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Abstract—Deep neural networks have recently emerged as a
promising tool for radar-based human motion recognition. Their
nonlinear structure makes them successful in classifying large-
scale datasets. However, due to their complexity, it is difficult
to interpret the classification results and identify pixels with
the biggest impact on the classification score. In this paper, we
investigate recently proposed linear-wise relevance propagation
(LRP) method which finds relevant pixels within the image.
Based on this method, it is possible to recognize pixels which
contain evidence for or against the prediction made by a classifier.
Experimental results demonstrate that the LRP method can be
successfully applied to detect regions within the radar images
responsible for distinguishing human motions.
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I. INTRODUCTION

Deep learning has attracted widespread interest in various
pattern recognition applications due to its superiority compared
to traditional methods [1]-[3]. Since image classification still
remains as a common issue in various tasks, new applications
of deep learning are still emerging. Recently, deep learning
methods emerged as an effective tool in human motion recog-
nition (HMR) using both continuous wave (CW) and range-
Doppler radar systems [4]-[7].

Depending on the domain data representation, radar images
of signal backscattering from moving humans typically depict
target radar-cross-section (RCS), range, velocity information
and changes in this information over time [8]-[11]. Using radar
for classifications of human daily activity finds applications
in urban security, health care and assisted living, and medical
diagnosis [12]-[15]. The key part in traditional classification of
radar images is the feature engineering process, which relies
on the knowledge of system operator. In the case of HMR,
physical characteristics of motion kinematics are considered
important in defining features in the signal joint-variable rep-
resentations of slow-time, fast-time, and frequency variables.
However, this approach suffers from lack of generality and
sufficiency. First, it is difficult to define one set of features
relevant to all human motions. Second, the rich scatterings
of electromagnetic waves from human during daily activities
cannot be simply parametrized, accurately modeled, or just
described by few predefined features. Deep learning offers
automation in feature extraction process and, thus, it is more
suitable for the general problem of HMR. In essence, parts
of motion signatures which could be considered minor details
and readily ignored by manual feature selections can be cast
as important and ”relevant” features by deep learning.

Deep learning methods use neural networks with multiple
layers, i.e., deep neural networks (DNNs), to automatically
learn from the data. Multiple layers combined with nonlinear
structure make DNNs successful in capturing intricate data
properties. However, due to the absence of theoretical analysis,
DNNs are often viewed as a black box. Much study in recent
years have been focused on understanding the classification
results and visualizing the regions of image which contributed
the most and the least to a certain decision. In other words, seek
an understanding of which pixels or regions within the image
have the biggest and the smallest impacts on the classification
score.

There are several methods that attempt to visualize what
the network learns [16]-[18]. Most of these methods use some
type of backward mapping function to generate visualizations
in the form of a heatmap [17], [19]. Heatmap assigns each
pixel a relevance score. The linear-wise relevance propagation
(LRP) method was recently proposed to address the issue of
pixel relevance [19]. This method offers several advantages
over other approaches for computing heatmaps, namely,
• it can be used to analyze most of the deep learning

architectures,
• it provides direct relationship between the network out-

put (classification score) and the heatmap,
• it provides both the positive and negative evidences.

The last property of LRP allows us to identify pixels with
positive evidence, supporting the classification decision, and
pixels with negative evidence, working against correct pre-
diction. Although, recent approach of using DNN to classify
human motions showed improved classification rates, none has
posed the question of what the neural network actually learns
from the radar backscattering data when represented in joint-
variable domains as images.

In this paper, the LRP method is employed to provide the
relative significance of the different time-frequency regions
of the spectrograms. These regions manifest different self-and
cross-motion articulations as the activity begins, progresses in
time, and ends. In addition of spectrograms, we also examine
the significance of different regions of the target range maps,
which show range translation signature over slow-time. We
consider four classes of human motions, namely, walking,
sitting, falling, and bending. It is shown that the LRP method
can successfully identify regions within the image which have
the highest impact on the classification rate. These regions,
established by machine, correspond to areas which would, in
most cases, be visually recognized by a human operator as
relevant.
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The paper is organized as follows. Section II describes
the deep learning approach for HMR. Section III focuses
on the LRP approach and on generating heatmaps based on
the radar images of human motions. Experimental results
which demonstrate the impact of specific image regions on
classifications, are shown in Section IV. The conclusion is
given in Section V.

II. DEEP LEARNING FOR HMR
In this section, we first describe the radar images of human

motions which are used to train the DNN. Next, the DNN used
for HMR is presented.

A. Radar images used in HMR
A wide-band radar, such as Frequency Modulated Contin-

uous Wave (FMCW), provides the means to analyze target
returns in different joint-variable domains. Different domains
profess different suitabilities for different motions, and not a
single domain has been proven to discriminate best among all
motions [20]. Each 2D joint-variable domain representation
can be converted to a gray-scale image. In this paper, we
observe the images obtained from the time-frequency (TF)
domain as well as the range map.

The TF domain has been employed to depict the changes
in velocity of the human body parts over time. Typically, the
spectrogram is used as the TF signal representation,

SPEC(n, k) =

∣∣∣∣N−1∑
m=0

h(m)s(n−m)e−j2πkm/N
∣∣∣∣2, (1)

where s(n), n = 0, .., N−1 is the signal and h(m) is a window
function. We deal with the radar signal as non-stationary but
deterministic, in lieu of a random process [21], [22]. There
are quadratic time-frequency distributions (QTFDs), other than
spectrogram, which can offer higher resolution and power
concentration in time and frequency. Since high resolution
associate with high fidelity and is likely to depict more details
of the human motion signature in the TF domain, it is expected
that DNN would benefit from applying high resolution kernels
underlying QTFD [23], [24]. In this work, however, we confine
learning to the commonly used spectrograms. Within the
spectrogram paradigm, we also recognize that the window
length, shape and shifts can readily affect the motion signature
appearance and representation, and thus possibly alter the
respective heatmap.

B. DNN for motion recognition
In this paper, we use a deep learning architecture for

motion classification proposed in [4] as depicted in Figure
1. In the general scheme, this method follows three steps,
namely, pre-processing, feature extraction and classification.
The preprocessed representation is used as input to stacked
auto-encoders that perform feature extraction.

Sparse autoencoder is a neural network that attempts to
obtain the sparse representation of the input data. The learning
is achieved via a single hidden layer that typically has fewer

neurons than the input and output layers. Connections between
layers are established by the weights and biases. Each hidden
neuron applies a sigmoid function σ{•} to the weighted and
biased input data units xm, i.e., the output of the hidden layer
nth neuron is

an = σ

(∑
m

xmwm,n + bn

)
, (2)

where wm,n and bn denote the weight and the bias term,
respectively. The values of output layer units are obtained
in a similar way, by applying the nonlinear function σ{•}
to weighed and biased hidden layer units an. The weights
and biases of neurons are learned in such manner which
minimizes the reconstruction error and promotes sparsity. Once
the features are extracted using stacked autoencoders, the
classification is performed using softmax regression classifier.
More details about the architecture can be found in [4].

III. RELEVANT PIXELS ACCORDING TO THE DNN
In this section, we describe the LRP approach. This ap-

proach is based on the layer-wise conservation principle which
states that the relevance R should be preserved when back-
propagating from one layer to the next, i.e.,

R(1) = ... = R(l) = R(l+1) = ... = f(x). (3)

The relevance of the last layer is equal to the classification
function f(x) of the input image x. Relevance in each layer
is defined as the sum of relevances of all N neurons,

R(l) =

N∑
n=1

r(l)n . (4)

In order to obtain the relevance in the first layer, i.e., the
heatmap hn = r

(1)
n , the output signal is propagated backward

by the following rule:

r(l)n =
∑
m

(
α

z+n,m∑
n′ z

+
n′,m

+ β
z−n,m∑
n′ z

−
n′,m

)
r(l+1)
m . (5)

We use the values of the parameters α and β as set in [19],
i.e., α = 2 and β = −1. z+n,m and z−n,m are the positive and
the negative part of zn,m, respectively. zn,m is the contribution
of nth neuron at layer l to the activation of the mth neuron in
the next layer l + 1,

zn,m = a(l)n w
(l,l+1)
n,m , (6)

and an is the activation of neuron n defined by eq. 2.

IV. DISCUSSION AND ANALYSIS OF THE RESULTS

The FMCW radar experiments were conducted in the Radar
Imaging Lab, at the Center for Advanced Communications,
Villanova University. The radar system used in the experi-
ments, named SDRKIT 2500B, is developed by Ancortek, Inc.
The center frequency is 25 GHz, whereas the bandwidth is 2
GHz which provides 0.075 m range resolution.

The dataset contained four human motions: falling, sitting,
bending and walking. Each motion was observed during a time
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Fig. 1. Deep learning based architecture for motion classification.

span of 4 seconds. Resulting spectrograms and range maps
were then converted to gray-scale images with a grid size of
64x64, and used as inputs to the DNN. The dataset contains
408 signals: 117 fall, 111 sit, 115 bend and 65 walk signals.
The dataset is divided into two sets in order to train and test
the DNN. Training set consisted of 200 samples, where each
motion class was represented by 50 samples. The rest of the
dataset was used for testing. The number of units in the hidden
layer for the first auto-encoder was set to 300, meaning that
the network would attempt to compress 4096 coefficients into
300. The 300 outputs were further compressed using only 100
units in the second hidden layer.

Figure 2-(a) depicts spectrograms of the four observed
motions. Based on visual information of these images, we can
discern some prominent features for each class. For example,
fall signature depicts sudden drop in frequency in the shape of
a negative ”hump”. Sitting signature also exhibits sudden drop
in frequency, but the drop is not as pronounced as in the case
of a fall. Picking up an object and standing up, i.e., bending,
exhibits both positive and negative frequency components,
while the main characteristic of the walking signature are the
periodic components.

The heatmaps corresponding to these spectrograms are
shown in Figure 2-(b). The heatmap values are normalized
to be in the range [−1, 1] and each value is the relevance that
can be positive or negative. Namely, red and yellow shades
denote positive evidence (evidence that support prediction),
while blue color denotes negative evidence (evidence that goes
against prediction). Areas with positive evidence are extracted
from heatmaps and depicted in Figure 2-(c). For example, it
can be noticed that relevant pixels for fall signature capture
mostly the area where maximum frequency and negative hump
shape are present. Similarly, in the case of walk, periodic
components are denoted as relevant. We also show range
maps with corresponding heatmaps in Figure 3. These results
demonstrate that DNN makes conclusions that are consistent
with those made by humans when deciding which image
regions favor certain decision.

It is also possible to view heatmaps as filters which pass
only the relevant pixels and suppress noise and artifacts that
can cause misclassification. In order to verify the filtering
aspect of heatmaps, we applied masks (shown in Figure 2-
(c)) to the testing samples. The initial classification rate using
DNN approach depicted in Figure 1 was 86.7% (Table I).
Once the filtering is employed, the success rate is increased to
89.2% with bend and walk professing 100% (Table II). Even
though this denoising approach requires that the heatmaps to
be employed on the samples with known class labels, the
results show promise in the use of heatmaps for improving

TABLE I. CONFUSION MATRIX FOR THE DEEP LEARNING BASED
APPROACH FOR MOTION CLASSIFICATION USING SPECTROGRAMS.

SUCCESS RATE IS 86.7%.

Classified/Actual Class Fall Sit Bend Walk
Fall 74% 3% - 3%
Sit 13% 84% 3% -

Bend 3% 10% 97% 3%
Walk 10% 3% - 94%

TABLE II. CONFUSION MATRIX FOR THE DEEP LEARNING BASED
APPROACH FOR MOTION CLASSIFICATION USING SPECTROGRAMS AND

THE HEATMAPS. SUCCESS RATE IS 89.2%.

Classified/Actual Class Fall Sit Bend Walk
Fall 70% - - -
Sit - 87% - -

Bend - 13% 100% -
Walk 30% - - 100%

success rates. We observed that when denoising is applied
to training data only where test data remained unmasked, the
improvement in classification rates is slightly lower than that
when both training and test data are masked according the
corresponding class heatmaps.

V. CONCLUSION

This paper represented the first study of characterizing what
a Neural Network (NN) learns from the human motion micro-
Doppler signatures to render desirable classification rates.
We applied heatmap based method to determine what is
relevant in motion signatures according to the deep neural
networks (DNN). Results demonstrate that this method can
successfully determine pixels which have the highest impact
on the classification score. This impact can be either positive
or negative, i.e., some pixels help in classification while the
others are responsible for misclassification. It is shown that
DNN tends to make similar assessments as a human operator
when determining which image regions are relevant for the
classification.
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Fig. 2. (a) Spectrogram. (b) Corresponding heatmap. (c) Mask which contains pixels with positive evidence. First row: fall, second row: sit, third row: bend,
forth row: walk.
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Fig. 3. (a) Range map. (b) Corresponding heatmap. (c) Mask which contains pixels with positive evidence. First row: fall, second row: sit.
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