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Abstract

In this paper, we describe the role of time-frequency distributions (TFDs) in array processing.

We particularly focus on quadratic time-frequency distributions (QTFDs). We demonstrate how these

distributions can be properly integrated with the spatial dimension to enhance individual source signal

recovery and angular estimation. The framework that enables such integration is referred to as spatial

time-frequency distribution (STFD). We present the important milestones in STFDs which have been

reached over the last 15 years. Most importantly, we show that array processing creates new perspectives

of QTFDs and defines new roles to the auto-terms and cross-terms in both problem formulation and

solution. Multi-sensor configurations, in essence, establish a different paradigm and introduces new

challenges which did not exist in a single-sensor time-frequency distribution.

Index Terms

Spatial time-frequency distribution, DOA estimation, blind source separation, time-frequency point

selection.

I. INTRODUCTION AND HISTORICAL PERSPECTIVE

Time-frequency signal representations enable separations of nonstationary signals overlapping in both

time and frequency domains where windowing and filtering based approaches fail to isolate the different
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signal components [1], [2]. Among numerous nonstationary signals which arise in many passive and

sensing modalities, signals with instantaneous frequency (IF) laws, such as frequency modulated (FM)

signals, have clear time-frequency (TF) signatures that are contiguous and highly localized. These two

properties have led to important advances in nonstationary signal detection and classifications over the

past four decades. Both parametric and non-parametric techniques play important roles in characterizing

FM signals. Whereas the latter are mainly defined by quadratic time-frequency distributions (QTFDs)

which have their roots in Wigner-Ville Distributions [3], the former pursue the estimation of the order

as well as the parameters of the FM polynomial phase signal (PPS). Advantages of QTFDs lie in their

accommodation of multi-component signals, where each component in the signal can have a different IF.

The PPS parameter estimation techniques avoid any bilinear operation and, as such, are not faced with

the challenge of eliminating cross-terms which falsely point to signal power concentration regions when

using QTFDs. In addition to QTFD and PPS estimation techniques, linear TFDs, such as the short-time

Fourier transform (STFT) and wavelet transform, have also been successfully applied to analyze signals

with IF characterizations [4].

Similar to the TF signature, the source spatial signature also reveals important information about the

source. It enables source discrimination based on the respective angular position as viewed from a receiver

array. A source may be an emitter or a reflector of electromagnetic, acoustics, or ultrasound waves.

Depending on the propagation environment, the source can be characterized solely by its bearings, i.e.,

directions-of-arrival (DOA) or through a linear combination of its multipaths. The former characterization

is known as steering vectors in which the signal exhibits a phase progression across the different antennas

as it traverses the array. In this case, the source spatial signature is characterized by its respective

bearing angle that can be provided by DOA estimation techniques. The latter is often referred to as the

“generalized” steering vector, and establishes the notion of “mixing”. The mixing matrix depends on the

corresponding source propagation channel and is a function of unknown array manifold. In this case,

we cast the problem as blind source separation (BSS), which can be associated with sensors in either

co-located or distributed configurations. The maturities of the two general areas of array processing and

TF analysis made the case for developing an integrated approach where the spatial and TF signature

estimations interplay to serve both problems. The result is an improved signal localization and separation

using time, frequency, and space variables. We tend to refer to this area of research as nonstationary array

processing. The importance of this area stems from the fact that nonstationary signals are encountered

in various passive and active arrays using different sensing apparatuses.

In this paper, we describe the role of TFD in array processing which has wide applications in radar,
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Figure 1. Nonstationary array signal processing.

communications, and satellite navigation. We focus on the class of signals where the IFs uniquely

or dominantly define the signal TF signatures. These signals are ubiquitous and can be biological or

manmade. Combining the spatial and TF signatures is achieved within a framework referred to as

spatial time-frequency distributions (STFDs). This framework utilizes the signal local behavior and

power localization for improving both signal-to-noise ratios (SNRs) and source discriminations prior to

performing high resolution direction finding and BSS. The STFD requires the computations of the QTFDs

of the data received at each antenna, i.e., auto-QTFDs, as well as the cross-QTFDs between each pair

of sensors. The STFD framework was originally applied to narrowband signals and then extended to

wideband sources.

II. CONCEPT OF SPATIAL TIME-FREQUENCY DISTRIBUTIONS

Consider an analytic signal vector1 z(t) and define the spatial instantaneous autocorrelation function

as

Kzz(t, τ) = z(t+
τ

2
)zH(t− τ

2
), (1)

where (·)H denotes conjugate transpose (Hermitian) operation. The smoothed spatial instantaneous

autocorrelation function is defined as

Qzz(t, τ) = G(t, τ) ∗
t
Kzz(t, τ), (2)

1An analytic signal is a complex valued signal that contains energy in the frequency domain only at positive frequencies.

Such a signal is obtained from a real valued signal thanks to the Hilbert transform.
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where G(t, τ) is some time-lag kernel. The time convolution operator ∗
t

is applied to each entry of the

matrix Kzz(t, τ). The class of quadratic STFDs are then defined as

Dzz(t, f) = F
τ→f

{Qzz(t, τ)}, (3)

where the Fourier transform F is applied to entry τ of matrix Qzz(t, τ). The discrete time form equivalent

to Eq. (3) and Eq. (2) leads to the following implementation of an STFD

Dzz(n, k) = DF
m→k

{G(n,m) ∗
n
Kzz(n,m)}, (4)

which can also be expressed as

Dzz(n, k) =

M∑
m,p=−M

G(p− n,m)z(p+m)zH(p−m)e−j4πmk

N , (5)

where the discrete Fourier transform DF and the discrete time convolution operator ∗
n

are applied to

entry n of matrix G(n,m) ∗
n
Kzz(n,m) and matrix Kzz(n,m), respectively. N = 2M + 1 is the signal

length. Note that the diagonal elements of the STFD matrix are termed “auto-terms”, as they correspond

to the quadratic terms associated with each component of the vector z(n). The off-diagonal elements

are termed “cross-terms”, since they correspond to the bilinear transforms associated with two different

components of this vector.

A. STFD properties

Consider a linear model for the vector signal z(n):

z(n) = As(n), (6)

where A is a K ×L matrix (K ≥ L) and s(n) is an L× 1 vector referred to as the source signal vector.

Under the above model, the STFDs take the following structure,

Dzz(n, k) = ADss(n, k)A
H , (7)

where Dss(n, k) is the source TFD of vector s(n). Consider an L × K matrix W, referred to as a

whitening matrix such that WA is a unitary matrix and is denoted as U. That is,

(WA)(WA)H = UUH = I, (8)

where I denotes the identity matrix. Pre- and post-multiplying the STFD Dzz(n, k) by W leads to the

whitened STFD, defined as:

Dzz(n, k) = WDzz(n, k)W
H = UDss(n, k)U

H , (9)
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where the second equality stems from the definition of W and Eq. (7). Clearly, the whitening step leads

to a linear model with a unitary mixing matrix. Note that the whitening matrix can be computed as an

inverse square root of the data covariance matrix [1] or else obtained from the STFD matrices [2] 2. The

STFD structures in Eq. (7) and (9) permit the application of the powerful subspace techniques to solve

a large class of problems such as channel estimation, BSS, and high-resolution DOA estimation [1], [5].

B. STFD structure in narrowband array signal processing

When considering L signals arriving at a K-element antenna array, the following linear data model,

z(n) = As(n) + n(n), (10)

is commonly assumed, where z(n) is the K × 1 signal vector received at the array, s(n) is the L × 1

source signal vector, matrix A = [a1, · · · ,an] represents the propagation matrix, ai is the steering vector

corresponding to the ith signal, and n(n) is an additive noise vector whose entries are modeled generally

as stationary, temporally and spatially white, zero mean random processes, and independent of the source

signals. Under the above assumptions, the expectation of the TFD matrix between the source signal vector

and the noise vector vanishes, i.e.,

E[Dsn(n, k)] = 0, (11)

and it follows

D̃zz(n, k) = AD̃ss(n, k)A
H + σ2I, (12)

where D̃zz(n, k) = E[Dzz(n, k)], D̃ss(n, k) = E[Dss(n, k)], and σ2 denotes the noise power. Under

the same assumptions, the data covariance matrix, commonly used in array signal processing, has the

following structure

Rzz = ARssA
H + σ2I, (13)

where Rzz = E[z(n)zH(n)] and Rss = E[s(n)sH(n)]. From relations (12) and (13), it is clear that the

STFD and the covariance matrices exhibit the same eigen-structure. This structure is often exploited to

estimate signal parameters through subspace-based techniques [6], [7].

2Note that while the computation of the whitening matrix from the covariance matrix assumes independent source signals, its

computation from the STFD matrices does not require such assumption.
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C. Advantages of STFDs over Covariance matrix

STFD-based methods can handle signals corrupted by interference occupying the same frequency

band and/or the same time segment but with different TF signatures, improving signal selectivity over

approaches using the covariance matrix. In addition, the effect of spreading the noise power while

localizing the source signal power in the TF plane increases the effective SNR and provides robustness

with respect to noise. Quantitative evaluation of such improvement can be found in [2]. If one selects the

kernel G(n,m) in Eq. (4) so that the corresponding TFD satisfies the marginal condition ([3], Section

6.1), then we obtain ∑
k

D̃zz(n, k) = E[z(n)zH(n)] = Rzz. (14)

Therefore, Rzz is a low-dimension representations of D̃zz(n, k). In fact, this is the reason that the

STFD-based methods offer better performance, such as signal selectivity, interference suppression and

high resolution, than conventional covariance matrix based approaches.

D. Other Spatial Time Frequency Representations

A similar STFD framework can be provided using linear transforms, such as the STFT and wavelet

transform, leading to the following spatial STFT

Sz(n, k) = DF
m→k

{h(m− n)z(m)}, (15)

where h(n) is a windowing function. Under the linear model (6), the spatial STFT retains the same

structure but with higher dimensionality:

Sz(n, k) = ASs(n, k). (16)

These transforms trade off temporal and spectral resolutions, and their squared magnitudes are already

considered within the STFD framework. Moreover, multi-resolution analyzes are not most effective for

signals characterized by their IF laws. Fig. 2(a) illustrates the discrimination problem between two closely

spaced chirp signals when dealing with the STFT. In contrast, in Fig. 2(b), the use of a QTFD allows

the two signals to be resolved. Therefore, the STFD, incorporating QTFD, enables source separation and

thus estimation of the respective DOAs. In practice, TF discrimination is generally performed through

TF point selection procedures, as discussed in the next section.

III. TIME-FREQUENCY POINT SELECTION

The advantages of TF-based BSS and DOA estimation can only be materialized if appropriate TF points

are selected in the formulation of the STFD matrices.
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Figure 2. (a) Square modulus of the STFT of two closely spaced chirps. (b) QTFD of two closely spaced chirps as used in a

STFD framework.

A. Time-Frequency point properties

The STFD framework assumes the TF signatures of the source signals are sufficiently different to satisfy

one or two of the following conditions:

(a) There exist TF points (nl, kl) which correspond to individual source auto-terms. In other words, if

Dsisj (n, k) = (Dss(n, k))ij , then

Dsisj (nl, kl) = δi,jDi,j,l, (17)

and, for each of the L sources i, there is at least an l-th TF point, such that Di,i,l ̸= 0. δi,j is the

Kronecker delta, i.e., δi,j = 0 if i ̸= j and 1 otherwise. Di,j,l (Di,i,l) is the value of the QTFD

between the sources si and sj (or si) at the TF point (nl, kl).

(b) There exist TF points (nl, kl) which correspond to cross-terms. That is,

Dsisj (nl, kl) = (1− δi,j)Di,j,l. (18)

The above two assumptions imply that, in the STFD framework, the source TF signatures should not

be strongly overlapping. The "sufficiently" different signatures represent the "known" discriminating

property about the sources required for applications of blind methods.

B. Time-frequency point categorization

Figure 3 shows the real part of the source STFD matrix

Dss(n, k) =

Ds1s1(n, k) Ds1s2(n, k)

Ds2s1(n, k) Ds2s2(n, k)


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when the Pseudo Wigner-Ville distribution (PWVD) is used with a Hamming Window of size 65. In

this example, the two signals of interest, s1(n) and s2(n), are linear FM (LFM, or chirp) signals. They

cross at TF point (128,0.3). The time scale is [0, 255] and the frequency scale is given in normalized

frequency (limited to [0, 0.5] which corresponds to the first 128 frequencies obtained by discrete Fourier

transform divided by 256). As observed in Fig 3, four types of TF points are observed:

• Type I: TF points that correspond to source auto-terms only. For those points, the source TFD matrix

is a rank-one diagonal matrix3.

• Type II: TF points that correspond to source cross-terms only. For those points, the source TFD

matrix is off-diagonal4.

• Type III: TF points that correspond to both source cross- and auto-terms. For those points, the

source TFD matrix does not exhibit an algebraic structure that could be directly exploited.

• Type IV: TF points where there are neither source cross-terms nor source auto-terms.

The diagonal and off-diagonal structures of types I and II are generally distorted when the sources are

mixed. Only the types I and II are of interest to the DOA estimation and BSS problems. The others

should be discarded since they do not play any role in either problem. Type IV points can be removed

by applying appropriate thresholding. It is difficult to do the same for type III. When using a QTFD with

reduced interferences (such as spectrogram, smoothed pseudo Wigner-Ville distribution (SPWVD) [3], or

based on particular kernels like in [8]), Type II points will assume small or zero values. However, Type III

points will persist, in particular, when the sources have overlapping signatures. With reduced interference

distribution, it becomes easier to select Type I points, but often at the expense of auto-terms localization

(see Fig. 2). Disjoint sources eliminate a great majority of type III points and facilitate the automatic

selection of type I and II points. Such property has been exploited in linear TF-based approaches (principle

of the degenerate unmixing estimation technique (DUET) algorithm [9]). Sophisticated time-frequency

point selection procedures are generally required, as discussed in the next section. Despite the relative

effectiveness of these procedures, cross-terms remain undesirable and discouraged when they extensively

clutter the TF domain.

3The rank-one diagonal matrix is the “only” possibility of diagonal matrix due to the “middle-point” rule which defines the

cross-terms geometry [3].
4A matrix is said to be off-diagonal if its diagonal entries are zeros.
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Figure 3. Real part of Dss(n, k) when the PWVD is used for two LFM signals. TF point types: source auto-terms only

(red squares), source cross-terms only (black square), both source cross-terms and auto-terms (blue square) and neither source

cross-terms nor source auto-terms (green square).

C. Time-Frequency point selection procedures

Due to (7) and (9) and the fact that in type I (resp. II) points Dss(n, k) have a very particular algebraic

structure (rank-one diagonal matrix resp. off-diagonal matrix), a natural way to tackle the BSS or DOA

problems will be to use matrix decomposition algorithms which happens to be a rather classical approach

in BSS. Yet, the problem of the automatic TF points selection, in the general case, is not simple. Several

TF point selection procedures have been suggested5, some of which operate in a whitened context, while

others do not require such preprocessing. In a whitened context, some procedures utilize matrix trace

invariance under unitary transform, making it possible to decide on the presence of source auto-terms.

One procedure states that [11]:

For type II points, select STFD matrices that verify:

trace{Dzz(n, k)}
∥Dzz(n, k)∥

< ε, (19)

where trace{·} denotes matrix trace, ∥ · ∥ Frobenius norm and ε is a small user-defined positive scalar

5In [10], an exhaustive panorama of all existing detectors is provided and these detectors are compared on synthetic signals

involving multi-components correlated sources.
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(in section V, these matrices will be denoted by (.)c). For type I points, select STFD matrices that verify:

trace{Dzz(n, k)}
∥Dzz(n, k)∥

> ε. (20)

(in section V, these matrices will be denoted by (.)a). There is a potential problem with the above detector

concerning the selection of type I points. If a non-negligible value of the trace qualifies the presence

of source auto-terms, it does not necessarily mean the absence of source cross-terms. In essence some

of the selected TF points could be type III points. This problem is addressed in [10] where, under the

assumption that the STFD exhibits a Hermitian symmetry, the real value property of the auto-terms and

the complex value property of the cross-terms are exploited. A follow-on work accounted for the fact

that cross-terms can take real values. Another approach, for type I points, identifies rank-one matrices

[12]. More recently, a detector based on the use of the Hough transform has been suggested [8].

In a non-whitened context, most procedures take advantage of the fact that the source TFD is a diagonal

rank one matrix at an auto-term TF point of a single source. One way to check whether a matrix is rank

one is to use a singular value decomposition (SVD). For example, it is stated in [13] that, for type I

points, select STFD matrices that verify: C(n, k) = λ1(n,k)∑K
k=1 λk(n,k)

> 1− ε,∑K
i=1 λi(n, k) > ε′,

(21)

where λi(n, k), i = 1, · · · ,K, are the singular values of the STFD matrix Dzz(n, k). The latter are sorted

in a decreasing order. The parameters ε and ε′ are some small positive user-defined scalars. Another

procedure was proposed in [14] for “quasi-disjoint” sources. In [10], a slight modification was suggested

to cast off the “quasi-disjoint” assumption. In a noisy environment, the selection of TF points of peak

power (type I and type II TF points) may become challenging when the signals are highly corrupted

by noise. The spatial diversity, embedded in the STFD matrix, can reduce noise and enhance the TF

signatures of the signals of interest. This is achieved by averaging the TFDs over all receiver sensors

[15], [16]. In [17], [18], noise is considered within the Neyman-Pearson framework. The best TF point

selection method would depend on the data, but focusing on type I points by searching of rank-one

matrices is likely to give desired performance.

IV. TIME-FREQUENCY DOA ESTIMATION

The advantages of using STFD for DOA estimation stem from the fact that TF point selection, as

discussed previously, permits DOA estimation to be performed using STFDs for one or few signal

arrivals with specific TF signatures [2]. This means that direction finding can be performed with the
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number of array sensors smaller than the number of impinging signals. In essence, separate STFDs can

be constructed, each corresponding to one source, to perform individual DOA estimation. This would

require, however, DOA estimation to be repeated for each signal. By selecting TF points with high signal

power, the overall SNR can be improved. This improvement over standard covariance matrix counterparts

is more pronounced when the input SNR is low. The offerings of the STFD-based approach extend to all

DOA estimations based on second-order statistics, and have been utilized to develop TF-based methods

underlying, e.g., MUSIC and maximum likelihood (ML) [6], [5]. The spatial quadratic distribution can

be extended to joint-variable domain distributions, such as the spatial ambiguity function (SAF) [19].

The SAF have different features from STFD, e.g., the signal auto-terms are positioned at and around the

origin, making it easier to avoid cross-terms in matrix constructions. While STFD-based DOA estimation

was first developed and examined using the narrowband signal model, it was thereafter considered for

wideband signal platforms [20], [21]. For signals whose IFs can be modeled and finitely parameterized,

proper linear transformations provide effective alternatives to STFD-based techniques. For example, FM

signals can be made stationary so that the resulting sinusoids can be effectively processed by filtering to

achieve source discrimination and noise mitigation prior to performing DOA estimation [22].

A. Time-Frequency MUSIC

To describe conventional MUSIC, we denote R̂zz as the estimated covariance matrix of data vector

z(n), and Ĝ as the noise subspace of R̂zz. We use ·̂ to emphasize that the results are estimated. The

MUSIC technique estimates the DOAs by determining the L values of θ for which the following spatial

spectrum is maximized,

fMU(θ) =
[
aH(θ)ĜĜ

H
a(θ)

]−1
, (22)

where a(θ) is the steering vector corresponding to θ. Similarly, for TF-MUSIC which selects TF regions

belonging to Lo signals (L0 ≤ L), we denote Gtf as the noise subspace of the STFD matrix D̂zz.

The noise subspace Ĝtf can be obtained based on multiple selected TF points and by using either joint

block-diagonalization (JBD) [6] or TF averaging [2]. For Q selected TF points Dzz(nl, kl), l = 1, ..., Q,

the joint block-diagonalization provides U = [u1, ...,uK ] as follows:

Û = argmax
U

Q∑
l=1

K∑
i,p=1

∣∣uH
i Dzz(nl, kl)up

∣∣2 . (23)

Matrix Û is then partitioned into the estimated signal and noise subspaces. The TF averaging, on the

other hand, is a much simpler alternative which provides the eigen-matrix of Dzz(nl, kl), l = 1, ..., Q,
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through eigen-decomposition of D̂ =
∑Q

l=1Dzz(nl, kl). Once the noise subspace is obtained, the DOAs

are determined by locating the L0 peaks of the spatial spectrum,

f tf
MU(θ) =

[
aH(θ)Ĝtf

(
Ĝtf

)H
a(θ)

]−1

. (24)

In [2], the variance of the estimated DOA is analytically examined using LFM signals as examples.

Below, we demonstrate the advantages of TF-MUSIC, as compared to conventional MUSIC. The IF laws

of the LFM signals are assumed to be perfectly known.

Example [2]. Consider a uniform linear array of 8 sensors with an inter-element spacing of half a

wavelength, and an observation period of 1024 samples. Two LFM signals are emitted from two sources

positioned at angles θ1 and θ2. The start and end frequencies of the signal source at θ1 are fs1 = 0

and fe1 = 0.5, whereas the corresponding two frequencies for the other source at θ2 are fs2 = 0.5 and

fe2 = 0, respectively. PWVD with rectangular window of size H = 129 is used to compute the TFD, and

TF averaging is used to compute the noise subspace. Fig. 4 displays the root-mean-square error (RMSE)

of the estimated DOA θ̂1 versus SNR for conventional MUSIC, TF-MUSIC, and the Cramer-Rao lower

bound (CRLB), where (θ1, θ2) = (−10◦, 10◦). Both signals were selected when performing TF-MUSIC

(L0 = L = 2). The results were averaged over 100 independent Monte-Carlo runs. The advantages of TF-

MUSIC in low SNR cases are evident from this figure. The deviation of the simulation results from the

theoretical results for low SNR is because only the lowest coefficient order of the perturbation expansion

is used in deriving the theoretical results [2]. Fig. 5 shows examples of the estimated spatial spectrum
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Figure 4. RMSE of DOA estimation versus input SNR.

based on TF-MUSIC and the conventional MUSIC where the angle separation is small (θ1 = −2.5o,

θ2 = 2.5o). The input SNR is −5 dB. The TF-MUSIC algorithm is performed separately for two sets of
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TF points, each belonging to one source (i.e., L0 = 1 in each TF-MUSIC operation). It is evident that

the two signals are resolved by the TF-MUSIC whereas the conventional MUSIC fails.
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Figure 5. Spatial spectra of MUSIC and TF-MUSIC for closely spaced signals.

B. Time-Frequency Maximum Likelihood Method

Consider array observations z(1), z(2), . . . , z(N), as described in (10) where the mixing matrix A(θ)

is represented as a function of the DOAs θ. For conventional ML methods, the log-likelihood function,

after omitting the constant terms, is given by

L(θ) = − 1

σ2
n

N∑
i=1

[z(n)−A(θ)s(n)]H [z(n)−A(θ)s(n)] . (25)

The ML estimate of θ is obtained as the following minimizer:

θ̂ = argmin
θ

trace
{[

I−A(θ)(AH(θ)A(θ))−1AH(θ)
]
R̂zz

}
. (26)

We now consider the TF-ML method. We select L0 ≤ L signals in the TF domain. The TF-ML estimate

of θ0, i.e., the DOAs of the selected L0 signal arrivals, is obtained as the following minimizer, which

replaces R̂zz in (26) by D̂zz [5],

θ̂0 = argmin
θ0

trace
{[

I−A(θ0)
(
AH(θ0)A(θ0)

)−1

·AH(θ0)
]
D̂zz

}
.

(27)

Similar to TF-MUSIC, signal localization in the TF domain enables us to select fewer signal arrivals and

thus improves the DOA estimates, particularly when the signals are closely spaced. In addition, because

ML performs multi-dimensional search, selection of fewer sources also reduces the dimension of the

search space for significant reduction of the computational complexity.
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In [5], an example is given to show that the TF-ML can estimate the respective DOAs of two closely

spaced coherent sources (identical sinusoidal frequencies with a constant phase difference), whereas

TF-MUSIC fail to separate these two coherent sources.

C. DOA Estimation of Wideband Nonstationary Signals

DOA estimation for wideband signals, for which the steering vector is frequency-dependent, is different

from the narrowband signal counterpart. Conventionally, wideband signals are decomposed into a set

of narrowband signal components using the Fourier transform. The resulting narrowband signals can

then be processed either incoherently or coherently. Coherent processing techniques align the phases of

the narrowband signals before they are combined. An effective and commonly used technique is the

coherent signal-subspace processing, which uses a set of focusing matrices to map the steering vector at

each frequency into that at a reference frequency prior to coherent combining. The incoherent processing

techniques, on the other hand, avoid phase alignment. For example, the output power of narrowband

Capon beamformers can be combined using the arithmetic or geometric averaging operation. Generally,

the coherent techniques are often preferred due to the superior performance compared to the incoherent

counterparts.

TF analysis provides a convenient platform to apply coherent signal-subspace for LFM signals and

other nonstationary signals with clear IF laws. Because LFM signals are instantaneous narrowband,

focusing matrices can be easily applied to TF points, and the decomposition of the LFM signals into a

spectrum of frequency bins is inherently performed in the TF analysis. By assuming that the wideband

signals are separable in the TF domain and their IFs do not rapidly change, [20] uses a sufficiently

short sliding window to construct the STFD matrices so as to preserve the narrowband structure of the

array manifold. The focusing matrices are then applied to the STFD matrices at selected TF points

corresponding to the source TF signatures. In [21], the wideband DOA estimation problem is considered

in the ambiguity domain for LFM signals with known chirp rates. This method utilizes the fact that the

auto-ambiguity function of an LFM signal yields a phase progression that is proportional to the chirp rate

and the DOA-dependent delay but is independent of the initial delay and frequency of the LFM signal.

As such, the DOAs can be obtained because the LFM parameters are known a priori.

V. TIME-FREQUENCY SOURCE SEPARATION

A BSS problem consists of recovering the original waveforms of the source signals without any

knowledge of their linear mixture. Two types of inherent indeterminacy exist in a BSS problem, i.e.,
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source signals can only be identified up to a fixed permutation and some complex factors [23]. When the

spectral content of the source signals is time-varying, one can exploit the powerful tool of the STFDs to

separate and recover the incoming signals. In this context, the BSS problem can be regarded as signal

synthesis from the TF plane with the incorporation of the spatial diversity provided by the antennas. In

contrast to conventional BSS approaches, the STFDs-based signal separation techniques allow separation

of correlated Gaussian sources with identical spectral shape, provided that the sources have different TF

signatures.

Herein, the multi-antenna signal z(n) is assumed to be nonstationary and to obey the linear model (6).

The problem under consideration consists of identifying the matrix A and/or recover the source signals

s(n) up to a fixed permutation and some complex factors. By selecting auto-term points, the whitened

auto STFDs have the following structure

Da
zz(n, k) = UDa

ss(n, k)U
H (28)

with Da
ss(n, k) denoting a diagonal matrix. The missing unitary matrix U can be retrieved up to

permutation and phase shifts by joint diagonalization (JD) of a combined set {Da
zz(nl, kl)|l = 1, · · · , P}

of P auto STFDs. The incorporation of several auto-term points in the JD reduces the likelihood of

having degenerate eigenvalues and increases robustness to a possible additive noise. The above JD is

defined as the maximization of the following criterion:

CJD(V)
def
=

P∑
l=1

L∑
i=1

|vH
i Da

zz(nl, kl)vi|2 (29)

over the set of unitary matrices V = [v1, . . . ,vL]. The selection of cross-term points leads to the

whitened cross STFD,

Dc
zz(n, k) = UDc

ss(n, k)U
H (30)

with Dc
ss(n, k) an off-diagonal matrix. The unitary matrix U is found up to permutation and phase shifts

by joint off-diagonalization (JOD) of a combined set of Q cross STFDs, {Dc
zz(nl, kl)|l = 1, · · · , Q}.

The JOD is defined as the maximization of the following criterion:

CJOD(V)
def
= −

Q∑
l=1

L∑
i=1

|vH
i Dc

zz(nl, kl)vi|2 (31)

over the set of unitary matrices V = [v1, . . . ,vL]. The unitary matrix U can also be found up to

permutation and phase shifts by a combined JD/JOD of the two sets {Da
zz(nl, kl)|l = 1, · · · , P} and

{Dc
zz(nl, kl)|l = 1, · · · , Q}. Note that with the introduction of the STFD framework and with the goal

of source separation, cross-terms in the TF plane are no longer undesirable components, as in the case
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of single sensor processing, indicating false manifestation of energy. Rather, cross-terms and auto-terms

assume equal roles in multi-sensor signal processing. Once the unitary matrix U is determined from

either the JD, the JOD or the combined JD/JOD, an estimate of the mixing matrix A can be computed

by the product W#U, where W is the whitening matrix and (·)# denotes the pseudo-inverse operator.

An estimate of the source signals s(n) can then be obtained from the product A#z(n). BSS can

also be performed by exploiting directly the auto or cross STFDs (7) without relying on the whitening

step [24][13][10]. Note that the latter usually establishes a bound on the reachable performance.

One of the most important contributions of the STFD framework to BSS problems is enabling solutions

of the under-determined problem where there are more sources than sensors (i.e., L > K). Herein, for

the resolution of the under-determined problem, we review a STFD-based BSS method [14]. We start by

selecting auto-term points where only one source exists. The corresponding STFD has then the following

form,

Dzz(n, k) = Dsisi(n, k)aia
H
i , (n, k) ∈ Ωi, (32)

where Ωi denotes the TF support of the ith source. The main idea of this algorithm is to cluster together

the auto-term points associated with the same principal eigenvector of Dzz(n, k) representing a particular

source signal. Once the clustering and classification of the auto-terms is performed, the estimates of the

source signals are obtained from the selected auto-terms using a TF synthesis algorithm [25]. Note that

the missing auto-terms in the classification, often due to intersection points, are automatically interpolated

in the synthesis process. An advanced clustering technique of the above auto-terms based on Gap statistics

is proposed in [26]. Note that a byproduct of the above clustering procedures in the STFD framework is

the estimation of the source number.

VI. APPLICATIONS

Array processing for source separation and localization is important in a wide variety of applica-

tions. Conventional array signal processing algorithms assume stationary signals and mainly call for

the covariance matrix estimation of the data vectors. In contrast, TF-based array processing techniques,

as discussed above, exploit signal nonstationarity and, as a result, offer improved source separation and

localization capabilities for use in many applications, such as wireless communications, navigation, radar,

sonar, underwater communications, and biomedical systems. Some application examples are discussed

below.

In wireless communications, FM signal representations can be used for pulse shaping in single- or multi-

user communications. In the latter, multiple sets of FM waveforms are designed to have distinct IF
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laws so as to achieve low correlations among different waveforms. Array signal processing improves the

separability of FM signals impinging from different directions or, in the situation of multipath propagation,

with different channel coefficients. FM signals are also used as smart jamming sources. In particular, for

FM jammers encountered in direct-sequence spread-spectrum (DS/SS) communications and GPS, TF-

based techniques enable improved DOA estimation of the jammers and thereby facilitate their mitigation

[27].

In radar applications, LFM signals are commonly used as sensing waveforms, whereas target Doppler

signatures demonstrate nonstationarity over the slow time samples. Therefore, TF-based source separation

and localization are critical means to handle such signals, particularly when the signals are noisy. Two

examples are highlighted below.

• In [28], the STFD-based BSS technique [1] is applied to ground penetration radar for the detection

of permafrost interface. Because of the shallow depth, the response from the targets (permafrost)

and the clutter from ground surface overlap in the time domain and cannot be separated by simple

gating. Spatial filtering is difficult to be applied as well for clutter suppression because the medium

is not homogeneous. BSS is considered effective for the separation of target response from ground

surface clutter. The nonstationarity of the target response comes from the fact that the response

is a superposition of many permafrost scatterers which have different arrival time and different

frequencies The measurement data are collected in multiple positions, yielding a synthetic array

aperture. As such, the STFD platform is very suited in this problem to exploit the distinguished

in time, frequency, and space for effective separation of the permafrost surface response from

ground surface clutter. Enhanced identification of permafrost surface is achieved from the separated

permafrost response signal.

• A practical and tangible method for providing the altitude information in over the Horizon radar

system is based on micro-multipath model that makes use of multipath returns due to the ocean or

ground reflections local to the target [29]. As shown in Fig. 6, one path from the target is reflected

only by the ionosphere, whereas the other is reflected by the earth surface and the ionosphere. The

two paths have different Doppler frequencies when a target maneuvers with an elevation-direction

component. As such, the observed multipath received signal corresponding to a maneuvering target

becomes a multi-component FM signals with very close IF and angular separations. DOA estimation

is possible only after separating the two paths exploiting their difference in the TFD, as each

individual signal is converted into a stationary signal and properly filtered [22]. The resolved DOA
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estimates of the two paths yield accurate estimation of the target altitude.

Figure 6. Micro-multipath propagation in an over-the-horizon radar system.

In an underwater environment, LFM signals are also commonly used in active sonar systems, whereas

mammals like dolphins rely heavily on sound production and reception to navigate, communicate, hunt,

and avoid predators in dark or limited vision waters. In addition, continuous-wave (CW) and narrowband

signals are usually distorted due to nonlinear propagation. As such, TF-based array signal processing can

play an important role for the separation and localization of emitters. In [30], the TF-MUSIC technique

is used in an array of multiple hydrophones to produce passive acoustic oceanic tomography.

The ubiquitous use of multiple sensors, whether in co-located or in distributed architectures, in radar,

acoustic and biomedical application areas will continue to invite STFDs to play a role in array signal

processing of nonstationary signals. Signals which are instantaneously narrowband are locally sparse

by the virtue of their TF power localizations. As such, compressive sensing theory and sparse signal

reconstruction can prove effective in achieving source separation and direction finding using significantly

reduced number of observations.

The choice of applying linear TF transforms versus quadratic or higher order TFDs in conjunction with

array processing will remain to be application specific. It will be influenced by the underlying physical

model and prior knowledge of signal characteristics.

VII. CONCLUSION

In this paper, we presented a review of the spatial time-frequency distributions which constitute an

effective framework that enables the integration of time-frequency analysis and array signal processing.

Its objective is to use the signal power localization properties in the TF domain to enhance the attributes

of multi-sensor receivers, especially for direction finding and source separation of far field nonstationary
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sources. The key is to permit linear problem formulation where the sensor data are expressed in terms of

the source time-frequency signatures. In so doing, SNR enhancement and source discrimination can be

exploited prior to performing subspace decomposition and source signal recovery. The paper discussed

challenges and approaches for the selection of time-frequency points along the TF signatures as well as

at cross-terms. It was emphasized in the paper that the time-frequency and spatial degrees of freedom can

interplay and be exploited to enhance their respective domain source characterization. With progress in

sensing technology driving lower cost and higher efficiency sensors and with nonstationarity underlying

many signal and propagation channel characteristics in emerging applications, it is expected that the

STFD framework and others combining power localizations in space, time, and frequency would play a

stronger role in signal analysis and sensor data processing.
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