi
ii
ij0 −2 −3 −4 −6 −92 0 −1 −2 −4 −73 1 0 −1 −3 −64 2 1 0 −2 −56 4 3 2 0 −39 7 6 5 3 0 mn

nn
no ��. (12) 

The difference coarray of this configuration is shown in 

Fig. 3. It has holes at −8�� and 8��. In order to fill 

these holes and form the virtual covariance matrix, an 

additional frequency �� = 8/9�� is required. With this 

choice of the second operational frequency, the support 

matrix at �� is given by V(��)

=

hi
ii
ii
ii
ii
ii
j 0 −169 −83 −329 − 163 −8169 0 −89 −169 − 329 −56983 89 0 −89 − 83 −163329 169 89 0 − 169 −409163 329 83 169 0 −838 569 163 409 83 0 mn

nn
nn
nn
nn
nn
o

��. (13) 



 

The support matrix VY(��) of the desired 10-element 

ULA, whose elements are positioned at �0, 1, … , 9 ��, 

has the structure 

VY(��) =
hi
ii
ij0 −1 −2 … −8 −91 0 −1 … −7 −82 1 0 … −6 −7⋮ ⋮ ⋮ ⋱ ⋮ ⋮8 7 6 … 0 −19 8 7 … 1 0 mn

nn
no. (14) 

 

From (12)-(14), we observe that several possibilities 

exist for constructing VY(��)	using V(��) and V(��), 

since several elements of V(��) and V(��) correspond 

to the same element of VY(��). Either a single element 

or an average of all such elements can be used to 

specify the map for forming the desired virtual support 

matrix and, subsequently, the virtual covariance matrix <Y(��) [26], [34]. 

It should be noted that since the difference coarray 

at �� has two holes at ±8��, only those elements of <//(��) that correspond to these two lags are required 

to form <Y(��). This means that instead of operating 

the entire co-prime array at ��, only the sensors that 

produce the ±8�� lags at �� should be operated at the 

additional frequency. For example, operating the two 

sensors with positions �0	9 �� at �� produces the 

following reduced support matrix 

V\(��) = 89V\(��) = 89 s0 −99 0 t ��
= s0 −88 0 t ��. (15) 

The two support matrices V(��) and V\(��) can then 

be combined to form VY(��). This procedure results in 

reducing hardware complexity. A more detailed 

discussion in this regard is provided in Section IV-D. 

B. Proportional Spectra Requirement 

For multi-frequency DOA estimation, the 

normalized covariance matrices are employed instead 

of �<//4�N7�Na�bc�	. The ((, ))th element of the 

normalized covariance matrix <u//4�N7	at frequency �N 

can be expressed as [34] 

Q<u//4�N7R*,+ = = WQ!4�N7R*Q!∗4�N7R+X1�?4�N7 =v!>4�N7!4�N7w, (16) 

where Q!4�N7R* is the (th element of the data vector at 

frequency �N, and �?4�N7 is the number of sensors that 

are operated at �N. This results in the source and noise 

powers in the covariance matrix representation of (10) 

being replaced by the normalized powers [26], which 

are given by 

�x-�4�N7 = �-�4�N7∑ �z�4�N7�za� +	�@�4�N7 (17) 

�x@�4�N7 = �@�4�N7∑ �z�4�N7�za� +	�@�4�N7 (18) 

where �x-�4�N7 is the normalized power of the 9th 

source at frequency �N and �x@�4�N7 is the normalized 

noise power at the same frequency. The virtual 

covariance matrix <Y(��), constructed by using the 

normalized covariance matrices v<u//4�N7wNa�bc�
 

following the procedure outlined in Section III.A, must 

appear to have been generated by the virtual array as if 

it were the actual array operating at frequency ��. 

However, some of the elements of the constructed 

virtual covariance matrix have contributions from 

frequencies other than ��.	The virtual covariance 

matrix will be exact provided that the normalized power 

of each source is independent of frequency, 

�x-�4�N7 = �-�,		for all	]	 ∈ �0, 1, … , U − 1�, and 

all	9	 ∈ �1, 2, … , �� (19) 

For a high signal-to-noise ratio (SNR), a sufficient 

condition for the virtual covariance matrix to be exact is 

that the sources must have proportional spectra at the 

employed frequencies [34]. That is, 

�-�4�N7�|�4�N7 = }-,| , (20) 

where }-,| is a constant for each source pair (9, ~)	over 

all frequencies �N. This condition is satisfied, for 

example, when the D sources are BPSK or chirp-like 

signals. 

IV. FREQUENCY SELECTION FOR MULTI-FREQUENCY 

OPERATION USING EXTENDED CO-PRIME ARRAYS 

In order to quantify the operational frequency set 

for filling the holes, we first need to examine the 

specific structure of the difference coarray 

corresponding to an extended co-prime configuration. 

Consider the difference coarray of Fig. 2, which 

corresponds to the co-prime array of Fig. 1. The total 

number of filled and missing elements in the coarray 

equals 2(2� − 1)� + 1, whereas the total number of 

holes is determined to be (� − 1)(� − 1). As the 

coarray is symmetric, we only focus on the portion 

corresponding to the non-negative lags. We observe 

 

Figure 3.  Difference coarray at the reference frequency �� for M = 2, N = 3. 

 



 

that the portion of the coarray extending from 0 to (�� + � − 1)�� is uniform and has no holes. The first 

hole appears at (�� + �)��, followed by another 

filled part from (�� + � + 1)�� to (�� + 2� −1)��. The final part of the coarray from (�� + 2�)�� 

to (2� − 1)��� is non-uniform and contains ((� −1)(� − 1)/2) − 1 holes. 

A. One Additional Frequency (Dual-Frequency 

Operation) 

The two holes at −(�� + �)�� and (�� + �)�� 

can be filled using only one additional frequency. The 

choice of the additional frequency is not unique. The 

value of 	�� that minimizes the separation between �� 

and �� is given by 

�� = O��� = �� + ��� + � + 1��, (21) 

where the numerator and the denominator of the scaling 

factor O�	correspond to the respective positions of the 

hole to be filled and the adjacent filled element to the 

right of the hole (considering the non-negative lags) 

that is used to fill it. Note that the value of �� in (21) is 

less than ��.	It can be readily shown that using 

neighboring elements other than the right adjacent one 

yields values of ��, which result in a larger separation 

from ��. 

 Filling the two holes at ±(�� + �)��	causes the 

uniform part of the difference coarray to extend from −(�� + 2� − 1)�� to (�� + 2� − 1)��. As a 

result, up to (�� + 2� − 1) sources can be estimated 

after forming the corresponding virtual covariance 

matrix. This implies that, compared to the single 

frequency operation, � additional sources can be 

estimated using one extra frequency in addition to ��. 

B. Multiple Additional Frequencies (Multiple 

Frequency Operations) 

The remaining (� − 1)(� − 1) − 2	holes in the 

difference coarray can also be filled through the use of 

additional frequencies. The exact number and values of 

the frequencies are tied to the non-uniformity pattern in 

the coarray beyond ±(�� + 2�)��, which varies 

from one co-prime configuration to the other. Assuming 

that each additional frequency is used to fill only two 

holes (one missing positive element and its negative 

counterpart), we require at the most 
�� ((� − 1)(� −1) − 2	) = (�� − � − �)/2 additional frequencies to 

yield a filled uniform coarray extending from −(2� −1)��� to (2� − 1)���.  

C. Maximum Frequency Separation 

The maximum frequency separation from the 

reference frequency determines the required operational 

bandwidth of the antennas and receiver front end for the 

proposed multi-frequency approach. It is determined by 

the distance of the farthest hole from its nearest filled 

right neighbor and the location of the neighbor. The 

maximum number of consecutive holes in the 

difference coarray is (� − 1) and this pattern of (� − 1) consecutive holes repeats ��/�� times at each 

end of the difference coarray, as shown in Fig. 4 for the 

non-negative lags. However, it is the first set of (� − 1) consecutive holes (those on extreme left in 

Fig. 4) that requires operational frequencies with the 

maximum separation from �� in order to be filled. The 

repeated hole patterns at larger lags yield smaller 

frequency separation values. The first missing element 

in the leftmost set of consecutive holes occurs at s(2� − 1)� − (� − 1) − ����� − 1��t ��, while the 

nearest right filled element is positioned at s(2� −1)� − ����� − 1��t ��. Therefore, the required 

frequency to fill this hole is given by 

�� = (2� − 1)� − (� − 1) − ����� − 1��
(2� − 1)� − ����� − 1�� �� (22) 

The maximum frequency separation can, thus, be 

computed as Δ���/ = |�� − ��|
= � 1 − �

(2� − 1)� − ����� − 1�����. (23) 

Table I shows the maximum frequency separation for 

different co-prime array configurations under two 

cases: i) when one additional frequency is used to fill 

the first pair of holes, and ii) when all holes are filled 

using multiple frequencies. For each of the 

aforementioned cases, the additional number of 

estimated sources compared to single frequency 

operation are also specified in Table I. We observe that 

the maximum frequency separation decreases with 

increasing values of � and �. This is because both the 

holes and the elements that are used to fill them occur 

at larger spatial lags for higher values of � and �, 
which, in turn, implies a smaller value of the scaling 

factor in (23).  

D. Reduced Hardware Complexity 

Since only a few observations at each employed 

frequency other than �� are used for the proposed 

multi-frequency high-resolution DOA estimation 

scheme and the remaining observations are discarded, it 

is not economical to operate the entire physical array at 

each of the additional U − 1	frequencies. Therefore, 

only the receive elements that generate the desired 

spatial lags for filling the holes need to be operating at 

more than one frequency. As determined in Section 



 

IV.C, the bandwidth requirement for the multi-

frequency operation is not that high, especially for 

larger values of � and �. As such, only the multi-

frequency receive elements require a DFT or a 

filterbank to extract the information at the different 

frequencies, leading to a significant reduction in system 

hardware complexity. 

 It becomes of interest to determine the smallest 

number of sensors that are required to operate at the 

additional frequency or frequencies. As the holes occur 

in symmetric pairs, the lags corresponding to each pair 

can be generated using only two sensors in the physical 

array. In case of redundancy in the difference coarray, 

there is more than one antenna pair that can generate 

the same spatial lag. In order to reduce the number of 

antennas engaging in multiple frequency processing, 

one should therefore seek and identify each sensor that 

participates in filling all the holes or at least many of 

them. This becomes important when there is flexibility 

in sensor participation choices implied by the 

redundancy property of the spatial lags. Clearly, only 

the redundant spatial lags occurring beyond the first 

symmetric hole pair at ±(�� + �)��	need to be 

considered, since these are used to fill the holes in the 

difference coarray. It can be readily shown that there 

are a total of 2(� − 2)	redundant lags beyond ±(�� + �)�� at ±(�� + 9�)�� with weights given 

by �(±(�� + 9�)��) = � − 9,	                           
for 9 = 1,2, … ,� − 2. (24) 

For illustration, we consider an example where � = 4 

and � = 5. The co-prime array consists of 12 elements 

positioned at �0	4	5	8	10	12	15	16	20	25	30	35 ��. 

Fig. 5 shows the difference coarray weighting function 

corresponding to this array. The first hole pair in the 

coarray occurs at ±(�� + �)�� = ±24��. Beyond 

the first holes, 2(� − 2) = 4 redundant lags exist. The 

first redundant lag pair occurs at ±(�� + �)�� =±25�� with weight equal to (� − 1) = 3. The second 

redundant pair occurs at ±(�� + 2�)�� = ±30�� and 

has a weight of (� − 2) = 2. In order to minimize the 

maximum frequency separation, only the redundant 

lags that occur immediately to the right of the holes 

(considering the nonnegative lags) can be used. For the 

case where ���(�,�) = 1, all the redundant lags in 

the nonuniform part of the coarray occur immediately 

after the holes. This can be confirmed by observing the 

weighting function in Fig. 5. For the case where ���(�,�) = � − 1, none of the redundant lags are 

immediately to the right of the holes, as illustrated in 

Fig. 6 for the case where � = 4 and � = 7. For the 

remaining cases, only a subset of the redundant lags in 

the nonuniform part is immediately after the holes.  

For the illustration of the role of redundancy in 

reducing sensor engagement in hole filling, we provide 

the following two examples. Table II shows the 

additional frequencies and the corresponding sensor 

pairs that are required to fill all nine holes in the 

difference coarray for the case where � = 4		and	� =7. The corresponding physical array consists of 14 

sensors at �0	4	7	8	12	14	16	20	21	24	28	35	42	49 ��. 

It is clear from Table II that only the 6 sensors located 

at �0	4	8	12	16	49 �� are required to operate at more 

than one frequency in order to fill all the holes in the 

coarray. It should be noted that since ���(�,�) =� − 1 in this example, the redundant lags in the 

 

Figure 4.  Positive end part of the difference coarray 

corresponding to the co-prime array. 

 

 
 

Figure 5.  Difference coarray weight function: M = 4, N 

= 5. 
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Figure 6.  Difference coarray weight function: M = 4, N 

= 7. 
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difference coarray cannot be used to further decrease 

the number of antennas that would operate at more than 

one frequency. Table III shows the required frequencies 

and the corresponding sensor pairs for the case where � = 4		and	� = 5. Since ���(�,�) = 1, different 

sensor pairs can be used to fill the same holes. As 

shown in Table III, the pairs that include common 

sensors at different frequencies are chosen in order to 

minimize the number of sensors that operate at more 

than one frequency. Table IV shows the percentage of 

sensors that need to be operated at more than one 

frequency for different co-prime array configurations. 

We observe that the number of sensors that need to be 

operated at multiple frequencies has a lower bound of 

one-third of the total number of sensors in the array, 

which is achieved for co-prime configurations with � = � + 1. It should be noted that the same choice of � = � + 1 also minimizes the total number of sensors 

in the co-prime arrays, as demonstrated in [15]. 

V. NUMERICAL RESULTS 

In this section, we present DOA estimation results 

based on the MUSIC algorithm using multi-frequency 

co-prime arrays. Both proportional and nonproportional 

source spectra cases are considered and performance 

comparison with single-frequency operation is 

provided. We employ the filled part of the coarray and 

covariance matrix augmentation for DOA estimation 

using MUSIC under single frequency operation. The 

root mean squared error (RMSE) in all examples in this 

section is based on a single realization, unless stated 

otherwise.  

A. Proportional Spectra 

We first consider a co-prime array configuration 

with six physical sensors, corresponding to � = 2 and � = 3. The first uniform linear subarray consists of 

three elements positioned at �0, 2��, 4��  and the 

second subarray has four elements with positions �0, 3��, 6��, 9�� , with �� equal to one-half 

wavelength at ��. The difference coarray of this 

configuration, shown in Fig. 3, has two holes at ±8��, 

which can be filled using an additional frequency �� = (8/9)��. We consider 9 sources with 

proportional spectra, where �z�(��) = 3�z�(��)		for	� = 0,1, … , 8. The sources are 

uniformly spaced between −0.95 and 0.95 in the 

reduced angular coordinate sin(�). A total of 2000 

snapshots are used and the SNR is set to 0	dB for both 

frequencies. The estimated spatial spectrum, where only 

the reference frequency �� is used, is provided in Fig. 

7. The elements in the covariance matrix corresponding 

to the holes in the difference coarray have been filled 

with zeros. This is equivalent to the case where the 

sources have zero powers at the additional frequency. 

The vertical lines in the figure indicate the true DOAs 

of the sources. We observe from Fig. 7 that the single 

frequency approach fails to correctly estimate the 

DOAs of most of the targets. The RMSE is found to be 2.55°. This is expected since the considered co-prime 

TABLE II 

REQUIRED FREQUENCIES AND SENSOR PAIRS, 

 � = 4,� = 7 
 

Frequencies Holes Sensor Pairs �� = (32/33)�� ±32�� �16	49 �� �� = (36/37)�� ±36�� �12	49 �� �� = (39/41)�� ±39�� �8	49 �� �� = (40/41)�� ±40�� �8	49 �� �� = (43/45)�� ±43�� �4	49 �� �� = (44/45)�� ±44�� �4	49 �� �� = (46/49)�� ±46�� �0	49 �� �� = (47/49)�� ±47�� �0	49 �� �� = (48/49)�� ±48�� �0	49 �� 

 

TABLE IV 

PERCENTAGE OF MULTI-FREQUENCY SENSORS FOR DIFFERENT 

CO-PRIME PAIRS 
 � � 

Multi-frequency 

sensors 

2 3 2/6 = 33.3% 

3 4 3/9 = 33.3% 

3 5 4/10 = 40.0% 

4 5 4/12 = 33.3% 

4 7 6/14 = 42.8% 

5 7 6/16 = 37.5% 

6 7 6/18 = 33.3% 

 

 
 

Figure 7.   MUSIC spectrum using single frequency, D 

= 9 sources with proportional spectra. 

 



 

array operating at a single frequency can resolve a 

maximum of 7 sources. Fig. 8 depicts the estimated 

spatial spectrum using the dual-frequency approach. 

We can clearly see that the DOAs of all sources have 

been correctly estimated. In this case, the RMSE of the 

DOA estimates is equal to 0.67°. 
In the second example, we consider a co-prime 

configuration with � = 5 and � = 7. The 7 sensors of 

the first ULA are positioned at �0, 5, 10, 15, 20, 25, 30 ��, and the second ULA has 10 

elements with positions �0, 7, 14, 21, 28, 35, 42, 49, 56, 63 ��. The 

corresponding coarray extends from −63�� to 63�� 

and has a total of 24 holes. The uniform portion of the 

coarray only extends from −39�� to 39��.	Thus, the 

single frequency operation can resolve a maximum of 

39 sources. One additional frequency �� = (40/41)�� 

is first used to fill the holes at ±40�� in the coarray. As 

a result, the uniform part of the coarray now includes 

the lags from −44�� to 44��, thereby increasing the 

maximum number of resolvable sources from 39 to 44. 

We consider 44 sources with sin(�z) uniformly 

distributed between −0.97 and 0.97. The sources are 

assumed to have identical power spectra at the two 

frequencies. A total of 2000 snapshots are considered 

and the SNR is set to 0	dB for both frequencies. Fig. 9 

shows the estimated spatial spectrum, wherein the 

DOAs of all 44 sources have been accurately estimated. 

The RMSE is determined to be 0.31° in this case. Next, 

we employ 12 additional frequencies to fill all 24 holes 

in the coarray. The additional frequencies and the 

corresponding holes they fill are listed in Table V. It 

should be noted that the holes could have also been 

filled using only six additional frequencies. These 

frequencies are �� = 5��, �� = 2��  �� = (47/49)��, �� = 3��, (�� = 59/63)��, and �� =(61/63)��. However, this choice of frequencies results 

in a maximum frequency separation of 4��, compared 

to 0.064�� for the set of frequencies in Table V. Fig. 

10 shows the estimated spatial spectrum corresponding 

to 63 sources with sin(�z) uniformly distributed 

between −0.97 and 0.97 and equal power spectra at the 

12 frequencies. The SNR and the number of snapshots 

are taken to be the same as for Fig. 9. Again, the multi-

frequency approach has estimated all sources accurately 

and the RMSE is 0.2°. 

B. Nonproportional Spectra 

We evaluate the DOA estimation performance of 

the multi-frequency co-prime arrays when the condition 

of proportional source spectra is violated. In the first 

example, we consider the same array and source 

configuration as in the first example in Section V.A 

with � = 2 and � = 3. However, the 9 sources are 

now assumed to have nonproportional spectra at �� 

and	�� = (8/9)��. More specifically, the source 

 
 

Figure 8.  MUSIC spectrum using two frequencies, D = 

9 sources with proportional spectra. 

 

 
 

Figure 9.  MUSIC spectrum with dual frequencies, D = 

44 sources with proportional spectra. 

 

 
 

Figure 10.  MUSIC spectrum with multiple frequencies, 

D = 63 sources with proportional spectra. 

 



 

powers at �� are assumed to be identical and equal to 

unity, whereas the source powers associated with ��	are assumed to independently follow a truncated 

Gaussian distribution with a mean of 5.5 and a common 

variance. Two different values of 2.25 and 5.06 are 

considered for the variance. The variance controls the 

degree of non-proportionality. A higher variance 

increases the degree of non-proportionality of the 

source spectra, whereas a lower variance results in 

smaller variations in the source powers. Fig. 11 depicts 

the RMSE as a function of the variance and the SNR, 

averaged over 2000 Monte Carlo runs. For comparison, 

the RMSE corresponding to both single-frequency 

operation and dual-frequency operation for the case 

when the sources have proportional spectra are also 

included. As expected, the single-frequency approach, 

wherein the elements of the virtual covariance matrix 

corresponding to the holes in the coarray are filled with 

zeros, provides the worst performance. Further, the 

RMSE corresponding to the multi-frequency approach 

for nonproportional spectra increases with increasing 

variance. This results in a degradation of the estimation 

performance. Finally, the multi-frequency approach 

works best when the spectra are proportional and the 

SNR is higher. 

In the following example, we compare the 

performance of the multi-frequency approach to single-

frequency DOA estimation as a function of the assumed 

model order. The same array configuration with � = 2 

and � = 3 is used. Two cases are considered in this 

example. The first case deals with sources with 

proportional spectra, while the second considers 

sources with nonproportional spectra. For the 

nonproportional case, the source powers associated 

with �� are assumed to be identical and equal to unity, 

and the source powers associated with �� follow a 

truncated Gaussian distribution with a mean of 5.5 and 

a variance 2. In both cases, the actual number of 

sources is set to 4, and the assumed model order is 

varied between 4 and 7. 1000 Monte Carlo are 

considered in this example. Fig. 12 shows the RMSE, 

averaged over 1000 Monte Carlo runs, as a function of 

the assumed model order for both cases. In computing 

the RMSE, only the detected peaks that are closest to 

the actual source directions were considered. From Fig. 

12, we observe that, as expected, the performance of the 

single-frequency approach is not affected by the 

nonproportionality of the source spectra. On the other 

hand, the multi-frequency DOA estimation exhibits 

superior performance for sources with proportional 

spectra compared to those with nonproportional spectra. 

Further, the multi-frequency approach is less sensitive 

to errors in model order as compared to the single-

frequency approach. 

The effect of the degree of non-proportionality on 

DOA estimation performance is next examined for the 

co-prime configuration of the second example in 

Section V.A with � = 5 and � = 7 under both dual 

and multi-frequency operation. Again, the source 

powers at �� are assumed to be all equal to unity, 

whereas the source powers at additional frequencies 

follow a truncated Gaussian distribution with a mean of 

5.5 and a common variance. Fig. 13 provides the 

RMSE, averaged over 2000 Monte Carlo runs, as a 

function of SNR and variance under the dual-frequency 

operation for 44 sources. Similar observations to those 

in Fig. 11 can be made in this case as well. However, 

two differences can be noticed by comparing the RMSE 

plots in Figs. 11 and 13. First, the RMSE takes on lower 

values for all considered DOA estimation methods and 

variances for the co-prime configuration with � = 5 

and � = 7. Second, the difference in performance 

between the single and dual frequency operations for 

the nonproportional spectra cases is much smaller at 

higher SNR values in this example. This is due to the 

 
 

Figure 11.  RMSE vs. SNR for M = 2, N = 3, D = 9. 
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Figure 12.  RMSE vs. Assumed Model Order for M = 

2, N = 3, D = 4. 
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fact that the ratio of the number of missing elements to 

the total number of elements in the filled part of the 

difference coarray is smaller in this example. This 

results in a smaller percentage of elements in the virtual 

covariance matrix to come from a different frequency 

or be filled with zeros for single frequency operation. 

The RMSE plots for the multi-frequency operation to 

fill all 24 holes are provided in Fig. 14, which 

corresponds to 60 sources with sin(�z)	uniformly 

distributed between -0.97 and 0.97. The performance 

difference between multi-frequency operation for 

sources with non-proportional spectra and those with 

proportional spectra is even less noticeable in this case, 

though the RMSE values themselves are slightly higher 

for high SNR. Also, the single-frequency operation 

exhibits a higher RMSE since a higher percentage of 

the virtual covariance matrix elements now have a zero 

value compared to that for Fig. 13. 

The final example in this section examines the 

estimation performance for varying degree of 

nonproportionality of the source spectra for different 

values of � and � with the SNR fixed at 0 dB. Both 

dual-frequency operation for filling only the first hole 

pair and multi-frequency operation for filling all the 

holes are considered for each co-prime configuration. 

For each case, the maximum number of resolvable 

sources was used. A total of 2000 Monte Carlo runs 

were considered in this example. The source powers 

associated with the reference frequency �� are identical 

and equal to unity. For the additional frequencies, the 

source powers follow a truncated Gaussian distribution 

with a mean of 5.5 and a common variance. The 

corresponding RMSE plots as a function of the variance 

of the source powers are depicted in Fig. 15. In order to 

have a fair comparison among co-prime arrays of 

different sizes, each RMSE plot is normalized by the 

Cramer Rao Bound (CRB) of an equivalent ULA with 

total number of elements equal to the number of 

contiguous nonnegative lags in the corresponding 

difference coarray. By examining Fig. 15, the following 

observations are in order. First, as expected, a decrease 

in the variance of the sources spectra results in a 

reduced estimation error. Second, by comparing the 

results of dual and multiple frequency operation for 

fixed � and �, we observe that, in general, the 

normalized RMSE error is smaller for the case when 

more than one additional frequencies are used. 

C. Comparison with Sparse Reconstruction 

Sparse reconstruction can be used in lieu of 

MUSIC for DOA estimation using multi-frequency co-

prime arrays [35]. Unlike the proposed MUSIC-based 

approach, all of the lags generated by the multi-

frequency operation, in addition to those that fill the 

holes in the difference coarray, can be utilized for DOA 

estimation using sparse reconstruction. This is because 

sparse reconstruction does not require the additional 

lags to fall on a uniform grid (integer multiples of the 

 

Figure 13.  RMSE vs. SNR for M = 5, N = 7, D = 44. 
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Figure 14.  RMSE vs. SNR for M = 5, N = 7, D = 60.  
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Figure 15.  RMSE vs. variance, SNR = 0 dB. 
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unit spacing). Utilization of all generated lags, in this 

case, enhances the number of DOFs for DOA 

estimation, leading to an increased number of 

resolvable sources. However, the performance of the 

sparse reconstruction approach is affected by the 

coherence of the data measurement operator. In 

addition, it is computationally more expensive than 

MUSIC. 

In order to compare the performance of sparse 

reconstruction and MUSIC based multi-frequency 

approaches, we consider the following example. The 

same array configuration as in the first example in 

Section V.A is used. Two frequencies, �� and �� =(8/9)��, are employed; the latter can fill the holes in 

the corresponding difference coarray so that the multi-

frequency MUSIC technique can be applied. Nine 

sources with directions uniformly spaced between -0.9 

and 0.9 in the reduced angular coordinate sin(�) are 

used, which is the maximum number of sources that can 

be resolved using the multi-frequency MUSIC 

approach. Two separate cases are considered in this 

example. The first case assumes sources with 

proportional spectra, while the second considers 

sources with nonproportional spectra. For the latter, the 

source powers at �� are assumed to be identical and 

equal to unity, whereas the source powers associated 

with ��	are assumed to independently follow a 

truncated Gaussian distribution with a mean of 5.5 and 

a variance of 2. Fig. 16 shows the RMSE, averaged 

over 1000 Monte Carlo runs, as a function of the SNR 

for both cases. The SNR is assumed to be identical at 

both frequencies and is varied from -10 dB to 10 dB 

with a 2.5 dB increment. It can be readily observed that 

the multi-frequency MUSIC approach outperforms the 

sparse reconstruction method for all SNR values when 

the sources have proportional spectra. In case of 

sources with nonproportional spectra, the multi-

frequency MUSIC method outperforms the sparse 

reconstruction approach for low values of SNR, 

whereas both methods achieve similar performance at 

high SNR values. For both proportional and 

nonproportional spectra cases, the sparse reconstruction 

approach exhibits significantly degraded performance 

at low SNR values. This is expected since the accuracy 

of the sparse reconstruction methods suffers in high 

noise cases. 

VI. CONCLUSION 

A multi-frequency technique has been presented 

for high-resolution DOA estimation using co-prime 

arrays. A virtual covariance matrix at the reference 

frequency is created using elements of the narrowband 

covariance matrices corresponding to the different 

employed frequencies. The virtual covariance matrix 

corresponds to a uniform linear array with a difference 

coarray of the same extent as that of the co-prime array, 

except that the coarray of the ULA is filled whereas that 

of the co-prime array has holes. This permits the co-

prime array to handle all of the degrees of freedom 

offered by the co-prime configuration. Observations 

and insights were provided with regards to i) the 

maximum frequency separation required to fill all the 

holes in the difference coarray, ii) the lower bound on 

the number of sensors required to operate at more than 

one frequency, and iii) the performance under non-

proportional source spectra case. These insights 

contribute towards better understanding the offerings 

and limitations of the proposed multi-frequency 

approach. Supporting simulation examples were 

provided for DOA estimation of the proposed approach 

under both proportional and nonproportional spectra. 

The results demonstrated that the proposed approach 

can estimate DOAs with high accuracy for sources with 

proportional spectra, while for non-proportional 

spectra, the estimation error varies with the SNR as 

well as the values of M and N. The effect of 

nonproportionality was shown to be not as significant at 

high SNR for higher values of M and N as for lower 

values. 
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TABLE I  

MAXIMUM FREQUENCY SEPARATION FOR DUAL AND MULTI-FREQUENCY 

 

M	 N	 Dual-frequency Multi-frequency 

Additional 

estimated 

sources  

Δ���/ 

Additional 

estimated 

sources  

Δ���/ 

2 3 2 11.11% 2 11.11% 

3 4 3 6.25% 6 10.00% 

3 5 3 5.26% 8 8.00% 

5 7 5 2.44% 24 6.35% 

7 9 7 1.41% 48 5.13% 

 

TABLE III 

REQUIRED FREQUENCIES AND SENSOR PAIRS, � = 4,� = 5 

 

Frequencies Holes Sensor Pairs Chosen Pairs 

�� = (24/25)�� ±24�� 
�0	25 ��, �5	30 ��,	�10	35 ��, 

�0	25 �� 

�� = (28/30)�� ±28�� �0	30 ��, �5	35 �� �0	30 �� �� = (29/30)�� ±29�� �0	30 ��, �5	35 �� �0	30 �� �� = (32/35)�� ±32�� �0	35 �� �0	35 �� �� = (33/35)�� ±33�� �0	35 �� �0	35 �� �� = (34/35)�� ±34�� �0	35 �� �0	35 �� 

 

TABLE V 

ADDITIONAL FREQUENCIES AND CORRESPONDING HOLES, � = 5,	� = 7 

 

Frequency Holes Frequency Holes �� = (40/41)�� ±40�� �� = (55/56)�� ±55�� �� = (45/46)�� ±45�� �� = (57/58)�� ±57�� �� = (47/48)�� ±47�� �� = (59/63)�� ±59�� �� = (50/51)�� ±50�� ��� = (60/63)�� ±60�� �� = (52/53)�� ±52�� ��� = (61/63)�� ±61�� �� = (54/56)�� ±54�� ��� = (62/63)�� ±62�� 
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